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Abstract
We live in an increasingly mobile world, which leads to the duplication of information across
domains. Though organizations attempt to obscure the identities of their constituents when sharing
information for worthwhile purposes, such as basic research, the uncoordinated nature of such
environment can lead to privacy vulnerabilities. For instance, disparate healthcare providers can
collect information on the same patient. Federal policy requires that such providers share “de-
identified” sensitive data, such as biomedical (e.g., clinical and genomic) records. But at the same
time, such providers can share identified information, devoid of sensitive biomedical data, for
administrative functions. On a provider-by-provider basis, the biomedical and identified records
appear unrelated, however, links can be established when multiple providers’ databases are
studied jointly. The problem, known as trail disclosure, is a generalized phenomenon and occurs
because an individual’s location access pattern can be matched across the shared databases. Due to
technical and legal constraints, it is often difficult to coordinate between providers and thus it is
critical to assess the disclosure risk in distributed environments, so that we can develop techniques
to mitigate such risks. Research on privacy protection has so far focused on developing
technologies to suppress or encrypt identifiers associated with sensitive information. There is
growing body of work on the formal assessment of the disclosure risk of database entries in
publicly shared databases, but a less attention has been paid to the distributed setting. In this
research, we review the trail disclosure problem in several domains with known vulnerabilities
and show that disclosure risk is influenced by the distribution of how people visit service
providers. Based on empirical evidence, we propose an entropy metric for assessing such risk in
shared databases prior to their release. This metric assesses risk by leveraging the statistical
characteristics of a visit distribution, as opposed to person-level data. It is computationally
efficient and superior to existing risk assessment methods, which rely on ad hoc assessment that
are often computationally expensive and unreliable. We evaluate our approach on a range of
location access patterns in simulated environments. Our results demonstrate the approach is
effective at estimating trail disclosure risks and the amount of self-information contained in a
distributed system is one of the main driving factors.
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1. Introduction
Modern society is marked by mobility amidst ubiquitous technology. [53] The increasing
ease of data collection, sharing, and processing has led to the capture and subsequent reuse
of substantial quantities of personal information. While many individuals desire the more
efficient and effective services that the application of their information can support, there are
concerns that the reuse could violate expectations of privacy [4]. As an example, let us
consider the healthcare domain, where the apparent sensitivity of medical information
heightens privacy concerns [6].

Collections of detailed genomic data tied to clinical information are poised to yield
significant healthcare breakthroughs, ranging from personalized medicine to drug discovery
[10; 46; 48]. Research in this area is often sponsored through federal funding agencies, such
that various policies now require researchers to share “de-identified” genomic data for
validation of findings and reuse in general [51; 52]. At the same time, hospitals often share
identifiable resources, devoid of genomic data, for administrative purposes, such as
discharge data for public health and policy evaluation [49; 59]. While the genomic and
discharge data appear unrelated, a patient can leave information behind at multiple
institutions, where the data is independently managed and shared. And, the location-access
patterns, or trails, of an individual’s data can be constructed as a bridge between the
disparate resources, which leads to “re-identification” [43]. Notably, this is a problem that
will escalate in the healthcare domain as the cost of genome sequencing decreases and
participation of patients in research studies increases.

Yet, it should be recognized that the problem of trail disclosure is poised to become a real
concern not only in healthcare, but in many other domains [38]. Though domains change the
problem remains constant: there is a risk that trails derived from shared data will lead to
disclosure. Inability to address the problem could prevent organizations from sharing data on
a broad scale.

1.1. Overview of the Approach
In this paper, we propose a novel approach to formally evaluating the risk of trail disclosure
in distributed database systems prior to release. This approach adapts the concept of self-
information in information theory [28] and explores the relationship between the measure of
self-information, also known as entropy, of a database system to the rate of disclosure of
data entries in the system [2; 41]. Entropy based measures have already been applied for
estimating information loss [68], and recently for estimating disclosure risk for microdata
[8], yet, to the best of our knowledge, this is the first study in which the problem of trail
disclosure is characterized from a statistical and predictive perspective. The entropy
approach to trail disclosure risk is computationally efficient and superior to existing risk
measures in the sense that it estimates the risk based on statistical characteristics of a trail
distribution and requires minimum access to the individual data entries, which in most cases
leads to computationally inefficiencies. In our approach, the actual number of disclosures
can be measured as the number of shared database entries that are re-identifiable.

The goal of our work is to approximate the number of disclosures that can be made on an
arbitrary given database, prior to its disclosure. To do so we need to isolate the processes
that influence disclosure, such as 1) the data generating process (e.g., How do people visit
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places?) and 2) the disclosure process (e.g., How are trails linked?). We then substitute
statistical characteristics of location access patterns for the actual patterns in other shared
databases to estimate the disclosure risk.

Our approach can be summarize as follows: First, we explore several real environments in
which trail re-identification has been studied and discover how the location access patterns
relate to the number of trail disclosures. Based on the empirical evidence on location access
patterns, we then characterize the underlying process that governs trail disclosure. Next, we
propose an entropy metric to capture the relationship between distributions of location
access and the degrees of disclosure in shared databases. We test the proposed metric in a
simulated environment using several fundamental location visit strategies employed by
individuals in the real world, and finally, we assess the disclosure risk they entail. The
empirical evidence from the earlier cases, as well as simulated experimental results, suggest
that the entropy metric is effective in estimating the risk of trail disclosure in database
entries. The statistical characteristics of the distribution of people to places is shown as one
of the main factors that drives trail disclosure.

1.2. Outline
The remainder of this paper is organized as follows. In Section 2, we briefly review relevant
literature on disclosure risk assessment. Next, in Section 3 we review the formal basis and
methods for trail disclosure. In Section 4, we propose a metric based on information theory
to assess the trail disclosure risk. In Section 5, we revisit several real applications in which
trail disclosure has been studied to demonstrate the fact that the disclosure rates can be
characterized as a function of the access patterns of people to places. In section 6, we
perform linkage analysis on several types of simulated datasets corresponding to a range of
distributions of location access patterns, and analyze the relationship between the entropy
scores of each distribution and the corresponding disclosure rate. We evaluate our metric in
Section 6.3. Finally, we summarize our work, address limitations and extensions for future
research in Section 7.

2. Related Work
In the past, it was generally believed that person-specific data collections could be shared
somewhat freely, provided none of the features of the data included explicit identifiers, such
as name, address, or Social Security number. This notion, for instance, set the precedent for
the “Safe Harbor” standard of the de-identification designation in the Privacy Rule of the
Health Insurance Portability and Accountability Act [14]. However, an increasing number of
data detective-like investigations have revealed that collections of “de-identified” data,
derived from ad hoc protection models, can often be linked to other collections that include
explicit identifiers to uniquely, and correctly, disclose private information by personal name
[69; 7; 42; 64; 30; 50]. Fields appearing in both de-identified and identified tables can link
the two, thereby relating names to the subjects of the de-identified data. For instance, the
fields {date of birth, gender, 5-digit zip code} have commonly appeared in both de-
identified databases and publicly available identified data (e.g., birth records, death records,
marriage records, or voter registration records) and are estimated to uniquely represent over
60% of the U.S. population [29; 64].

2.1. Perspective on Privacy and Data Protection
Given the potential for re-identification of individuals in shared data [65; 39], many privacy
protection methods have been proposed and adapted by researchers from multiple
disciplines, including statistics, computer science, medical informatics, and information
systems [19; 20; 26; 31; 18; 27; 13; 9; 25; 58; 54]. Some of these methods have focused on
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developing various technologies, including cell suppression [11; 3], encryption [31; 47; 56],
data perturbation [19; 20; 26], and microaggregation [33; 74] to limit the disclosure of
explicit identifiers associated with sensitive data. Others have focused on developing
sophisticated database operational mechanisms to restrict access to confidential data [1; 27;
34], or hybrid approaches that combine both data entry manipulation and database access
restrictions [9; 24; 54; 5]. Trail disclosure extends traditional data disclosure problems as it
illustrates how the pattern of locations people visit, or trails, can be used to facilitate
standard data linkage and disclosure [43; 38]. Existing privacy protection methods are not
designed to address trail disclosure problems.

2.2. Disclosure Risk Assessment
To apply data protection methods in a formal manner, various measures have been proposed
for estimating the risk of data disclosure. For instance, [20] proposed a decision-theoretic
framework for risk assessment in masked data that includes the intruder’s objectives and
strategy for compromising the database and the information gained by the intruder. In [18],
this model was extended into a risk-utility (or R-U) confidentiality map to study the trade-
off between utility and disclosure risk in shared data, notably tables of aggregated counts
(also known as tabular data). [15] used the posterior probability for re-identification of data
entries in a given database as a proxy of the disclosure risk measure and [66] applied this
measure to empirically compare statistical disclosure control methods. [67] created a set of
maximum, minimum and weighted disclosure risk measures based on inversion and change
factors on the magnitude of masking modification in tabular data. [62] studied issues of
using the probability of a correct match in data records as a measure of disclosure risk and
explored the nature of this probability and its estimation. The focus on risk of disclosure is
an issue that is shared by recent literature on microdata (i.e., individual records) more
generally [e.g., see 73; 57; 16; 21].

Although these measures have been valid in their specific applications, the majority have
focused on the risk of re-identification of data entries in tabular or microdata with standard
attributes, not on the amount of entries susceptible to re-identification via trails that occur in
shared databases. Furthermore, for all the previously proposed measures, the accuracy of the
measurement depends on the reliability of the estimation of threshold disclosure rates and
the data sharing method that is used, which in most cases are strongly affected by random
uctuations or are computationally intractable.

2.3. Distinguishing Characteristics of the Trails Problem
The distinguishing aspects of the trail disclosure problem are that it is a tragedy of the
commons situation combined with a lack of coordination among the locations. The tragedy
of the commons [32] is marked by a domain in which there are a set of consumers and a
shared limited resource. Each consumer rationally utilizes the resource to maximize their
benefits; however, when the actions of all consumers are considered jointly, the result fails
to maximize the benefits for all entities. In the context considered in this work, the shared
resource is the environment into which data is shared. Separately, each location’s partitioned
pair of identified and de-identified records can be disclosed in a provably unlinkable manner
and each location attempts to disclose as much data as possible. Yet, when the collection of
locations’ shared databases are studied, a vulnerability arises that is due to the traceability of
an entity’s information (e.g., an individual’s name has a low likelihood of changing) [43].
As we trace an individual across databases, we accumulate the list of locations visited,
which serves as a way to compare seemingly incomparable information (e.g., names and
DNA).
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Thus to maximize the benefits (i.e., data sharing) without compounding costs (i.e., re-
identification), the locations need to withhold certain amounts of information. In previous
work, we introduced an algorithm to facilitate coordination when the locations are permitted
to exchange information [39]. Unfortunately, information exchange for coordination is not
always possible, due to legal or regulatory constraints. To overcome such a problem, we
demonstrated how locations could use a third party to facilitate coordination without
revealing information [44; 45; 40]. Yet, these approaches require certain assumptions of
trust in encryption technology, as well as the inclusion of third parties, which is not always
practical.

3. Identity Disclosure by Trails
We begin this section by providing an informal view of identity disclosure by trail re-
identification. We then introduce a formal presentation of the disclosure problem.

3.1. Informal Problem Description
The main premise of trail disclosure is based upon the observation that people visit different
sets of locations where they can, and do, leave behind similar pieces of de-identified
information. The de-identified data can consist of only one or very few fields. Each location
visited collects and, subsequently, shares de-identified data on people who visited their
location. In addition, locations also collect and share, in separate releases devoid of de-
identified data, explicitly identified data (i.e. name, residential address, etc.), thereby naming
some people. Individually, a single location’s releases appear unrelated, and thus identity
and sensitive information appear unlinkable. However, when multiple locations share their
respective data, this allows for trails, a characterization of the locations that an individual
visited, to be constructed. Similar patterns in the trails of de-identified and identified data
can then be used for linkage purposes.

3.2. Formal Problem Description
A formal presentation of the disclosure problem considered in this work is as follows: Let L
= {l1; …; ln} be a set of locations collecting data. At each location, data is organized as a
database, which we model as a table of rows and columns. Each column corresponds to an
attribute, which is a semantic category of information that refers to people, machines, or
other entities. Each row contains attribute values specific to a person, machine, or other
entity. A database is represented by τ(A1, A2, … , Ap), where the set of attributes is Aτ =
{A1, A2, … , Ap} and each attribute is associated with its own domain of specific values.
Each row in the database is a p-tuple, which we represent in vector form [a1; … ; ap], such
that each value ai is in the domain of attribute Ai. We define the size of the database as the
number of tuples and use cardinality, denoted with ∣τ∣.

A database τ is said to be identified if Aτ includes explicit identifying attributes, such as
name or residential address, or attributes known to be directly linkable to explicit identifiers
[12]. If τ is not identified, then it said to be de-identified. Data holding locations attempt to
protect the anonymity of sensitive data by stripping explicitly identifying attributes from
sensitive data. In doing so, locations partition identified and de-identified data and make
separate database disclosures. As such, in our model, each data holder releases a two-table
vertical partition of its internal data by splitting τ into two tables ψ (A1, … , Ai) and δ(Ai+1,
… , Aj), with attributes Aψ ⊂ Aτ , Aδ ⊂ Aτ , and Aψ ⋂ Aδ = ∅. For illustration purposes,
consider the four databases depicted in Figure 1.

Given the tables of a particular type (e.g., the sensitive data tables), we can construct a
matrix X that is referred to as a trail matrix. The trail matrix X is the join of all locations’
tables over a set of related attributes, such as when we trace an individuals DNA sequence
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from one location to another. In this example we have four locations L = {l1; l2; l3; l4}. The
corresponding trail matrices are depicted in Table 2(a). For large databases, the trail matrix
could be constructed using exact joins, or might be constructed from traditional record
linkage algorithms for tables with common attributes [23; 70; 72]. The matrix has a row for
each distinct data element and ∣L∣ columns, one for each location. Values in the matrix are
drawn from {1, 0, *}. A “1” in a cell denotes the data element for the row definitely visited
the location corresponding to the column, while a “0” denotes a definite non-visit. A “*” is
an ambiguous value and indicates that we are unsure if the data element was collected at the
location. We use X[x, :] to denote the trail of data element x in matrix X.

The basis behind trail disclosure is that there exist two different types of data collected at the
set of locations in the environment. Thus two trail matrices, X and Y , can be constructed,
and it assumed that both are drawn from the same population of entities. As a result, it is
assumed that each entity’s trail in X and Y can be transformed into a common trail by
flipping *’s into 0’s and 1’s. When this transformation can be performed, X[x, :] is said to
be relatable (represented with the ≼ symbol) to Y[y, :] (and similarly from Y to X). Figure
2(a) provides an example of trail matrices Notice Y[actg, :] ≼ X[Alice, :] and Y[tgac, :] ≼
X[Charlie, :].

The goal of trail construction is to explore the patterns of trail distribution and the disclosure
risk. We use the ReIDIT-I (Re-Identification of Data In Trails - Incomplete) algorithm
introduced by [43] to conduct trail disclosure experiments and our model validation section.
Although alternative methods have been proposed for extracting information from
anonymized public sources [17; 37; 71], we are motivated to use ReIDIT-I because it is
computationally tractable and guarantees every match to be a correct disclosure [39]. Briefly
speaking, ReIDIT-I involves the following steps. First, it constructs a ∣Y∣×∣X∣ matrix, called
M, such that cell M[i, j] = 1 if Y[i, :] ≼ X[j, :], and 0 otherwise. When it finds a row or
column that has only one cell M[i, j] = 1, it re-identifies the corresponding data elements in
the cell. This process is iterated until no more matches can be made.1 Figure 2(b) illustrates
the initial matrix for Figure 2(a) and the first trail disclosure of tgac to Charlie is made. In
the next iteration gact will be re-identified to Dan, and so on. Detailed algorithm steps can
be found in [39].

4. Disclosure Risk
In this section we introduce an entropy metric for assessing the risk of trail disclosure.

Self-information in information theory [28] is defined as a measure of the information
content associated with a probabilistic event. The underlying intuition is that the smaller the
probability of an event, the larger the self-information associated with receiving the
information that the event indeed occurred. In the case of trails of location access, the
occurrence of a trail is understood as a probabilistic event. A trail that occurs more rarely is
associated with a larger amount of self-information if occurred. We speculate that the larger
amount of self-information contained in a trail, the more re-identifiable the trail is, given
that the trail occurred in the shared databases. We are interested in examining to what extent
we can relate the distinguishability of a trail to the amount of self-information associated
with the system. Next, we present an entropy metric for evaluating the risk of trail disclosure
of database entries.

1The REIDIT-I algorithm trades between re-identification discovery and efficiency. All of the re-identifications made by the
algorithm are correct, but, to run efficiently, the algorithm does not guarantee discovery of all re-identifications in the system. [43]
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The expected amount of self-information contained in a random event is called entropy [60;
61]. The lower the entropy, the lower the expected amount of self-information that is
associated with the system. The mathematical de nition of entropy is as follows: Let X be a
discrete random variable with possible values {x1, , xn}. Let p(xi) be the probability of the
outcome value X = xi. The entropy of X is calculated as:

(1)

In the case of location access patterns, each trail is represented as a Boolean vector of 0’s
and 1’s such that we can compute its entropy in the distributed database system. If we
consider all the possible trails with a given entropy score. The entropy score in our context
of trail disclosure is a measure that relates to re-identifiability. We argue that a database
system with a low entropy score leads to a low risk of disclosure in database entries. The
intuition for our argument is that, for a given amount of information that is required to re-
identify data entries in a database system, if the expected amount of self-information
contained in the system is low, the likelihood of disclosure is low.

Let us assume we have the trail matrix that maps a population of subjects S to a set of
locations L as defined earlier. Let p(li) be the probability of subjects in S that visit location
li. Then, the entropy for location li, H(li), equals:

(2)

Under the assumption that individuals decide whether to visit each location independently of
other locations, the entropy of the set of location access patterns of the population S to the

set of available locations L is given by . Next, we compute the entropy
score and the corresponding disclosure rate for each simulated system in two sets of
experiments.

5. Empirical Evidence from Applications in the Wild
The trail re-identification phenomenon has been assessed in several different environments.
In this section, we review two particular cases studies from which we will abstract a
generative model. The first pertains to healthcare, and recounts how individuals visit
locations in the physical world. The second pertains to the Internet and illustrates how
individuals visit virtual domains.

5.1. Case Description: Physical Trails
The first case is based on the study in [43], which utilized publicly-available hospital
discharge databases from the State of Illinois for the years 1990-1997 [63]. In such
databases, patient demographics, hospital identity, and diagnosis codes are among the
attributes stored with each hospital visit. The demographic attributes for patients include
date of birth, gender, five-digit zip code of residence, as well as an identifier for the hospital
visited. As mentioned earlier, these demographics can be highly distinguishing for patients
and thus we can track them from one hospital to the next. In the case study, the patient
subpopulations diagnosed with particular DNA-based disorders (which were documented in
the diagnosis codes) were extracted from the discharge databases. The demographics
associated with these patients were found to 99% unique and thus, the trails for these
patients were assumed to represent unique individuals.
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In [43], it was shown that the distribution of individuals to hospitals varies from uniform to
Gaussian. To substantiate the empirical evidence presented in this paper, we consider the
hospital-visit trails of two particular subpopulations, Cystic Fibrosis and Phenylketonuria. In
these datasets, the entities were patients and the locations were hospitals. The size of the
populations was 1149 and 77 patients over 174 and 57 hospitals, respectively.

This study is generative, in that according to the National Association of Health Data
Organizations reports, 44 of 50 states have legislative man-dates to gather hospital-level data
on each patient visit [49]. In the Illinois databases, for example, there are approximately 1.3
million discharges per year with compliance for greater than 99% of all hospital discharges
in the state.

5.2. Case Description: Virtual Trails
The second case is based on [38], in which the trails of IP addresses in a distributed online
environment were considered. The dataset used in this study was compiled by the Homenet
project at Carnegie Mellon University, who provided families in the Pittsburgh area with
Internet services in exchange for the monitoring and recording of the families’ online
services and transactions [36]. Trails were built from URL access data collected over a two-
month period that included 86 households and 144 individuals. Each individual was
provided with a unique login and password for ne-grained monitoring. Overall,
approximately 5,000 distinct website domains and 66,000 distinct pages were accessed. We
analyzed the traffic at each domain with respect to the number of distinct visitors and
discovered a generalized power-law distribution of people to places, specifically a Zipf
distribution, which represents high skew [22].

5.3. Empirical Findings
Across the case studies we found that disclosure rates correlate with the average number of
people visiting a location. When we investigated this relationship in more detail, we found
particular types of locations influence trail disclosure. For example, we ranked the
popularity of each location by the number of distinct subjects visiting the location. When we
measured trail disclosure rates from the least popular location to a location with a specific
popularity, we found the disclosure rate correlated the average number of people per
location. The result is shown in Figure 3, where we depict disclosure rates for the three
populations. The first two plots are derived from the healthcare case study, where the
leftmost plot corresponds to a population afflicted with Cystic Fibrosis and the middle plot
to the population afflicted with phenylketonuria. These two cases establish a comparison
between the feasibility of trail disclosure on a population in which the number of subjects
per location is relatively large (Cystic Fibrosis - approximately 6.60) with a population in
which the average is closer to a single subject per location (Phenylketonuria - approximately
1.35). The rightmost plot corresponds to the online Homenet dataset, where the ratio of
subjects per location is relatively small (approximately 0.017).

We observe that as the ratio of subjects per location grows large, such as in the Cystic
Fibrosis dataset shown in Figure 3(a), we find evidence of an exponential relation between
the number of locations considered (the X axis), and the number of people that are trail re-
identifiable (the Y axis). As the ratio becomes negligible, as observed in the Homenet
dataset in Figure 3(c), we find evidence of a logarithmic relation between the number of
locations considered and the number of trail re-identifications. Furthermore, the
Phenylketonuria dataset in Figure 3(b) supports this trend; in this case the ratio of people to
locations is approximately 1, and we find evidence of a linear relation between the number
of locations considered and the number of trail disclosures.
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The evidence from the case studies suggests that different types of location access patterns
have an effect on trail disclosure. In the following section we study the degree to which
specific types of access distributions influence disclosure.

6. A Controlled Simulation Study
The cases studies suggest there are many aspects of location-based information which
influence trail disclosure. The main contributing components include the number of subjects,
the number of locations, the distribution of subjects to locations, as well as the parameters
controlling said distributions. Our experiments focus on the number of locations and the
distributions guiding subject access to these locations. We study the disclosure rate and the
corresponding entropy score in different con gurations of locations access distribution
patterns and the system parameters that govern such distributions.

6.1. Design of Experiments
For our experiments, we fix the number of subjects to 1000. We simulate uniform and high
skewed distributions of subjects per location. Additionally, we simulate a special case in
which neither trail matrix has *’s, which is called a completely specified environment and a
scenario where one trail matrix has *’s, which we call an incompletely specified
environment. From an operational point of view, in the simulation of completely specified
systems, we generate two equivalent trail matrices. In the simulation of incompletely
specified systems, instead, we generate trail matrices for a completely specified
environment, and then we change all 0’s in a matrix to *’s. For each distribution type and
parameterization, these populations are allocations to sets of locations over the range of 3 to
40 locations.

Uniform Simulation—In this setting, subjects visit locations with uniform probability.
We control the average number of subjects per locations, by specifying the probability that a
subject visits each location, p ∈ [0.1]. This sampling mechanism is from a location
perspective. From a subject perspective, however, given that subjects act independently and
there is no difference among locations, each subject’s trail is a string of 0’s and 1’s, where
the probability of observing a 1 at each location is also given by p ∈ [0, 1]. We perform
different simulations by fixing p on a grid in Figures 4.2

Heavy-tailed Simulation—In this setting, subjects visit locations according to Zipf
distributions, which lead to the highly skewed location access patterns. The set of available
locations is denoted by L, and the population of subjects visiting those locations is denoted
by S. The expected number of subjects who visit location li ∈ L is equal to the mean of the
corresponding distribution, e.g., equals , where ri is the rank of li’s popularity, and α
is a real number greater than zero. When α equals 1, then the distribution is a true Zipf and
when α < 1 the distribution is said to be in a generalized form. Given the high skew of the
distribution, the log-log plot of “number of visitors” to “location rank” is linear, while the α
coefficient serves as a dampening factor on the slope of the tted curve. As with the uniform
distribution, the Zipf is studied by varying the parameter α over the same interval [0, 1], and
sample points, as the p parameter of the uniform distribution.

For each tested data point, such as ⟨∣L∣ = 10, p = 0.3⟩, we generate 100 populations.
Populations that are guided by the Zipf distribution are generated using the formula
described above.

2In theory, any number of points on the [0, 1] interval will suffice.
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6.2. Entropy Score and Trail Disclosure Rate
The resulting 10-point plots for unreserved and reserved systems are depicted in Figures 4
and 5. In these plots the mean percentage and plus/minus one standard deviation3 for the
100 simulated populations are depicted. The x-axis corresponds to the parameter of the
distribution in question and the y-axis corresponds to values of the mean percent of the
population that is trail re-identified.

From the disclosure plots, though there is no direct way to compare the parameterizations of
the uniform and Zipf distribution, there are several interesting observations that can be
made. First, with respect to both the unreserved and reserved systems, it is apparent that the
uniform distribution consistently yields a larger number of disclosures than the Zipf
distribution. This can be seen by comparing the disclosure maximum, or peaks, in the left
and right panels. Consider Figure 4, for example, in a situation with 10 locations, we re-
identify a maximum of approximately 40% of the subjects distributed uniformly (which
occurs when p = 0.5), as opposed to around 16% of the subjects that are distributed in Zipf
high skew (which occurs when α = 0.4). This finding is consistent across all systems as the
number of the locations in consideration is increased.

Second, we consider a less readily observable feature that directly relates to the general
success of disclosure, given a specific distribution for location access patterns. To compare
distribution archetypes, such as uniform vs. Zipf, we measure the area under the disclosure
curve. This is calculated as the total area under the 10-point mean disclosure curve (average
number of disclosures in 100 simulated populations). The results of this calculation are
presented in Figures 6(a) and 6(b). Though the uniform distribution always yields the larger
maximum number of disclosures, the Zipf distribution is almost always the more linkable
when considering all parameterizations. This is obviously so in the case of the reserved
system, where Figure 6(b) shows that the Zipf always dominates. Similarly, in an unreserved
system, Zipf is both the initial and inevitable dominant. However, this analysis reveals an
unanticipated and intriguing finding. In certain ranges, the uniform distribution is dominant
to the Zipf! In Figure 6(a), this finding is observed between approximately 8 and 18
locations.

The flip in distribution linkage capability dominance occurs for two reasons. First, Zipf
dominates when the number of locations in consideration is small because it is more difficult
to realize complete vectors of all 1’s. Second, Zipf dominates as the number of locations
increase because it is easier for lesser accessed locations, which is what the newly
considered locations are, to convert an unlikely trail into an extremely unlikely trail.

In an additional set of experiments, we observed that the entropy curves display a behavior
that is similar to that of the percentage of people re-identified, displayed in Figures 4 and 5.
In Figure 7 we report the results for the unreserved case.

6.3. Evaluation
In order to assess whether the entropy metric is able to capture the notion of
distinguishability, in this section, we introduce the distance measure shape score σ to
measure the difference and correlation between and disclosure rate and the corresponding
entropy score of a system. Let us denote the entropy score of a population that visit the set of
available locations L by E(i), and the actual disclosure rate of the system R(i), where i is a
point in the grid, G, for the interval [0, 1] we used to generate the disclosure curves in
Figures 4 and 5. Let max(R) = R(i*) where i* = arg max{R(i), i ∈ G}, and let max(E) =

3In Figure 4, the error bars are too small to be visible.
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E(j*) where j* = arg max{R(j), j ∈ G}. The scaling factor is then , and the distance
metric, σ, is defined as follows,

(3)

(4)

Note that whenever i* = j*, i.e., whenever the entropy and disclosure curves peak at the
same point i* = j* on the grid G, it follows that σi(E, R) = 0. That is,

(5)

(6)

We compute the shape scores σ between two curves. The scaling factor is proportional to the
ratio between the peaks of the two curves. The resulting information from the shape score is
summarized in Figure 8. As values for shape scores tend toward 0, the curves converge. As
expected, the curves tend toward convergence as the number of locations increase. Yet after
convergence begins to come into the line of sight, a counter-intuitive phenomenon occurs.
Specifically, after a certain number of locations are considered for a particular distribution,
the E and R curves begin to diverge from each other. This is an artifact of the limits of re-
identifiability.

Notice that in Figure 4, when a lesser number of locations are considered the linkage curve
has a well defined peak. This peak corresponds to the parameter at which the distribution is
most amenable to linkage. But this peak is only discernible when less than all of the trails
are linked. Thus, when the system is fully linked at multiple parameterizations of the
distribution, the linkage curve plateaus at 100% at its peak, while the entropy continues to be
well defined. This limit to linkage causes the observed curve to be improperly matched to
the entropy of the system. There is no divergence observed, but rather a limit to independent
use of the entropy metric.

The shape score allows for the discovery of another notable feature that captures how the
distribution type influence different trail linkage algorithms. Note that in the unreserved
system, the uniform distribution converges earlier than the Zipf distribution. In contrast,
when subject to the reserved system, the uniform distribution converges after the Zipf
distribution. Ah, a paradox! At first consideration, one would expect that one distribution
type, either uniform or Zipf, would converge earlier in both algorithms. However, this
paradox results from how trails are generated under the two distributions as well as how the
disclosure method leverages trails. First, consider the linkage algorithms. In an unreserved
system, the disclosure method looks for a unique bit pattern because there are no *’s. So
both 1’s and 0’s are contributing evenly to the disclosure process. This is why the disclosure
curve for the uniform distribution is balanced and has no shift around the midpoint of p . In
other words, the percent re-identified is approximately equivalent for +/−x around the
parameterization of p = 0.5. With respect to an reserved environment though, a * value in a
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trail functions as a fuzzy bit, since it can be used as either a 0 or a 1. Thus, as p tends toward
1, trails with a lesser number of unambiguous values become more difficult to re-identify.
As a consequence, the disclosure curve shifts away from high values of p which allow for
trails with large amounts of 1’s. The Zipf distribution should be hindered by this problem as
well, but because it allows for locations to have different entropy values, the Zipf reveals
more disclosures. Thus, the total quantity of disclosures the Zipf is capable of tends to be
greater than the uniform. If one wanted to validate this claim, it is simple to observe that the
average number of disclosures, but not the maximum, for the Zipf is greater than the
uniform.

7. Discussion
The above analysis provides a wealth of insight into the effects of location access patterns
on the degree to which trail disclosure can be achieved in a distributed system. It also
provides intuition into the relation between re-identifiability of a set of trails and the
information they carry, as measured by the corresponding entropy, and especially the extent
to which the amount of re-identifiability can be predicted from the statistical characteristics
of a database before its release. In this section we briefly address some findings of particular
interest. After discussing revelations from our investigations, we consider some of the
limitations and possible extensions of our framework.

One of the more interesting findings of our experiments is that high-skew location access
patterns yield higher overall disclosure when compared with low-skew location access
patterns. This result holds despite the fact that low-skew distributions lead to a larger
number of peak disclosures, with respect to the parameter underlying the distribution of
location access patterns, as well as for any given number of locations in the distributed
environment. Further, this result holds in both situations where there is certainty about the
information collected and released at the various locations; i.e., the incompletely specified
case, and in situations where there is uncertainty about the information collected and
released at the various locations. This finding has immediate implications for the design of
solutions to limit trail disclosure in disclosed databases. For example, one solution we could
employ is to entrust an independent third party to identify the set of locations that contribute
the most to the skewness of location access patterns, and prevent them from releasing a
certain portion of their de-identified data. By doing so, we do not need to provide the third
party with data per se, as is the case in prior solutions [45; 40], but rather essential
components of the distribution of people to places. Nonetheless, risk analysis is not a
substitute for formal privacy protection to prevent trail disclosure, which can be subject to
rigorous proof. Disclosure risk analysis provides a proxy by which we can develop provable
protection models.

Furthermore, we find there is a strong correlation between the entropy of the system and
disclosure. In particular, the lower the entropy in a the set of trails, the more individual trails
can be re-identified. This correlation is stronger for distributed systems with more locations,
but hold for smaller systems as well. With respect to minimizing risk, our experiments
suggest that in order to predict the number of trail disclosures that can be made, the
distribution of location access patterns, or the entropy, should be modeled. In pursuing these
strategies, it becomes crucial that the information which is released is reliable. In fact,
reliability of the information bears relevance to the expected quality of the estimates of both
the parameters underlying the distribution of location access patterns and the entropy of the
set of trails of the population of interest.
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7.1. Limitations and Extensions
An aspect of our analysis that requires further attention is the correlation between the
entropy of a set of trails and the number of disclosures that can be made. Our experiments
suggest that low entropy systems correlate with high re-identifiability, but they offer little
intuition into what mechanism may link the two phenomena in a causal manner. We cannot
explain “in what sense” low entropy location access patterns explain re-identifiability.

Though this research provides a theoretical investigation into how particular distributions of
location access patterns influence trail disclosure, there are certain caveats of the simulation
design which limit the extension of these results. First, the entropy computations are carried
out under the assumption that individuals decide whether to visit each location
independently. As a consequence, our simulations do not completely replicate the behavior
of real world populations. This is because in the real world most entities are not random
agents visiting locations independently [55; 35]. Rather they can play an active role in
choosing which locations to visit. This manifests in the form of correlations between
locations in the patterns of access. As a consequence of this dependence, the resulting
location access patterns can be different than those obtained under the independent locations
assumption. For example, individuals may tend to visit multiple locations in co-location
patterns. As a result of such location access behavior, the disclosure capability of the
synthetic populations used in this research may be inflated.

Second, the distributions used in this study consist of homogenous populations, such that
location access to all locations adheres to a single distribution. However, we should ask,
“What is the effect of mixture models of populations on trail disclosure?” For instance, to
what extent is disclosure facilitated when half the population is uniformly distributed while
the other half is Zipf distributed? It is possible to speculate on the results, but it is a complex
problem that is difficult to reason about. As a result, another feasible direction for research
into the fundamentals of trail disclosure is to study the effect of mixture models of
distributions on disclosure.

7.2. Concluding Remarks
In this paper we proposed a novel approach to formally evaluating the risk of trail disclosure
in distributed database systems. Specifically, we introduced an entropy metric for assessing
the effect of different location access distributions on trail disclosure when an individual’s
data is distributed across a set of locations. We provided case-based and controlled
experimental evidence that implies the characteristics of the distributions of location access
patterns is one of the main factors that influence disclosure. Though our model is based on
empirical observations and simulation, this work provides a foundation for both basic and
applied trail linkage and data disclosure research, in general. Our work also provides a
compelling exploration into the relation between the disclosure of a set of trails and the
information they carry. From a practical point of view, we are able to turn our intuitions into
a quantification of the disclosure risk that can be predicted from the statistical characteristics
of databases before their release.
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Figure 1.
Sample disclosures for four locations.
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Figure 2.
(a) Trail matrices built from the partitioned tables in Fig. 1. (b) In the first step of the
ReIDIT-I algorithm, Charlie is re-identified to tgac.

Airoldi et al. Page 19

Decis Support Syst. Author manuscript; available in PMC 2012 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Trail re-identification in three case studies. The number of locations increase from least-
visited to most-visited.
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Figure 4.
Disclosure of simulated unreserved location access distributions.
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Figure 5.
Disclosure of simulated reserved location access distributions.
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Figure 6.
Area under the mean disclosure curves for simulated populations.
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Figure 7.
Entropy plots corresponding to parameter values in the left and right panels of Figure 4.
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Figure 8.
Shape scores for similarity in simulated distributions and entropy.
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