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Abstract
Methods for generating a random sample of networks with desired properties are important tools
for the analysis of social, biological, and information networks. Algorithm-based approaches to
sampling networks have received a great deal of attention in recent literature. Most of these
algorithms are based on simple intuitions that associate the full features of connectivity patterns
with specific values of only one or two network metrics. Substantive conclusions are crucially
dependent on this association holding true. However, the extent to which this simple intuition
holds true is not yet known. In this paper, we examine the association between the connectivity
patterns that a network sampling algorithm aims to generate and the connectivity patterns of the
generated networks, measured by an existing set of popular network metrics. We find that
different network sampling algorithms can yield networks with similar connectivity patterns. We
also find that the alternative algorithms for the same connectivity pattern can yield networks with
different connectivity patterns. We argue that conclusions based on simulated network studies
must focus on the full features of the connectivity patterns of a network instead of on the limited
set of network metrics for a specific network type. This fact has important implications for
network data analysis: for instance, implications related to the way significance is currently
assessed.
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1. Introduction
Data about connections among individual entities arise in many areas such as management
sciences [22; 36; 6], medical and biological sciences [14], and social, economic and
information sciences [26; 24; 16; 31; 25]. Evidence from research and practice suggests that
patterns of connectivity, rather than the intensity of interactions, drive productivity and other
important aspects of collective behavior. A connectivity pattern is intuitively defined in
terms of a special arrangement of connections among a set of nodes in a network.
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Connectivity patterns are also referred to as characteristics of a network type and can be
quantitatively characterized in terms of network metrics. For example, networks with six
degrees of separation, also known as small-world networks, are typically characterized
quantitatively in terms of two network metrics: network diameter and clustering coefficients.
The typical connectivity pattern in a small-world network is one where, intuitively, nodes
have many local connections and a few long-distance connections according to some given
distance measure. Commonly seen network types include ring-lattice, small-world, scale-
free, core-periphery, and random networks. There are 47 network metrics widely adopted in
the social and physical sciences. Examples of popular network metrics include a variety of
centrality measures, clustering coefficients, connectedness, hierarchies, and average
distances [39].

Algorithm-based approaches to sampling networks [40; 34; 3] have received a great deal of
attention in recent literature [9; 15; 30; 11; 41]. Most of the algorithms for sampling
networks are based on simple intuitions. These algorithms associate only one ortwo
connectivity patterns of an observed network—such as degree distribution, or diameter and
clustering coefficient—with a simple process that aims to generate networks with the
desired connectivity pattern [20].

However, current approaches have a number of issues. For example, the association between
published algorithms and the connectivity pattern they are meant to generate has not been
formally analyzed in the literature. The efficiency and robustness of these algorithms in
generating networks with the desired connectivity patterns have not been quantified.
Moreover, the association between these algorithms and the full set of network metrics of
the networks they can generate has not been explored.

Typically, the structure of a network is defined as , in which  is a set of nodes
that represent individual entities, and  is a set of edges that represent the connectivity
pattern among the nodes. The connectivity pattern can be characterized by a popular set of
network metrics, including measures of centrality of individuals, degree-based metrics, and
global network metrics. Practitioners, however, rely on a limited subset of these network
metrics to quantify structural patterns of network types of interest [3]. The disconnect
between the limited network metrics that most sampling algorithms consider and the full set
of network metrics that a network entails has important implications for network data
analysis. For example, many empirical analyses implicitly assume that there is an
association between a single metric and a type of networks. An analysis would then claim,
for example, that scale-free networks are characterized by having a power-law degree
distribution [40]. The substantive conclusions of this analysis crucially depend on the
implicit assumption that one individual metric completely determines the structure of scale-
free networks. Similarly, high clustering coefficient and low network diameter are believed
to completely determine the structure of small-world networks [5]. In contrast, recent results
have shown how it is possible to generate small-world networks with scale-free distribution,
as well as scale-free networks with high clustering coefficient and low diameter [21]. Thus,
in general, the problematic issue is that empirical and theoretical studies often claim that an
observed network has a certain topological structure. However, the analyses that support
such claims are often restricted to one or two network metrics. This is reasonable only if two
conditions are met: 1) that one can assume the association between the algorithms and the
topological structure is one-to-one, or approximately so; and 2) that the network metrics
under consideration fully determine the topological structure of a network. These conditions
are often not met.

Another set of issues is related to the existence of multiple algorithms to generate the same
type of networks. For instance, there are multiple papers dealing with small-world networks,
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each one proposing an algorithm to generate small-world networks where nodes live in
different metric spaces: on a ring-lattice [40] or in the plane [28]. How similar are the
networks generated by these algorithms if we represent the sampled networks in terms of the
currently available metrics?

In this paper, we formally assess the extent to which alternative algorithms for generating
the same network type actually generate networks with equivalent connectivity patterns; we
refer to this issue as the stability issue. We also assess the extent to which different network
types defined in terms of the commonly used network metrics actually display
distinguishable connectivity patterns; we refer to this issue as the separability issue. In
performing these assessments, we build on earlier work by Airoldi and Carley [3]. We
expand their design of experiments and perform both qualitative and quantitative analyses of
the stability of different network sampling methods and those of the separability of different
network types. In addition, we discuss the statistical issues involved in network model
selection such as sufficiency, and the implications of our findings for parameter estimation
and p-value computation for network metrics. These are our key contributions to network
analysis literature.

1.1. Brief Overview of Analyses and Results
We find that the popular network sampling algorithms, e.g., those for scale-free and small-
world networks, generate networks with similar connectivity patterns for non-pathological
values of the relevant underlying constants. Furthermore, we find that alternative algorithms
that supposedly generate networks with non-distinguishable connectivity patterns (e.g.,
algorithms for scale-free networks by different authors) actually give easily distinguishable
connectivity patterns. These findings prompt us to make recommendations on how to
provide successful assessments of the sensitivity of an analysis, to the connectivity patterns
of different network types. Our findings also suggest that real-world networks may be better
modeled as mixtures of these popular network types.

2. Problem Definition
In this section we give a brief overview of the mathematical characteristics of a network,
introduce our research context, and formally frame the research questions.

2.1. Mathematical Characterizations of a Network
A network G is defined by a set of N vertices, , and a set of edges, . The network G is
fully specified by the adjacency matrix, Y, where the element Y(n, m) ε {0,1}, where 1
indicates a directed connection from node n to node m, i.e., n → m; 0 indicates that there is
no such connection.

The matrix Y encodes the connectivity patterns of the network it represents. We refer to
those functions that map Y to scalar values as network metrics. For instance, the degree of a
node is a node-specific metric, meaning every node has a degree measure; the density of a
network is a global metric, meaning a network has a single density measure. For example,
consider a binary network, the degree of the binary network is defined as

The density of the binary network is defined as
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A collection of metrics induced from the adjacency matrix Y provides a quantitative
representation of the connectivity patterns of the corresponding network G. In this sense, Y
fully characterizes the values of the metrics on G. However, the contrary is not necessarily
true.

From a data analysis perspective, we would like to characterize a network in terms of its
essential connectivity patterns in the space of metrics to maintain interpretability of the
results. In fact, a number of metrics have been proposed in the quantitative psychology and
social sciences literatures, and are based on well-established theories of individual and
collective behavior [39; 12].

2.2. Research Problems
The utility and appeal of sampling algorithms stems from the assumption that these
algorithms are guaranteed to generate the desired connectivity patterns. For example, the
“six degrees of separation” among individuals observed by [33] is captured by the “small-
world” network of [40]. This connectivity pattern informs the sampling algorithm that
“individuals form local acquaintances, few of which relocate to places far away.“ This
stylized model of behavior is sufficient to replicate the phenomenon observed by [33], and it
“sounds” like a plausible explanation [33; 40]. Therefore we have the following research
problem.

Problem 1. (Sampling) Given algorithms that generate networks of the same type, we want
to assess the stability of the connectivity patterns of the networks generated by these
algorithms.

Sampling algorithms can be both deterministic and probabilistic, and they typically depend
on a small set of parameters. To fully evaluate their validity, it is important to provide ways
to estimate such parameters from observed data.

A related problem, on the other hand, is that of determining which type we should assign to
a network under analysis. Network types are used by practitioners to this extent. For
example, homeland security officers are interested in determining whether an observed
criminal network is cellular,given partial measurements about the network. If so, the
conclusion may be drawn that destabilization strategies that are successful in cellular
networks will be successful in destabilizing the given network. Hence we have the second
research question.

Problem 2. (Classification) Given algorithms that generate networks of different types, we
want to assess the separability of the connectivity patterns of the networks generated by
these algorithms.

In the same example of the “homeland security” scenario, in order for officers to determine
the correct network type of the criminal network under investigation, it is important for the
connectivity patterns of the same network type to be stable and for those of different
network types to be separable. We define a connectivity pattern to be stable if the networks
sampled using algorithms for the same network type are similar in some metric space. We
define connectivity patterns to be separable if the networks sampled using algorithms for
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different network types are far apart in some metric space. Figure 1 shows an illustrative
example of the two research questions.

The goal of sampling networks (left) is to assess the consistency of alternative algorithms to
generate the same type of networks. The larger the intersection between the supports, the
more consistent alternative definitions are—since they cannot generate many different
networks. The goal of classifying networks (right) is to assess the need for defining
alternative types of networks. The smaller the intersection between the supports, the less
confounded different types of networks are—this is because the generated networks are
different enough to be distinguishable. The reference space used in this paper is defined by
47 metrics [39]. We project all sampled networks in this space.

The stability property of alternative sampling algorithms for the same network type
guarantees that choosing one specific algorithm over another does not affect the validity of
the conclusions. The separability property of alternative sampling algorithms for different
network types guarantees that any set of observed connectivity patterns identifies a unique
network type. In other words, separability suggests that it is logically possible to answer
questions such as “Is the given network of type X?” The experiments in section 3.3 are
devoted to assess stability and separability of the sampling algorithms surveyed or
introduced in section 3.1.

3. Experimental Design
The two research problems we tackle are: (1) stability, i.e., to what extent different sampling
algorithms for the same pure network type lead to consistent connectivity patterns, as
captured by the set of network metrics, and (2) separability, i.e., to what extent the
classification of an observed network mapped into the reference space of metrics can
uniquely determine the pure network types. In this section, we begin by the heuristic
descriptions of the six network types that are commonly seen in network analysis. We then
discuss the set of network metrics used in our experiments. After that, we present the
experimental setting and the classification scheme.

3.1. Network Types Sampled
Type 1. (Ring Lattice) Each node is connected to its neighbors, according to the ring-
induced distance (Figure 2).

Type 2. (Small World) Each node is connected to several of its neighbors and a few distant
nodes, according to the ring-induced distance [40] (Figure 3).

Type 3. (Erdös-Rényi-Gilbert Random) Each node is connected to a random set of the
remaining nodes [17; 19; 8] (Figure 4).

Type 4. (Scale Free) Most of the nodes are connected to a few other nodes, while a small
number of nodes are connected to many other nodes. This relation is formally described with
a power law, between the number of edges and the number of connections [5] (Figure 5).

Type 5. (Cellular) Nodes are divided into cells. Connections are frequent between nodes
within each cell, and rare between nodes in different cells [18] (Figure 6).

Type 6. (Core-Periphery) Nodes belong exclusively to either the core or the periphery. Core
and periphery nodes are connected to core nodes, while there are no edges among periphery
nodes [10](Figure 7).

Table 1 presents a summary of the algorithms that we consider in the present study.
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3.2. Network Metrics Used
We focused our analysis on the 47 metrics that are widely adopted in the social and physical
sciences [39]. These metrics are: degree centrality (no.1–41), which measures the centrality
of a node in terms of its degree distribution; betweenness centrality (no.5–8), which
measures the centrality of a node in terms of the shortest paths of which the node is a
member; closeness centrality (no.9–12, inverse closeness centrality (no.13–16), eigenvector
centrality (no.17–20), clustering coefficient (no.21–24, density of the connectivity around a
node), effective network size (no.25–28), network constraint (no.29–32), node levels (no.
33–36), triad count (no.37–40), global efficiency (no.41), local efficiency (no.42), efficiency
(no.43), connectedness (no.44), hierarchy (no.45), upper boundedness (no.46), and average
distance (no.47). Formal definitions are available in [39]. The detailed descriptions of the
metrics we used are available in [12].

3.3. Performing Sampling and Classification
A few of the network metrics we consider depend on the size and the average connectivity
of a network; for instance, the degree distribution and the triad counts. In order to obtain
results and substantiate claims that are independent from these network characteristics, we
fix network size and average connectivity in our experimental design. For each of the six
network types, we set an evenly spaced grid that spans the entire parameter space. We
sampled at least ten networks for each parameter configuration. The algorithms with more
parameters have more possible configurations, and result in a larger sample of networks—
which we control for in the experiments using stratified five-fold cross-validation scheme,
which are detailed in the next two paragraphs. In addition, we control for other relevant
parameters when generating the same network type using different algorithms, with the goal
of making sampled networks of the same type consistent across the alternative generating
algorithms. Full specifications of the experimental design are detailed in Table 2.

We choose the naïve Bayes classifier as the classifier. Naïve Bayes classifier has been
shown to be the most accurate in predicting the network type of a given network [4]. The
classification procedure is as follows. For a given network, we examine the connectivity
patterns as captured by the set of 47 metrics we consider. We sample a large quantity of
networks, with different parameter values for each pure type. For each sampled network, we
first compute the corresponding metrics, then classify it into a network type according to the
posterior probability of types given its metrics configurations. We use classification errors to
indicate the degree to which pairs of pure network types overlap in the reference space of
metrics, see Figure 1.

In order to estimate the classification errors we use a stratified five-fold cross validation
scheme. Five-fold cross validation step aims at estimating error on out-of-sample networks.
It consists of the following procedure: we split the set of sample networks into five mutually
exclusive batches, we then iteratively (i = 1,‖,5) train naïve Bayes classifier on four batches
and test on the ith one, and finally we estimate the prediction error using the average
prediction errors on the five-folds. The stratification step makes sure that in each training set
there are networks of each type, despite some types being more abundant than others in the
design. The proportions of networks of each type in the training set are the same as the
proportions of networks of each type in the overall sample. The stratification aims at
minimizing the potential over-fitting in the estimated accuracy [23].

1Whenever a metric is associated with four indices, it means that we derived four statistical quantities related to it. These quantities
are the minimum, the maximum, the average, and the standard deviation, respectively.
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4. Computational Results
Here we present quantitative and qualitative analyses to explore the stability and separability
issues that arise in the classification problem introduced in Section 2.2.

4.1. Qualitative Assessment of Stability
To assess the variability in the network metrics of the sampled networks by alternative
sampling algorithms, for each type of the network, we report the comparative empirical
distributions of the 47 metrics by each of the alternative sampling algorithms. Figures 8–12
present the comparative results for five network types: random, cellular, scale-free, core-
periphery, and small-world, respectively. Since there are no alternative algorithms to
generate ring-lattice networks, we did not report those histograms. The empirical
distributions in these figures were estimated using kernel density estimator, which estimates
a continuous histogram using a sliding window and a function, the kernel, to weigh the
contribution of different points in the window [38]. Each figure consists of 47 panels; each
panel corresponds to a metric, clearly labeled at the top of each panel. Within each panel, we
plot multiple density estimates in different colors; each color representing one of the
alternative sampling algorithms for a network type. A legend that specifies the
corresponding color for each sampling algorithm in Table 2 is given in the bottom right
panel of the figure.

The comparison of each metric provides a first look at the consistency of alternative
sampling algorithms. As described in Section 2.2 and illustrated in the left panel of Figure 1,
we want to assess the consistency of alternative algorithms to generate the same type of
networks. A large overlap among the network instances by alternative sampling algorithms
is desirable, since it would suggest consistency of the alternative algorithmic definitions of a
network type. In the context of Figures 8–12, similar distributions for each of the metrics is
desirable, since it would suggest consistency of alternative definitions of the same network
type. However, as shown in the panels, almost all of the metrics distributions are different to
various degrees. For example, in the random networks (Figure 8), 45 out of 47 metrics
distributions are vastly different. The only two that are similar are the standard deviation of
betweenness centrality (the eighth panel on the top row) and the maximum eigenvector
centrality (the second panel on the third row from the top). Similar assessments can be
conducted based on the distributions in Figures 9–12. The lack of similarity we see in these
Figures suggests that alternative definitions of network types are not consistent.

More specifically, Figure 8, for example, displays the empirical distributions for the 47
metrics computed on the random networks generated using algorithms 3.1 (np) and 3.2
(nm). Here “np” stands for the two parameters, n and p, that algorithm 3.1 uses as inputs; n
and m are the two parameters that algorithm 3.2 uses as inputs. The set of parameter values
used to generate the network samples are specified in Table 2. As an illustration, the fourth
panel on the top row describes the empirical distributions of the standard deviation of the
node degrees for algorithms 3.1 and 3.2. The distribution in green corresponds to algorithm
3.1. The distribution in red corresponds to algorithm 3.2. As expected, the standard
deviation of the node degree is much smaller for the networks generated with algorithm 3.2,
because this algorithm leads to networks that have the same exact average connectivity
whenever the same value of the parameter (the number of connections m in this case) is
used. The red distribution of standard deviation reflects changes in the parameter values
detailed in Table 2. The green distribution of the standard deviation, which corresponds to
networks generated with algorithm 3.1, reflects both changes in the parameter values and a
higher variability of the node degrees due to the design of algorithm 3.1 itself.
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4.2. Quantitative Assessment of Stability
Next, we assess the stability of connectivity patterns of the network types to the alternative
algorithms used to generate networks of a given type. The values reported are five-fold
cross-validated errors in a classification task: the lower the error is, the less stable
connectivity patterns are, since a slight variation in the sampling algorithm leads to
distinguishable sets of measurements.

Random—Using the set of metrics, we can discriminate almost exactly which type of
network was generated by which algorithm. The extremal statistics (min, max) are very
powerful discriminators in this case. The area under the Receiver Operating Characteristic
(ROC) curve is about 1 and the classification error about is 0.00%.

Core Periphery—Using the set of metrics, we cannot discriminate which type of network
was generated from which algorithm. The classification error is about 50% and the area
under the ROC curve is 0.501.

Cellular—Using the set of metrics, we can discriminate fairly well which type of network
was generated from which algorithm. The area under the ROC curve is 0.928 and the
classification error is 17.64%.

Scale Free—Using the set of metrics, we can discriminate almost exactly which type of
network was generated from which algorithm. The area under the ROC curve is about 1 and
the classification error is 0.07%.

Small World—Using the set of metrics, we can barely discriminate which type of network
was generated from which algorithm. The area under the ROC curve is not available because
this is a three-way classification problem. The three-way classification error is 24.78% (the
base error is at 33.33%). Pairwise classification errors are presented in Table 3. Compared to
the base error rate of 50%, the pairwise classification results suggest that the any pair of the
alternative sampling algorithms yield distinguishable sets of small-world networks.

4.3. Qualitative Assessment of Separability
To explore the variability in the network metrics induced by different network types, we
look at the empirical distributions of the 47 metrics without distinguishing which networks
were generated by which algorithms, in Figure 13. This Figure has 47 panels, each panel
corresponding to a metric, clearly labeled at the top as in the previous set of Figures. In each
panel, we plot multiple density estimates in different colors, each density corresponding to
one of the network types, without distinguishing the sampling algorithm used. A legend that
specifies which color corresponds to which network type in Table 2 is given in the bottom
right panel.

This analysis provides a first look at the separability issue of network types, as described in
Section 2.2 and illustrated in the right panel of Figure 1 and to what extent algorithms for a
new network type actually generate networks (in terms of their connectivity properties) that
existing network types cannot generate. In the right panel of Figure 1 a small intersection
would be desirable, as it would suggest a substantial difference among the six network types
we consider. In the context of Figure 13, a small intersection in the distributions for each of
the metrics would be desirable, as the differences would lead to better separability among
network types. However, the plots in Figure 13 show that such differences are
distinguishable in some metric distributions (e.g., the average degree centrality,
connectedness, and hierarchy) while similar in others (e.g., the standard deviation of inverse
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centrality, max closeness centrality), suggesting that different network types are only
separable in terms of some network metrics, not in others.

As a specific example, in Figure 13, the third panel on the top row plots six empirical
distributions of average degree centrality corresponding to the six network types we
consider. This measure of centrality takes very different values across network types, which
suggests that the six network types are different in terms of those properties of the
connections that influence degree centrality. However, this metric is one of the few metrics
with respect to which the network types are fairly different. The six distributions tend to be
more similar than not in most of the other panels. For instance, consider the clustering
coefficient in the seventh panel on the third row, or the effective network size in the fifth
panel on the fourth row. According to these metrics the network types are not very different.
This suggests that the six network types are more similar than not in terms of those
properties of the connections that influence most metrics.

4.4. Quantitative Assessment of Separability
Finally, we assessed the separability of sampling algorithms for different network types.
Table 4 summarizes the five-fold cross-validated errors in the corresponding classification
tasks. Diagonal cells replicate the stability results discussed above. Off-diagonal cells quote
separability results. The lower the error is, the more separable connectivity patterns are,
since the instances of different pure types entail distinguishable sets of metrics.

In Table 4, we quote the cross-validate classification errors. The off-diagonal element (i, j) is
the error in classifying networks of type i from networks of type j. Since network types i and
j are different for off diagonal entries, low error is desirable. It means that network types i
and j are separable. The diagonal element (i, i) is the error in classifying networks of type i
generated with different sampling algorithms. Note that the top-left element (RL, RL) is not
available, since we only consider one sampling algorithm for regular lattice networks. Since
there is only one network type i for diagonal entries, high error is desirable. It means that
networks generated by alternative sampling algorithms are not separable, thus leading to a
consistent definition of the network type.

Table 4 suggests that cellular, core-periphery and scale-free types are weakly separable
(26.45%, 33.33% and 37.15% error), and share common connectivity patterns with random
types (2nd row; 27.94%, 32.55%, and 25.00%). These types are separable from small-world
networks (3rd row, 8.66%, 13.12%, and 5.31%) that, in turn, share a set of different
connectivity patterns with random types (41.22%). Note that, key differences between
cellular, core-periphery, scale-free and random are that (a) the differences are more apparent
at moderate density (apx. 25% range) and (b) certain metrics can be used to separate these
four types of networks.

5. Discussion
The computational results on stability suggest that all of the studied network sampling
methods are fairly simple. These methods may entail “no variability” for a specific metric
over a fairly large range of parameter values, or by construction, e.g., all instances of an
Erdös random (n, m) have the same number of edges, i.e., m. While these algorithms are of
theoretical value and help us grasp insights about phenomena of interest, they may lead to
unreliable statistical tests (e.g., highly variable p-values) in practice. This is because rich
variability profiles are crucial in determining the stability of connectivity patterns of a pure
type to alternative sampling algorithms that generate it. In other words, low variability
profiles lead to high sensitivity of connectivity patterns, as captured by the metrics of
interest, and ultimately to high sensitivity of relevant statistics to the specific version of the
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algorithms adopted. For example, the variability profile of the clustering coefficient is
extremely sensitive to the specific algorithm used to sample both random and scale-free
types. As a consequence the p-value, e.g., of small-worldness, will vary. A simple
suggestion to overcome this problem is to sample network types according to different
algorithms, and then to mix the networks. This directly aims at increasing the variability
profiles of the metrics of interest, and possibly leads to more robust parameter estimations.

Overall, we find low stability and low separability. Alternative sampling algorithms that we
considered for the same type appear similar. Yet the connectivity patterns they yield are
neither consistent to alternative algorithms, nor separable across different network types.
The low stability (not desirable) is likely to be a consequence of the fact that the algorithms
are too simple and do not lead to rich enough variability profiles for the metrics of interest.
In fact, we find that the extremal statistics (min and max) have high information gain with
respect to the network type categories, and drive the classification in several cases. The low
separability (not desirable) means that pure types are stylized models of behavior at the
sampling level, which lead to networks that share connectivity patterns, as captured by the
network metrics of interest. Aside from the simplicity of the algorithms, this is consistent
with what we would expect to see in the real world, i.e., observed networks display multiple
stylized behaviors to different degrees. This translates into the more realistic hypothesis of
“mixtures of types,” at the sampling level, as a better starting point for developing models
and algorithms for network analysis.

5.1. Open Issues in Network Model Selection
The problem we addressed in this paper is an instance of the network model selection
problem in statistics, i. e., how to select a most appropriate network model M for an
observed network G? A model M specifies a probability distribution PM(G | Θ) on space of
possible networks G giving some parameters Θ. The model selection problem amount to
determining which model best fits the observed network among a set of models.

The current practice to select a network model is the following [e.g., see 32]. Consider an
observed network G and a candidate statistical model M. The observed network is
represented as a set of network metrics tM(G). Using these metrics, optimal values of the
parameters  are estimated, then a large number B of networks G1:B are generated from the

probability distribution ). Finally, an overall p-value of the observed network is
computed. The overall p-value of the observed network is informative about how
unexpected the connectivity pattern is, with respect to the expected pattern under the
candidate model M. Lower p-values indicate that the observed network is more unusual
under the model M. This sequence of steps is repeated for a set of models. The model that
best fits the connectivity pattern of the observed network is chosen.

There are two issues with the current practice outlined above. The procedures to estimate the
optimal parameter values  lack a sound statistical basis. The metrics used in the estimation
procedure tM may not carry sufficient information about a candidate model M.

To estimate optimal parameter values , for instance, a typical procedure identifies the
values of the parameters that match the empirical values network metrics tM, such as
average number of interaction per individual, to the expected value of these metrics
computed using the candidate model M. The full specifications of probability distribution
PM are used to compute expectations, thus linking Θ to the observed network data. A more
principled estimation procedure would be to find the values of the parameters that best
explain the observed network data, for instance, by maximizing the probability of the data
PM(G | Θ) with respect to Θ. Another option would be to set expectations on the parameters
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in terms of a probability distribution P(Θ) to find the values of the parameters that are most
likely given the data, by maximizing PM(Θ | G) with respect to Θ. These estimation
procedures would correspond to maximum likelihood and maximum a-posteriori estimation
[38].

Another fundamental issue is the choice of the metrics that quantitatively summarize the
interaction data and inform the estimation of the parameters. In principle, we should
estimate the parameters of a model PM(G | Θ) using a set of metrics uM(G) that are sufficient
to characterize G [13]. That is, we should use metrics that carry all the information about the
network that is necessary to estimate the parameters in a candidate model PM. Each model,
PM corresponds to a specific set of metrics uM that are sufficient statistics. Statistical
network analysis, however, is still in its infancy. It is often infeasible to compute or even
write down the likelihood PM for a given model M. Often, we cannot tell what set of metrics
uM is sufficient to estimate the parameters in a given model [29].

In practice, as reported above, each statistical model characterizes networks in terms of
specific metrics tM(G). Community-based models, such as the cellular networks, portray
interactions in which individuals work in tight teams, most often interacting with other team
members and occasionally interacting with other teams [35]. Centralized models, such as
core-periphery networks, portray interactions in which most individuals report to a central
figure and seldom interact with one another [37; 1]. Current estimation practice leverages
the purported correspondence between a given network model and a specific set of metrics
tM. Parameters are estimated using only the information about the network captured by tM,
according to the procedures outlined above. However, there may be a substantial difference
between the information captured by the arbitrary set of metrics tM and the information
captured by the metrics set uM, that is, tM may be highly insufficient for summarizing the
information of an observed network. In the current literature, the metrics tM associated to
models PM are typically one or two. The small-world model, for example, is characterized in
the literature in terms of metrics tM quantifying diameter and clustering coefficient [40].
Estimating the parameters of the small-world model using the limited information captured
by tM is problematic, and leads to unstable p-values and sub-optimal decisions.

6. Conclusion
In this paper, we performed statistical analysis of the stability of the network sampling
methods and the separability of different network types as captured by a set of network
metrics that are widely adopted in the social and physical sciences. Contrary to the
widespread assumptions in research, we found that the sampling algorithms considered are
neither stable to alternative specifications, nor separable in terms of the connectivity patterns
they entail. The lack of stability is a cause for concern. We encourage the practitioners who
employ the simple sampling algorithms discussed in this paper to consider more variable
schemes, such as mixtures, in order to obtain more robust network modeling parameters in
general. The lack of separability was somewhat anticipated, as real world networks hardly
present the variability profile of a single pure network type. Our results support the
assumption of mixtures of network types as an alternative starting point for developing
models and algorithms for network analysis [e.g. 2]. Developing novel network metrics and
exploring alternative network representations grounded in scientific theories are promising
directions for future research, which may transform the way we do network analysis today.
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Figure 1.
An illustration of the two research problems.
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Figure 2.
A ring-lattice network.
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Figure 3.
A small-world network.
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Figure 4.
A random network.
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Figure 5.
A scale-free network.
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Figure 6.
A cellular network.
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Figure 7.
A core-periphery network.
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Figure 8. random
Empirical distributions of the 47 metrics we consider, excluding shortest path. The
distributions were estimated using the sample of random networks generated by algorithms
3.1 (np) and 3.2 (nm) in the experimental design in Table 2.
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Figure 9. cellular
Empirical distributions of the 47 metrics we consider, excluding shortest path. The
distributions were estimated using the sample of cellular networks generated by to
algorithms 6.1 (nkpq) and 6.2 (nkpqr) in the experimental design in Table 2.
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Figure 10. scale-free
Empirical distributions of the 47 metrics we consider, excluding shortest path. The
distributions were estimated using the sample of scale-free networks generated by
algorithms 4.1 (nipi) and 4.2 (nmr) in the experimental design in Table 2.
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Figure 11. core-periphery
Empirical distributions of the 47 metrics we consider, excluding shortest path. The
distributions were estimated using the sample of core-periphery networks generated by
algorithms 5.1 (npi-uni) and 5.2 (npi-prf) in the design in Table 2.
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Figure 12. small-world
Empirical distributions of the 47 metrics we consider, excluding shortest path. The
distributions were estimated using the sample of small-world networks generated by
algorithms 2.1 (nkp), 2.2 (nklr) and 2.3 (nkpqr) in the design in Table 2.
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Figure 13. Six network types
Empirical distributions of the 47 metrics we consider, excluding shortest path. The
distributions were estimated using the entire sample of networks generated according to all
the algorithms in the experimental design of Table 2.
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Table 1

Summary of published and newly introduced generative algorithms.

Type Algorithm Parameters Description of Parameters

1.1. Ring Lattice [8] Θ = (n, k) nodes, neighbors

2.1. Small World [40] Θ = (n, k, pn) nodes, neighbors, pr rewire

2.2. Small World [27] Θ = (n, k, l, r) nodes, neighbors, distant nodes, power-law exp

2.3. Small World Θ = (n, k, pk, pn, r) nodes, init neighbors, pr neighbor, pr distant nodes, power-law exp

3.1. Random [17] Θ = (n, pn) nodes, pr edge

3.2. Random [19] Θ = (n, m) nodes, edges

4.1. Scale Free [7] Θ = (n, n0, p0, pn) nodes, init nodes, pr init edge, pr edge

4.2. Scale Free Θ = (n, m, r) nodes, edges, power-law exp

5.1. Core–Periphery [10] Θ = (n, p0, p) nodes, pr core nodes, pr edge

5.2. Core–Periphery Θ = (n, p0, p) nodes, pr core nodes, pr edge

6.1. Cellular [18] Θ = (n, k, pk, pn) nodes, pr in-node, cells, pr out-node

6.2. Cellular Θ = (n, k, pk, pn, r) nodes, pr in-node, cells, pr out-node, power-law exp
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Table 2

Design of experiments.

Type Algorithm Samples Parameter Configuration

1.1 Ring Lattice 25 n = 250, k = 2, 4, .., 50

2.1 Small World (rewire) 484 n = 250, k = 2, 4, .., 50, p = 0.10, 0.15, .., 0.90

2.2 Small World (number) 1250 n = 250, k = 2, 4, .., 50, l = 1, 2, .., 10, r = 1, 2, .., 5

2.3 Small World (prob.) 2670 n = 250, k = 2, 4, .., 50, pk = 0.20, 0.30, .., 0.80, pn = 0.20, 0.30, .., 0.80, r = 1, 2, .., 5

3.1 Random (prob.) 17 n = 250, p = 0.10, 0.15, ..0.90

3.2 Random (number) 17 n = 250, m = 311, 622, .., 28012

4.1 Scale Free (pref.) 729 n = 250, n0 = 10, 15, .., 50, p = 0.10, 0.20, .., 0.90, p0 = 0.10, 0.20, .., 0.90

4.2 Scale Free (power) 45 n = 250, m = 311, 622, .., 28012, r = 1, 2, .., 5

5.1 Core-Periphery (uniform) 54 n = 250, p0 = 0.10, 0.20, .., 0.90, p = 0.25, 0.35, .., 0.75

5.2 Core-Periphery (pref.) 54 n = 250, p0 = 0.10, 0.20, .., 0.90, p = 0.25, 0.35, .., 0.75

6.1 Cellular (uniform) 360 n = 250, k = 2, 4, .., 20, pk = 0.25, 0.35, .., 0.75, pn = 0.25, 0.35, .., 0.75

6.2 Cellular (power) 360 n = 250, k = 2, 4, .., 20, pk = 0.25, 0.35, .., 0.75, pn = 0.25, 0.35, .., 0.75, r = 1
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Table 3

Pairwise classification error of small-world sampling algorithms.

SW 1. SW 2. SW 3.

SW 1. - 16.04% 21.12%

SW 2. - - 13.31%
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