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Abstract. We present a hybrid heuristic algorithm, clusterAOI, that generates a more 

interesting generalised table than obtained via attribute-oriented induction (AOI). AOI 

tends to overgeneralise as it uses a fixed global static threshold to cluster and 

generalize attributes irrespective of their features, and does not evaluate intermediate 

interestingness. In contrast, clusterAOI uses attribute features to dynamically 

recalculate new attribute thresholds and applies heuristics to evaluate cluster quality 

and intermediate interestingness. Experimental results show improved interestingness, 

better output pattern distribution and expressiveness, and improved runtime. 
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1   Introduction 

Pattern interestingness is determined by an objective measure [18] or by 

subjective user interpretation [15]. Threshold-driven algorithms [18, 12] 

generate many rules which need to be filtered to determine interestingness 

[15]. Attribute-oriented induction (AOI) [9] extracts high-level generalised 

rules by repeatedly replacing and clustering [14, 16] attribute values using 

domain knowledge† [9, 17]. AOI uses attribute and relation generalisation 

thresholds to limit the number of distinct attributes and rules generated.  

Problem and approach: we aim to obtain generalized and hence more 

interesting rules. AOI overgeneralises to “ANY” values [3, 13, 14] as it uses a 

                                                 

† Use of domain knowledge has been limited [20] and is acknowledged as a hard problem [5]. 
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fixed global static threshold to generalize attributes irrespective of their 

features and does not dynamically evaluate interestingness. Hence, the key 

idea here is to consider attribute features, to dynamically recalculate new 

thresholds, and to apply heuristics to evaluate cluster quality and intermediate 

interestingness. The most interesting rules consist of mostly interior concepts 

[6, 7, 14].  

This paper presents clusterAOI, a hybrid heuristic algorithm based on [16], 

which produces a more interesting generalised table than AOI. A three-fold 

strategy is used: (1) generalise conservatively [14] selected clusters of 

attribute values that share common properties and satisfy a newly computed 

local attribute threshold; (2) evaluate intermediate interestingness result for 

each attribute and of the algorithm, using heuristic functions [16]; (3) apply 

Kullback-Leibler (KL) divergence to the output [10]. Experiments show 

improved interestingness (up to 4 times), better output pattern distribution and 

expressiveness (about 1.5 times), and improved runtime (about 2 times). 

The approach is as follows: (1) pre-cluster AOI analyses attribute features 

to dynamically generate local thresholds; (2) intermediate-clusterAOI uses 

probabilistic semantic similarity between clusters of attribute values and 

evaluates cluster interestingness, resulting in improved interestingness and 

runtime; (3) in post-clusterAOI the final output table’s interestingness is 

determined using an interestingness heuristic (global harmonic mean) and KL. 



As an example we apply AOI and clusterAOI to a breast cancer dataset 

[19] (Table 1). We calculate KL for divergence and cluster quality (CQ). 

clusterAOI gave 0% overgeneralisation while AOI gave 50%; KL was 1.7 

times higher and CQ 3 times higher. clusterAOI also produces twice as many 

informative rules (NOT-ANY), i.e. 100% compared to 50% for AOI. Similar 

weaknesses were highlighted in [21]. Overall, clusterAOI improves pattern 

understandability, intelligent interpretation and interestingness.. 

Table 1.  Comparing final output on non-ANY values, breast cancer dataset [19] 

 
The rest of the paper is structured as follows: related work is discussed in 

Section 2; Section 3 presents prerequisites and definitions; Section 4 

introduces pre-clusterAOI; Section 5 presents intermediate and post-

clusterAOI; Section 6 describes experimentation; and conclusions are given in 

Section 7. A running example of table 2 is extended as each aspect of the 

approach is discussed. 

2 Related Work  

 AOI algorithms [3, 4, 8, 9, 13, 14] stop generalisation when thresholds (the 

interestingness measure) are reached, and do not consider attribute features 

Algorithm cellSize bNuclei nNuclei Mitoses Count %ANY %not-ANY 

        AOI aboutAve AboutAve Any Any 485 50  50 

  

 

 

aboutAve AboveAve Any Any 93 

G.Thr=2, KL=0.63,  CQ=11.59 

clusterAOI aboutAve AboutAve AboutAve AboutAve 483 0 

 

100 

  aboutAve AboveAve AboutAve AboutAve 99 

 AboveAve AboveAve AboveAve AboutAve 71 

G.Thr=2, KL=1.08,  CQ=34.6   



and proprieties [3][18].  For pre-AOI, [21] removes discriminating data that 

may affect interestingness. Others [1][7] analyse depths and weighted heights 

of concept hierarchies to determine interestingness, but only use a single fixed 

weight value for interior concepts which may vary between hierarchies. For 

intermediate-AOI, [3] uses multiple-level support thresholds per attribute and 

order generalised tuples according to association strength. Others [1][11] 

select the next attribute generalisation path to follow but are computationally 

intensive. Repeating attribute values are preserved in [13], producing many 

output rules. In post-AOI [6, 16], the number of interior concepts in the output  

is used to evaluate interestingness using only the original global thresholds.  

3 Prerequisites and Definitions 

KL is an information divergence measure between two probability 

distributions (uniform and actual): higher values show good distribution and 

variety of output values, indicating improved interestingness [10]. Given m 

tuples },..,{ 1 mttT  and actual probabilities },..,{ 1 mpp , the divergence 

is 



m

i

ii ppmTKL
1

22 loglog)( , where 0)( TKL , bounded by m2log . 

We apply an interestingness heuristic function CQ to the top k  rules of the 

output (Equation 7, section 5.2), as in [1, 7]‡. clusterAOI addresses 

interestingness as follows: let relation R  be defined on dataset RD  with 

                                                 

‡ Notation is collected in Appendix E. 



n tuples; attribute iA  and attribute hierarchy Hi pairs exist for m 

attributes i.e. )},(),..,,(),,{( 2211 mm HAHAHA , 1mA is a count of tuples in 

R and t  is a global threshold. Then   ,|,| 1 nAm with domain 

values ,),( 1



  ZADom m
with .1 mH  Given a generalisation space 

iii HAB  for each attribute, we use entropy function )( iA and 

entropy values to generate new local 

thresholds },..,1,..:.{ miThrGThrLthrL ii  , for each iA , where ThrG.  

is the global threshold. ThrGThrL i ..   means that each attribute should 

have at most |.| iThrL distinct values, ensuring no overgeneralisation 

takes place. With a description language  ),(B  L i f , there is a level-

by-level “nearest parent” generalisation function )(: ii HDomBf  and 

a partial order ),( iB for finding descriptions },..,,{ 21 k in iB . For 

the parent of a cluster },..,{ 1 j , ' = min { )(),..,( 1 jff  } is a new 

description (nearest parent) for both i  and j , leading to Definition 1. 

Definition 1. Generalisable cluster. Given a cluster },..,{ 1 nj ccC   of values 

for attribute iA and local threshold , cluster jC is generalisable 

if || jC and )()( lk cfcf  , lknlk  ,, . 



Generalisation of each attribute stops when its optimal value (a local 

interestingness value,) is reached (Definition 2, section 5.1), and in the global 

case when a global optimal value is encountered (Theorem 1, section 5.1). 

These values are derived by applying heuristic functions to attribute clusters. 

Without loss of generality, interestingness [16] can be described by both 

distance and cluster tightness [17] depending on tuple distribution in a 

summary table [10] (a cluster of attribute values). The agglomerative 

hierarchical clustering  distance n  and tightness n  functions [17] are used for 

overall interestingness: 
),(: nnnG  . These functions exhibit both 

monotone and anti-monotone properties during generalisation [17]. Therefore, 

the problem of mining generalised patterns is a 4-tuple ),,,( g
T

L
i IfI (See 

appendix E) defined as follows: 

(1) Find attribute significance using a distance linear function )( iA  and 

generate new local threshold iThrL. ; discussed in Sections 4.1 and 4.2; 

(2) Find local attribute interestingness in iteration k  and aggregate values 

using a cluster tightness function )( iL
i AI  discussed in Sections 5.1; 

(3) Generalise values using distance function )( iBf subject to iThrL. ;  

(4) Find global interestingness of T by aggregating local interestingness 

values from (2) using function (..)g
TI ; discussed in Sections 5.2-5.4. 



4. Pre-clusterAOI 

Pre-clusterAOI aims to find each attribute’s local threshold L.Thr (from G.Thr) 

using attribute features such as concept hierarchy and distinct values.  

Figure 1 Concept hierarchies for Diameter and Colour 

Table 2.  Ball data   Table 3. Prime table 

 

 

 

 

 
 

Example (1): The concept hierarchy, for a soccer dataset with 2 attributes, is 

shown in Figure 1 with interior concepts as non-leaf or root nodes. Table 2 

shows that Diameter and Colour have 7 and 6 distinct values respectively, 

while prime table 3(the first generalised table) and table 4 have 2 and 3 

distinct values respectively(See section 5.2 for generalisation process). 

4.1   Attribute feature significance  

We adapt a query-based approach [14] to determine attribute significance from 

distinct values in D  and concept hierarchy node values in iH [6, 16]. Attribute 

Diameter Colour 

2 Red 

7 Blue 

34 Yellow 

25 Green 

28 Orange 

8 Violet 

16 Red 

Diameter Colour Count 

Small  Reddish 1 

Small Bluish 1 

Medium Yellowish 1 

Medium Yellowish 1 

Medium Reddish 1 

Small Bluish 1 

Small Reddish 1 



significance is used to compute local thresholds by a tightness function 

),(1 ACi = )(A ; entropy )( ii Ae is calculated by Equation 1: 

)()
),(

||
log)(log()(),(1 ii

m

i i

iii Asige
ADdist

D
cpAAc    

  Eq (1) 

where ),( iADdist or )( iAdist  is the distinct values of attribute Ai in D, taking 

the absolute value of Equation 1 and each ii Hc   is a non-leaf concept. Note 

that ),( iADdist is initially calculated from table 2. Merging table 3 and 

generalising “Colour” further gives table 4, finally merged to give table 5.  

Example (2): We calculate attribute significance )( iAsig values as follows: 

  4.76)()(  diamterdiamter Adiametersige  

Similarly, 78.9coloure , meaning that Colour is more significant than 

Diameter. From this, new thresholds can be calculated. 

         Table 4. Merged prime table         Table 5. Final table 

 

 

 

 

 

4.2   Multi-threshold generation  

Using equation 1 for entropy ie , different local thresholds ( iThrL. ) can be 

generated for each attribute iA by a linear function ).,(1 ThrGeD i  in ie , where 

),..,,( 21 meeeMAXE  . Equation 2 states that ThrGThrL i ..  for each 

Diameter Colour Count 

Small Bluish 1 

Small Bluish 1 

Medium  Non-dark 1 

Small Non-dark 4 

Diameter Colour Count 

Small Non-dark 4 

Small Bluish 2 

Medium  Non-dark 1 



attribute (i.e. in the worst case each is generalised using G.Thr). Hence, 

choosing the maximum entropy value is justified.  

i

ii

i ThrL
E

eE
ThrG

E

eEEThrG
ThrGeD .

||
.

||)*.(
).,(1 





  Eq (2) 

Example (3): Using Table 2 and 2. ThrG , we obtain entropy values for 

Diameter 76.41 e  and Colour 78.92 e with iThrL.  as follows: 

2.
78.9

|78.978.9|)78.9*2(
. 


 ThrGThrL colour

  

ThrGThrL diameter .51.2
9.78

|76.478.9|)78.9*2(
. 


   

where 78.9)78.9,76.4( Max . With value rounding, 2. colourThrL  as 

0||  ieE  while 3. diameterThrL . Generating iThrL.  affects each attribute’s 

interestingness (shown in Section 5).  

5 Intermediate and post-clusterAOI  

This section considers interestingness evaluation during generalisation 

(intermediate-clusterAOI) and of the final output table (post-clusterAOI).  

5.1    Attribute Interestingness 

Higher level concepts are more interesting than leaf nodes [6]; in contrast, 

"" ANY is uninteresting [7]. This represents a bounded interestingness problem 

(Proposition 1). AOI [9] uses a distance-driven generalisation method and 

interestingness should naturally be a distance function [16]. For simplicity, all 



values in the space 
iB consisting of attribute and concept hierarchy values are 

referred to as concepts unless specific meanings are required. 

Proposition 1. Concept value interestingness: A concept value iBy is 

interesting if it is an interior concept. See Appendix A for proof. 

Example (4): Figure 1 (Section 4) shows a concept hierarchy for Diameter 

with interior concepts {small, medium, large} { ANY }. Novices may find 

range [1..60] and "" ANY values both meaningless and uninteresting. 

However, they become interesting when diameter size can be determined 

without knowing specific measurements of the ball. Definition 1 enables such 

determinations to be made.  

Given Proposition 1, generalised attribute iA  has concept collections 


n

k

kc
1

that give the highest interestingness value, an aggregation of individual 

interestingness values. Section 5.2 defines further heuristics for intra-cluster 

tightness
kI1 , inter-cluster similarity

kI 2  and cluster quality
kI 3  to calculate 

highest aggregated interestingness at any k th iteration [16], called local (L) 

interestingness, for each iA , denoted 
k

i

i

L AI )]([  or simply )( kk

i Xl . When L is 

found, generalisation stops.  As values 
kX vary between attributes at each 

iteration, we aggregate these values using a simple harmonic function.  



Definition 2. Local Attribute Interestingness. Given an attribute iA , local 

heuristic values },,{ 321

kkkk xxxX  , and a harmonic aggregation 

function )( kk

i Xl  with value )( kk

i

k Xlv  at the k th iteration, the local 

attribute interestingness of the attribute is )( 111   kk

i

k Xlv  obtained at the 

)1( k th iteration, where },,..,max{ 10  kkk vvvv and
1 kk vv . 

Note from Definition 2 that
kv , the maximum local interestingness (optimum) 

value, is greater than
1kv . At this point, no further generalisation occurs.  

Lemma 1. Interestingness function I  monotonically increases for the first 

k iterations to an optimal value 
kv  and then monotonically decreases 

from the 1k th iteration.  See Appendix B for proof. 

It is easy to determine global interestingness simply by a harmonic aggregation 

at each iteration and finding the maximum so far.  

Example (5): From Table 2, G.Thr=2, local and global interestingness values 

at each iteration were: Diameter {0.0, 0.14, 0.66, 1.0,..}, Colour {0.0, 0.29, 

1.5, 0.78} and clusterAOI {0.0, 0.21, 1.1, 0.91} respectively. Diameter has no 

optimal value yet but Colour converged at iteration 3 at 0.78 (optimal value 

1.5) and clusterAOI at 0.91 (optimal value 1.1). Although Diameter 

monotonically increases, further generalisation stops at iteration 3 at 1.0. This 

prevents overgeneralisation of both attributes (local case) and clusterAOI 



(global case). Further, run-time performance is improved. Lemma 1 helps to 

formulate a theorem based on the local interestingness criteria. 

Theorem 1. (Global Interestingness). Given attributes miAi 1},{ of a table 

T, each attribute has a local interestingness value
k

iv for some iteration 0k , 

global interestingness 
1k

gv is the )1( k th value computed when the maximum 

value of aggregated local interestingness values in the k th iteration has been 

computed. The aggregated maximum value in 

}),..,,(max{ 21 k

m

kkT

g

k

g vvvIv  and global interestingness is reached 

when
1 k

g

k

g vv (Equation 7, section 5.2). See Appendix C for proof. 

To reiterate, we calculate attribute interestingness (Equation 3, [16]) of a 

value c by a distance-based linear metric, [0,1] 1] [0,: cI . For example, a leaf 

concept ii Ax  for attribute iA  has interestingness value 

.0
)"("

)"",(
1 

ANYdepth

ANYxd
Ix i

i
Similarly, ,101 ANYcI a complement of the 

leaf concept mapping. This function is unreliable in determining 

interestingness as "" ANY  has the maximum value 1 by the mapping function. 

"",
)"("

)"",(
1 ANYc

ANYdepth

ANYcd
I c   

    Eq (3) 

Equation 3 satisfies the following three axioms for any given universal set X: 

Axiom 1: Boundary conditions: 1)0( cI and 0)1( xcI  .   



Axiom 2: Monoticity: )()( bIaI cc   if .ba   For example, given two 

values """" 21 ANYxredx   , ,1,0 21  xx ba  then

0)1(1)0(  ANYred II . This metric is unreliable for interestingness: 

c such that """" ANYcred  ,and if 5.0c  then )1()5.0( ANYcc II   

and )5.0()0( credc II  . This violates Proposition 1 and Lemma 1. A non-

linear metric (see Equation 4) may be more suitable. 

Axiom 3: Involutive: It is easily shown that 0))0(( cc II or 1))1(( cc II  

We infer that interestingness is non-linearly distributed between leaf and 

root nodes. A probability density function, with input from Equation 3, 

determines interestingness of a value, and is given as Equation 4:   

)2(

)(
2

2

2

1
)( 








ix

c eIH  

        Eq (4) 

where 10  cI  with mean and variance values ),(  , iBc . 

Example (6): Using Table 1, mean ,524.0 variance 069.0 for Colour 

and ,625.0 0625.0  for Diameter. Observe that Equation 4 

gives 1210*48.1)0()(  HIH red
while )1()( HIH ANY  = 1210*022.0  . So 

interestingness of interior node “reddish”, 33.0reddishI , 124.0)( reddishIH , 

and any cluster C is given by the value


n

i

icH
1

)( . 

Note )()()( ANYredreddish IHIHIH  , thus confirming that root and leaf nodes 



are less interesting than interior nodes. clusterOAI therefore aims to 

generalise values to interior concepts. 

5.2 Generalisation Process 

For each attribute we find and generalize clusters of values that share common 

parents [16] and then computing interestingness heuristics (L2.7-L2.10, Figure 

2); see Tables 3-6. Generalised clusters are stored in a hash table. As 

clusterAOI may not generalise all clusters, another approach is necessary 

(Section 5.4) based on Axiom 2. To derive interesting patterns we measure 

cluster tightness (Equation 5); [17] presents a general theory of monotonically 

non-increasing tightness functions n  that measure the number of attribute 

values in clusters i.e. if 'cc  , )'()( cc nn   . We require )()'( cc nn    to 

hold for 'cc  , where the tightness function increases monotonically to an 

optimal value. New clusters are generated by generalising common parent 

clusters, following a similar generalisation process as in AOI. The output 

stores new parent clusters and similarity, tightness and CQ heuristics (L2.9, 

Figure 2), aggregated using Equation 5. The final generalised table is produced 

in step 3, L3.6 of Figure 2. In Table 2, cluster {2, 7, 8, 16} is generalised to its 

nearest common parent “small” because 3.4  diameterThrL . This guarantees 

conservative generalisation, cluster by cluster. clusterAOI uses this step to 



5.3 clusterAOI algorithm 

Figure 2 shows clusterAOI. Step 1 performs pre-clusterAOI.  

Input:  dataset D with attributes Ai; Concept hierarchies Hi, Global threshold t 

Output: A compact table T, Kullback measure KL, Cluster measure IT
g 

BEGIN 

Step 1. Get Ai from D, Find attribute significance and new local thresholds iter1 

Step 2. Process attributes 

L2.1    stillInteresting=true  

L2.2     convergenceValues [Ai]= false 

L2.3 While (stillInteresting) // check Global interestingness 

L2.4     For each Ai in D 

L2.5        attrConv= convergenceValues (Ai)  

L2.6             if ( not(attrConv)) 

L2.7  DprocessAttribute(D, Hi, Ai)  

L2.8          DmergeData(D) 

L2.9      attrHeur[i]computeHeuristics(interC,intraC, Ii
L ) // [16] 

L2.10  hashStore=IterationObject(attrHeur[i], iter) 

L2.11                  harm_total0 

L2.12         Ii
g0 

L2.13       For each Ai //check attribute convergence 

L2.14         if(iter>0) 

L2.15         attrConvisAttribConv(iter, i, hashStore) 

L2.16                 if(attConv= true)// Check Local interestingness  

L2.17       convergenceValues(i)attrConv 

L2.18            Ii
g  computeGlobal_I(hashStore (iter, Ai)) // eqn (5) 

L2.19            harm_total harm_total +Ii
g 

L2.20      ID
g =harm_total/m   //eqn (6) 

L2.21     setHarmValues(ID
g ) )  

L2.22        stillInterestingisInteresting(getHarmValues()) 

L2.23        iteriter+1  

Step 3. Generate final table 

L3.1   Dmerge and Copy(D) 

L3.2   DgeneraliseLeaf(D) 

L3.3   TtopKRules(D, newThreshold) 

L3.4   KLKullbackMeasure(T)  

L3.5   IT
gTableClusterQuality(T) //eqn (7) 

L3.6   Output(T, KL, IT
g) 

END   

Figure 2 The clusterAOI algorithm 

produce better patterns than AOI. Let 
ijC be cluster j for a group of values 

from attribute iA , ,1 nj  for n tuples with clusters 
k

j

ijCC
1

}{


 as a 

collection of all clusters for the attribute, with similar attribute properties. e.g. 



equal distances from the root node and the same parent nodes. An attribute’s 

global interesting value is obtained using cluster similarity (IntraC), tightness 

(InterC) and total local interestingness ( L
iI ), using Equation 5, 

( )I,I,(II 321 respectively)§. After computing g
iI , we store the global 

interestingness values g
DI for all table attributes (Equation 6). To further 

generalise an attribute, the latest and previous g
iI value are compared to 

determine the next step. Global interestingness values are compared in the 

same way. Comparing values this way avoids overgeneralisation. The cluster 

quality of a table T is a summation of all local L
iI values (Equation 7). 





n

i

i

g
i

I

n
II

1

/1

)(  Eq (5) 

 

m

I

I

m

i

g
i

g
D


 1  

Eq (6) 





m

i

L
i

g
T II

1

 
Eq (7) 

Step 2 sets global interestingness, processes each attribute, merges resulting 

values and stores L
iI  values (Equation 5). Each iteration makes parent 

                                                 

§ Defined as 1,

||

)(

1

1 







k

i

ijC

CI , 
 


k

1i

k

1i

ijij |C|-|C|  (C) I 2
, 




n

i

icHCI
1

3 )()(  



clusters per attribute, generalises and processes them per attribute (L2.7, 

Figure 2). computeHeuristics() (L2.9) computes interestingness heuristics. We 

check each attribute’s local convergence (L2.15) and global convergence 

(L2.22) using the heuristics. Global interestingness is checked by the global 

harmonic mean of all local interestingness values (L2.20, Equation 6). Step 3 

merges the table rows into a new smaller table.  

     Table 6.  Clusters for Diameter and Colour at generalisation iteration 1 

Diameter IntraC InterC 
L

iI  g
iI (Eqn. 5) 

[2, 7, 8, 16] small 

[25,34, 28]medium 
0.143 

0.0 0.0  

        

TOTAL        0.143 

Colour      

[red, orange, red]reddish 
[blue, violet]bluish 

[yellow, green]yellowish  

 0.167 

 
1.0  

 
0.0  

 

TOTAL      0.286 

  Average H. Mean (eqn. 6) 0.429/2=0.215 

Example (7): Table 6 shows the initial clusters generated using a global 

threshold G.Thr=2. The set of global harmonic means are stored for the 

entire generalisation process as sets of vector values. The first iteration’s 

global harmonic mean is 0.215. Local interestingness values for Diameter 

were ]03.1,66.0,143.0,0.0[  and for Colour ]78.0,5.1,286.0,0.0[ . Equation 5 gives 

the second local harmonic mean of Colour as 286.0
)

1
1()

167.0
1(

2




. Local 

cluster interestingness values ( L
iI ) are zero as we only have leaf concepts. 

Further, note that the algorithm only iterates to iteration 3 up to global 

harmonic value 0.907 in the list [0.0, 0.215, 1.08, 0.907,..] and generalisation 



stops. Colour essentially converges at iteration 3 (as 1.5>0.78) in the 

list ]78.0,5.1,286.0,0.0[ . As Diameter has not converged yet (as 0.66<1.33), 

more interestingness can be found after iteration 3. Consequently, as global 

algorithm convergence occurs at iteration 3, no further generalisation of 

Diameter occurs. This prevents overgeneralisation and further iterative steps, 

and saves execution time. 

The complexity analysis of clusterAOI is discussed in Section 6.4. 

5.4    Post-clusterAOI Interestingness 

Example (8): Table 7 compares outputs: each row represents a rule in 

descending order of tuple numbers. clusterAOI recalculates thresholds and 

gives three rules containing interior concepts while AOI overgeneralises 

Diameter to "" ANY and gives two rules. clusterAOI is superior to AOI: 

global interestingness ( g
TI , 5th column) is 3 times and KL is 1.6 times better.      

      Table 7.  clusterAOI and AOI final table comparisons  

 Diameter Colour Count 
g

TI (Eqn. 7) 
KL 

clusterAOI  Medium Non-Dark 4  
4.06 

 
1.38 

  
  Small Bluish 2 

 Small Non-Dark 1 

AOI ANY Non-Dark 5 1.34 

 

0.86 

   ANY  Dark 2 

 In clusterAOI, ungeneralisable attribute clusters may appear as leaf concepts 

in the output [16]. To improve overall interestingness, generaliseLeaf() (L3.2, 

Figure 2) searches for an optimal generalisation point for any given leaf 

concept. Following Axiom 2, there is an interior level l (or group of interior 

parent concept values at this level) which is more interesting than those at 



levels 1l  and 1l . For performance, we deterministically find the most 

“interior” level of a concept hierarchy, the ‘median’, and generalise the leaf to 

this level (Proposition 1 and Figure 1). 2/)( rarchydepthOfHie generalisation 

steps are used for an even number of levels; one more for an odd number.  

6.   Experimental Analysis  

Experiments have been performed in terms of KL measure, interestingness and 

runtime, with as shown in Appendix F. Experiments were run 5 times to obtain 

average results on an Intel (R) Pentium (R) Dual 2GHz processor with 2GB 

RAM. 

6.1 Census-income dataset (50K tuples, 3 attributes) 

Table 8 compares performance with global thresholds from 1 to 10. Threshold 

1 guarantees excessive generalisation in traditional AOI while higher 

thresholds do the opposite. For clusterAOI, mean and variance were calculated 

and their significance evaluated as follows: 99.9)(,87.18)(  educsigagesig  

and ,63.1)( numWorkedsig  and local thresholds recalculated (Table 8, final 

column). Comparing global interestingness ( g
TI values) in Table 8 (see also 

Figure 3(b)), clusterAOI is 2.65 times better on average. For thresholds 1 to 4, 

often a desirable level to set in AOI, clusterAOI interestingness is 12 times 

better, meaning it generates more interesting patterns. Higher thresholds (7 and 

over) appear to not differentiate interestingness between the two algorithms on 



this dataset. Unsurprisingly, threshold 1 gives interestingness of 22.36 and 

clusterAOI recalculated L.Thr as 2 and produced two rules with values (aged, 

average education, few) and (aged, basic education, few); in contrast, AOI 

produced one overgeneralised rule. The KL measure for clusterAOI is on 

average 1.76 times better for thresholds 1 to 4, and 0.91 times better for 

thresholds 1 to 10 (Figure 3(a)). The results indicate that clusterAOI 

generalises better for smaller thresholds (better distribution or divergence of 

output patterns) than for larger ones. clusterAOI is also 1.25 times faster 

(Figures 4(a), Table 8). Generally, for smaller thresholds, there is more 

clustering, generalisation and merging. Figure 4(b) shows how clusterAOI  

  Table 8.   clusterAOI and AOI results (50K Census-income dataset)    

G.Thr KL g
TI  Runtime (x10sec) 

 AOI clusterAOI  AOI clusterAOI AOI clusterAOI 

1 0.00 0.97 0.00 22.36 26.20 20.50 

2 0.86 1.54 5.80 10.22 26.20 20.50 

3 1.46 1.94 0.002 13.19 26.20 21.00 

4 1.46 2.24 0.018 23.10 26.20 21.00 

5 2.26 1.83 0.0029 25.00 26.00 21.00 

6 2.26 1.83 0.0029 25.60 26.00 21.00 

7 2.26 1.83 26.00 25.60 26.00 21.00 

8 2.94  1.83 26.00 25.60 26.00 21.00 

9 2.94 1.83 26.00 25.60 26.00 21.00 

10 2.94 1.83 26.00 25.60 26.00 21.00 

Avg.    # Times =     0.91      # Times = 2.65   # Times = 1.25 

iterates to a global optimal value 5.4k

gv at iteration 3 before finally 

converging at iteration 4 at .57.11 k

gv  Similarly, each attribute has a local 

optimal value 
kv  before stopping at the next iteration (See Figures 5, 6, 7). 

Significance values were calculated as: age (18.87), education (9.98) and 

NumWorkedFor (-1.63) meaning that age has the smallest local threshold of 



the three attributes and should be generalised further. Note their convergence 

graphs in Figures 5, 6 and 7 are similar to the clusterAOI convergence pattern 

in Figure 4(b).  

 

  Figure 3 50K census-income: (a) KL            (b) Global Interestingness  

 

Figure 4 (a) Runtime 50K  (b) Algorithm convergence 



  

  Figure 5 Convergence of Age    Figure 6 Convergence of Education  

 

Figure 7 Convergence for NumWorkedFor 

6.2 Cancer-Wisconsin dataset (700 tuples, 4 attributes) 

Section 1 discussed this dataset. As the dataset is small, values distribution 

(concept hierarchy and distinct attribute values) is narrow with a low value for 

KL. Each attribute has similar significance values other than mitoses: 

04.5)( cellSizesig , 04.5)( bareNucleisig , 04.5)( einormalNuclsig and 

89.4)( mitosessig . As shown in Section 1, mitoses is not overgeneralised by 

clusterAOI even with the lowest significance, unlike by AOI. Convergence of 



the four attributes follows a similar pattern to Figures 5, 6 and 7. Table 9 

shows clusterAOI is better than AOI in terms of global interestingness 

( g
TI values): 5.42 times better on average; KL for small thresholds (1 to 4): 

1.5 times, overall it is 0.94 times better on average; and  interestingness and 

runtime: 5.84 and 1.24 times respectively.     

          Table 9.  clusterAOI and AOI results (Breast cancer dataset [19]) 

G.Thr KL g
TI  Runtime (x10sec) 

 AOI ClusterAOI  AOI clusterAOI AOI clusterAOI 

1 0.0 0.66   0.0 23.2 18.4 16.40 

2 0.63 1.08 17.4 34.6 17.0 16.00 

3 1.08 1.36 23.0 46.4 17.0 16.00 

4 1.08 1.36 0.75 46.4 19.0 16.00 

5 1.44 1.36 0.90 46.0 19.0 16.00 

6 1.59 1.36 1.06 46.4 20.0 15.60 

7 1.71 1.36 1.21 46.3 21.0 15.60 

8 1.83 1.36 1.36 46.4 20.0 16.00 

9 1.92 1.36 1.51 46.4 21.0 16.00 

10 2.01 1.36 31.88 46.4 27.0 16.00 

Avg.    # times =     0.94      # times = 5.42   # times = 1.24 

6.3 Census-income dataset (200K tuples, 6 attributes)  

Significant values and distinct values ( )( iAdist ) were calculated as follows: 

,94.27)( agesig dist(age)=91; ,01.8)( educationsig dist(education)=17;

,20.64)(det ailedHHoldsig dist(detailedHHold)=38; major industrial code  

,00.98)( majIndCodesig dist(majIndCode)=24; ,4.4)( instWeightsig

dist(instWeight)=4 and 6.3)( ornumWorkedFsig , 

dist(numWorkedFor)=7. Global thresholds were set from 1 to 10 and 

performance results are shown in Table 10. clusterAOI generates patterns that 

are 4 times more interesting (Table 10, Column g
TI  and Figure 9) and 1.04 



times better in terms of pattern divergence (KL in Figure 8) than AOI. 

However, when averaging for thresholds 1 to 4 as previously, clusterAOI 

generates patterns that are 14 times more interesting; KL for thresholds 1 to 4 

is about 1.5 times better than AOI. As data increases (unlike previously), KL 

(value divergence) for clusterAOI also increases. From Figure 8, the greater 

the divergence, the more interesting patterns are produced i.e. clusterOAI 

shows larger interestingness values (Figure 9). Hence, small thresholds may be 

used for many purposes e.g. readability, interpretability etc. clusterAOI is 

about twice as fast (Table 10, Figure 10); with lower thresholds (e.g. 1 to 4), 

and overall average run-time is about three times better. Note that for attribute 

Table 10.  clusterAOI and AOI results (Census-income dataset 200K tuples) 

G.Thr KL g
TI  Runtime  (x10sec) 

 AOI clusterAOI AOI clusterAOI AOI clusterAOI 

1 0.00 1.53 0.00 49.44 96.00 32.00 

2 0.92 178 0.00 40.60 68.00 26.00 

3 1.86 2.11 9.07 56.00 59.00 26.00 

4 2.31 2.35 6.84 71.56 57.00 26.00 

5 2.55 2.50 8.21 91.00 57.00 26.00 

6 2.63 2.57 14.55 113.75 57.00 26.00 

7 2.89 2.57 42.11 140.00 54.00 24.00 

8 3.00 2.67 47.80 140.00 54.00 26.00 

9 3.14 2.71 53.50 152.00 54000 26.00 

10 3.27 2.74 59.20 165.80 54.00 26.00 

Avg.   # times = 1.04      # times = 4.20   # times  = 2.31 

 
significant values lower than zero (e.g. instance weight), convergence 

98.11 kv  and optimal values 99.1kv are close. This is similar to the 

experiment in Section 6.1 with attribute NumWorkedFor (Figure 7). Other 

positive significant values follow a nearly normal probability distribution (see 

Figure 6, Education attribute) similar to clusterAOI algorithm convergence at 



iteration 3 (Figure 11). Attribute convergence obtained similar patterns to 

those of Sections 6.1 and 6.2. Moreover, clusterAOI also follows a nearly 

 

Figure 8 KL: 200K             Figure 9 Global interestingness: 200K 

 

Figure 10 Runtime: 200K                Figure 11 clusterAOI convergence:200K 

normal probability distribution, showing the necessity of searching for 

optimal turning points (interestingness values) in the generalisation process 

(see Figures 4 (b) and 11). The same argument holds for positively significant 

attributes. clusterAOI and AOI are also compared in terms of NOT-

ANY/ANY values. Using a global threshold of 3, clusterAOI on average 



obtained 100% NOT-ANY values (meaning 0% "" ANY values), across all 

datasets (see Table 11). In contrast, AOI gave 41% NOT-ANY values. Clearly 

clusterAOI derives more useful, meaningful and informative patterns than 

those obtained by AOI. These are consistent with Table 1 results. 

Table 11.  Comparing NOT-ANY and ANY values (G.Thr=3) 

Dataset AOI AOI  clusterAOI clusterAOI 

 ANY  not-ANY ANY not-ANY 

Census-200K 15  9 0 30 

Cancer-700 8  8 0 16 

Population 50K 29 20 0 12 

Avg % ANY 59% 0% 

Avg %  not-ANY  41% 100% 

 

In summary, the experiments show that clusterAOI compared to AOI: 

1. is superior in terms of runtime, interestingness and divergence (KL); 

2. does not fluctuate between small and large datasets; 

3. generates higher interestingness values, up to 13 times, with lower 

thresholds (G.Thr 1 to 5); 

4. has a run-time complexity of approximately half (Section 6.4); 

5. has better KL divergence, 1.5 times for smaller thresholds (up to 4) 

6.4 Algorithm space and time complexity analysis 

AOI has order complexities ranging from )(npO [8], pnO log( )[9] to 

)(nO ([4][2]) for n input tuples, p generalised tuples and np log .  

Lemma 2.   clusterAOI’s time complexity is )(npO with space complexity of 

)(*2 nO or ( )(npO + )(nO ), for n  input tuples, p  tuples in the prime table 



and child concept values stored in their parent cluster hash tables (See 

Appendix D for proof). 

clusterAOI has better runtime than AOI because it scans the input data 

once and creates parent clusters during input (Figure 2: Steps 1, 2). Figures 4a 

and 10 show the differences in runtime performance. 

7.   Conclusions 

A heuristic algorithm, clusterAOI, has been introduced that, when compared to 

AOI, improves expressiveness and interestingness, divergence and distribution 

of concepts in the output, and runtime. Experimental results show 

improvement on average of 1.0 to 1.57 times on KL, 4 times on interestingness 

and 2 times on runtime compared to AOI. The final output has better pattern 

distribution and is more expressive and meaningful than from AOI. clusterAOI 

uses pre-clusterAOI to determine attribute significance, intermediate-

clusterAOI to preserve attribute interestingness and post-clusterAOI to 

evaluate output. clusterAOI has similar order complexity, )(npO , and storage 

requirements, )(*2 npO  to established algorithms  [2, 4]. Our approach is 

applicable to generalisation algorithms using concept hierarchies [12]. Further 

work will investigate heuristic optimisation to better exploit the search space.  
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Appendix A Proof of Proposition 1 

Proof: A generalisation function is finite and bounded by values: a lower 

bound a on the furthest leaf nodes and an upper bound b on the root node 

(Figure 1). There are then at least one or more concepts ii Ho  with 

property boa i  of some partial order. Following the work in [6] which 

states that leaf and root node values are uninteresting, it follows that for any 

interestingness function I , )()( ioIaI   and )()( bIoI i   if a is a leaf and 

b is a root concept. Thus io  is an interesting interior concept. {end proof} 

Appendix B Proof of Lemma 1 

Proof: The proof is a consequence of Proposition 1 and the example given. 

Assuming initial attribute interestingness as 0 ,  iteration k  where a 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kumar:Vipin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Srivastava:Jaideep.html
http://www.informatik.uni-trier.de/~ley/db/journals/is/is29.html#TanKS04
http://archive.ics.uci.edu/ml/index.html


cluster of concepts with heuristic values 
kX give a value greater than   

i.e.  kki

k vXI )( ,
kv . Given that further generalisation reduces the 

interestingness value of an attribute [16], a (k+1)th iteration, 

where
kkki

k vvbXI  



11

1 )( . Thus interestingness I increases in interval 

],[ kv and decreases in interval ,..][ 1kv . {end proof}. 

Appendix C Proof of Theorem 1 

Proof: Following Definition 2, let the aggregate harmonic values (local 

attribute interestingness values) be mivv k

m

k 1},,..,{ 1 for m attributes at 

iteration k . Generalisation interestingness functions [16] and heuristic 

aggregation functions are monotonically increasing [17] up to some optimal 

value at iteration k, denoted ),..,,( 21

k

m

kkT

g

k

g vvvIv  . If after further 

generalisation, iteration k+1 has value ),..,( 11

1

1   k

m

kT

g

k

g vvIv 1 k

gv , the 

decreasing function reaches a global interestingness value, else generalisation 

continues to iteration k+2 and so on {end proof}.  

Appendix D Proof of Lemma 2 

Proof:  Time Complexity: Let n  be the input size, p the tuples in a prime 

table and m the number of attributes. AOI [9] reads the input into memory, 

generalises each attribute, sorts the table in )log( nnO time before merging 



the prime table. Thus, time complexity 

is )(npO + )log( nnO = )log( nnO , np  . The total space is 

)()()( nOpOnO  and total time complexity )log( nnO  )log( nnO  

+ )( pO . At input, clusterAOI clusters attribute values Cji for each iA , 

according to a nearest parent, on-the-fly and stores them under that parent in a 

hash table. Given a jth cluster as Cji for k parents, the time complexity is 

O(k|Cji|). For h clusters and global threshold G.Thr= 0g , the time to store 

concepts is bound by  ||****( jiCghmkO . Note that   nCim j ||* , 

k <<n, h << n and g << n  in the worst case where each Cji is generalised, 

j=1,..,h. Thus time complexity is )(nO . In addition, we generalise clusters of 

child concept values and insert tuples in a prime relation, np  , giving 

order complexity )(npO . Further, to merge the prime relation by a merge sort 

and inserting in a final table of size q, complexity is O (plogp)*O(q) or simply 

)()( pOpqO  ). Thus total order complexity is )()( pOnpO  . As q <<p, 

q<< n, and p<<n, the order complexity is at most O(np) in the worst case 

(and could be )(nO in the best case). Space Complexity: Intuitively, we 

need O(n)+O(n) to store initial input and attribute child clusters (unless we 

only store child leaf value index positions as in [2]). The prime table size O(p) 

and final table O(q) are insignificant. Thus space complexity is )(*2 npO . 

{End proof} 



Appendix E Table of Notation 

Term Meaning 

Sig, ,ie  Significance or entropy of an attribute 

),( ACi  Tightness of a cluster C of attribute A  

Thr Threshold (G.Thr, L.Thr) – Global and local threshold 

kI1  Intra cluster tightness in k  clusters (heuristic value 1 

kI 2  Inter cluster tightness in k  clusters (heuristic value 2) 

kI 3  Cluster quality of k  clusters (heuristic value 3) 

k

i

k lv   Local attribute interestingness (harmonic aggregation) in iteration k  

kX  Local attribute heuristic values (1, 2 and 3) in iteration k  

cI  Interestingness linear function on concept value c 

)( cIH  Interestingness non-linear function (probability density function – pdf) 

i

gI  Global interestingness for attribute i (harmonic aggregation) 

D

gI  Global interestingness for table D (harmonic aggregation) 

i

LI  Total local cluster interestingness 

T

gI  Total global cluster interestingness 

Appendix F Concept Hierarchies  
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