
A Hybrid Heuristic Approach for
Attribute-oriented Mining

Maybin K. Muyeba1 , Keeley Crockett1, Wenjia Wang2, John A. Keane3
1 SCMDT, Manchester Metropolitan University, UK

2 School of Computing Sciences, University of East Anglia, UK
3 School of Computer Science, University of Manchester, UK

{m.muyeba, k.crockett}@mmu.ac.uk, Wenjia.Wang@uea.ac.uk, jak@cs.man.ac.uk

Abstract. We present a hybrid heuristic algorithm, clusterAOI, that generates a more

interesting generalised table than obtained via attribute-oriented induction (AOI). AOI

tends to overgeneralise as it uses a fixed global static threshold to cluster and

generalize attributes irrespective of their features, and does not evaluate intermediate

interestingness. In contrast, clusterAOI uses attribute features to dynamically

recalculate new attribute thresholds and applies heuristics to evaluate cluster quality

and intermediate interestingness. Experimental results show improved interestingness,

better output pattern distribution and expressiveness, and improved runtime.

Keywords: Induction, heuristic, threshold, interestingness, cluster, algorithm.

1 Introduction

Pattern interestingness is determined by an objective measure [18] or by

subjective user interpretation [15]. Threshold-driven algorithms [18, 12]

generate many rules which need to be filtered to determine interestingness

[15]. Attribute-oriented induction (AOI) [9] extracts high-level generalised

rules by repeatedly replacing and clustering [14, 16] attribute values using

domain knowledge† [9, 17]. AOI uses attribute and relation generalisation

thresholds to limit the number of distinct attributes and rules generated.

Problem and approach: we aim to obtain generalized and hence more

interesting rules. AOI overgeneralises to “ANY” values [3, 13, 14] as it uses a

† Use of domain knowledge has been limited [20] and is acknowledged as a hard problem [5].

http://dl.acm.org/inst_page.cfm?id=1025871&CFID=74351496&CFTOKEN=47622253
mailto:@mmu.ac.uk
mailto:Wenjia.Wang@uea.ac.uk
mailto:jak@cs.man.ac.uk

fixed global static threshold to generalize attributes irrespective of their

features and does not dynamically evaluate interestingness. Hence, the key

idea here is to consider attribute features, to dynamically recalculate new

thresholds, and to apply heuristics to evaluate cluster quality and intermediate

interestingness. The most interesting rules consist of mostly interior concepts

[6, 7, 14].

This paper presents clusterAOI, a hybrid heuristic algorithm based on [16],

which produces a more interesting generalised table than AOI. A three-fold

strategy is used: (1) generalise conservatively [14] selected clusters of

attribute values that share common properties and satisfy a newly computed

local attribute threshold; (2) evaluate intermediate interestingness result for

each attribute and of the algorithm, using heuristic functions [16]; (3) apply

Kullback-Leibler (KL) divergence to the output [10]. Experiments show

improved interestingness (up to 4 times), better output pattern distribution and

expressiveness (about 1.5 times), and improved runtime (about 2 times).

The approach is as follows: (1) pre-cluster AOI analyses attribute features

to dynamically generate local thresholds; (2) intermediate-clusterAOI uses

probabilistic semantic similarity between clusters of attribute values and

evaluates cluster interestingness, resulting in improved interestingness and

runtime; (3) in post-clusterAOI the final output table’s interestingness is

determined using an interestingness heuristic (global harmonic mean) and KL.

As an example we apply AOI and clusterAOI to a breast cancer dataset

[19] (Table 1). We calculate KL for divergence and cluster quality (CQ).

clusterAOI gave 0% overgeneralisation while AOI gave 50%; KL was 1.7

times higher and CQ 3 times higher. clusterAOI also produces twice as many

informative rules (NOT-ANY), i.e. 100% compared to 50% for AOI. Similar

weaknesses were highlighted in [21]. Overall, clusterAOI improves pattern

understandability, intelligent interpretation and interestingness..

Table 1. Comparing final output on non-ANY values, breast cancer dataset [19]

The rest of the paper is structured as follows: related work is discussed in

Section 2; Section 3 presents prerequisites and definitions; Section 4

introduces pre-clusterAOI; Section 5 presents intermediate and post-

clusterAOI; Section 6 describes experimentation; and conclusions are given in

Section 7. A running example of table 2 is extended as each aspect of the

approach is discussed.

2 Related Work

 AOI algorithms [3, 4, 8, 9, 13, 14] stop generalisation when thresholds (the

interestingness measure) are reached, and do not consider attribute features

Algorithm cellSize bNuclei nNuclei Mitoses Count %ANY %not-ANY

 AOI aboutAve AboutAve Any Any 485 50 50

aboutAve AboveAve Any Any 93

G.Thr=2, KL=0.63, CQ=11.59

clusterAOI aboutAve AboutAve AboutAve AboutAve 483 0

100

 aboutAve AboveAve AboutAve AboutAve 99

 AboveAve AboveAve AboveAve AboutAve 71

G.Thr=2, KL=1.08, CQ=34.6

and proprieties [3][18]. For pre-AOI, [21] removes discriminating data that

may affect interestingness. Others [1][7] analyse depths and weighted heights

of concept hierarchies to determine interestingness, but only use a single fixed

weight value for interior concepts which may vary between hierarchies. For

intermediate-AOI, [3] uses multiple-level support thresholds per attribute and

order generalised tuples according to association strength. Others [1][11]

select the next attribute generalisation path to follow but are computationally

intensive. Repeating attribute values are preserved in [13], producing many

output rules. In post-AOI [6, 16], the number of interior concepts in the output

is used to evaluate interestingness using only the original global thresholds.

3 Prerequisites and Definitions

KL is an information divergence measure between two probability

distributions (uniform and actual): higher values show good distribution and

variety of output values, indicating improved interestingness [10]. Given m

tuples },..,{ 1 mttT  and actual probabilities },..,{ 1 mpp , the divergence

is 



m

i

ii ppmTKL
1

22 loglog)(, where 0)(TKL , bounded by m2log .

We apply an interestingness heuristic function CQ to the top k rules of the

output (Equation 7, section 5.2), as in [1, 7]‡. clusterAOI addresses

interestingness as follows: let relation R be defined on dataset RD  with

‡ Notation is collected in Appendix E.

n tuples; attribute iA and attribute hierarchy Hi pairs exist for m

attributes i.e.)},(),..,,(),,{(2211 mm HAHAHA , 1mA is a count of tuples in

R and t is a global threshold. Then   ,|,| 1 nAm with domain

values ,),(1



  ZADom m
with .1 mH Given a generalisation space

iii HAB  for each attribute, we use entropy function)(iA and

entropy values to generate new local

thresholds },..,1,..:.{ miThrGThrLthrL ii  , for each iA , where ThrG.

is the global threshold. ThrGThrL i ..  means that each attribute should

have at most |.| iThrL distinct values, ensuring no overgeneralisation

takes place. With a description language),(B L i f , there is a level-

by-level “nearest parent” generalisation function)(: ii HDomBf  and

a partial order),(iB for finding descriptions },..,,{ 21 k in iB . For

the parent of a cluster },..,{ 1 j , ' = min {)(),..,(1 jff  } is a new

description (nearest parent) for both i and j , leading to Definition 1.

Definition 1. Generalisable cluster. Given a cluster },..,{ 1 nj ccC  of values

for attribute iA and local threshold , cluster jC is generalisable

if || jC and)()(lk cfcf  , lknlk  ,, .

Generalisation of each attribute stops when its optimal value (a local

interestingness value,) is reached (Definition 2, section 5.1), and in the global

case when a global optimal value is encountered (Theorem 1, section 5.1).

These values are derived by applying heuristic functions to attribute clusters.

Without loss of generality, interestingness [16] can be described by both

distance and cluster tightness [17] depending on tuple distribution in a

summary table [10] (a cluster of attribute values). The agglomerative

hierarchical clustering distance n and tightness n functions [17] are used for

overall interestingness:
),(: nnnG  . These functions exhibit both

monotone and anti-monotone properties during generalisation [17]. Therefore,

the problem of mining generalised patterns is a 4-tuple),,,(g
T

L
i IfI (See

appendix E) defined as follows:

(1) Find attribute significance using a distance linear function)(iA and

generate new local threshold iThrL. ; discussed in Sections 4.1 and 4.2;

(2) Find local attribute interestingness in iteration k and aggregate values

using a cluster tightness function)(iL
i AI discussed in Sections 5.1;

(3) Generalise values using distance function)(iBf subject to iThrL. ;

(4) Find global interestingness of T by aggregating local interestingness

values from (2) using function (..)g
TI ; discussed in Sections 5.2-5.4.

4. Pre-clusterAOI

Pre-clusterAOI aims to find each attribute’s local threshold L.Thr (from G.Thr)

using attribute features such as concept hierarchy and distinct values.

Figure 1 Concept hierarchies for Diameter and Colour

Table 2. Ball data Table 3. Prime table

Example (1): The concept hierarchy, for a soccer dataset with 2 attributes, is

shown in Figure 1 with interior concepts as non-leaf or root nodes. Table 2

shows that Diameter and Colour have 7 and 6 distinct values respectively,

while prime table 3(the first generalised table) and table 4 have 2 and 3

distinct values respectively(See section 5.2 for generalisation process).

4.1 Attribute feature significance

We adapt a query-based approach [14] to determine attribute significance from

distinct values in D and concept hierarchy node values in iH [6, 16]. Attribute

Diameter Colour

2 Red

7 Blue

34 Yellow

25 Green

28 Orange

8 Violet

16 Red

Diameter Colour Count

Small Reddish 1

Small Bluish 1

Medium Yellowish 1

Medium Yellowish 1

Medium Reddish 1

Small Bluish 1

Small Reddish 1

significance is used to compute local thresholds by a tightness function

),(1 ACi =)(A ; entropy)(ii Ae is calculated by Equation 1:

)()
),(

||
log)(log()(),(1 ii

m

i i

iii Asige
ADdist

D
cpAAc  

 Eq (1)

where),(iADdist or)(iAdist is the distinct values of attribute Ai in D, taking

the absolute value of Equation 1 and each ii Hc  is a non-leaf concept. Note

that),(iADdist is initially calculated from table 2. Merging table 3 and

generalising “Colour” further gives table 4, finally merged to give table 5.

Example (2): We calculate attribute significance)(iAsig values as follows:

 4.76)()( diamterdiamter Adiametersige

Similarly, 78.9coloure , meaning that Colour is more significant than

Diameter. From this, new thresholds can be calculated.

 Table 4. Merged prime table Table 5. Final table

4.2 Multi-threshold generation

Using equation 1 for entropy ie , different local thresholds (iThrL.) can be

generated for each attribute iA by a linear function).,(1 ThrGeD i in ie , where

),..,,(21 meeeMAXE  . Equation 2 states that ThrGThrL i ..  for each

Diameter Colour Count

Small Bluish 1

Small Bluish 1

Medium Non-dark 1

Small Non-dark 4

Diameter Colour Count

Small Non-dark 4

Small Bluish 2

Medium Non-dark 1

attribute (i.e. in the worst case each is generalised using G.Thr). Hence,

choosing the maximum entropy value is justified.

i

ii

i ThrL
E

eE
ThrG

E

eEEThrG
ThrGeD .

||
.

||)*.(
).,(1 





 Eq (2)

Example (3): Using Table 2 and 2. ThrG , we obtain entropy values for

Diameter 76.41 e and Colour 78.92 e with iThrL. as follows:

2.
78.9

|78.978.9|)78.9*2(
. 


 ThrGThrL colour

ThrGThrL diameter .51.2
9.78

|76.478.9|)78.9*2(
. 




where 78.9)78.9,76.4(Max . With value rounding, 2. colourThrL as

0||  ieE while 3. diameterThrL . Generating iThrL. affects each attribute’s

interestingness (shown in Section 5).

5 Intermediate and post-clusterAOI

This section considers interestingness evaluation during generalisation

(intermediate-clusterAOI) and of the final output table (post-clusterAOI).

5.1 Attribute Interestingness

Higher level concepts are more interesting than leaf nodes [6]; in contrast,

"" ANY is uninteresting [7]. This represents a bounded interestingness problem

(Proposition 1). AOI [9] uses a distance-driven generalisation method and

interestingness should naturally be a distance function [16]. For simplicity, all

values in the space
iB consisting of attribute and concept hierarchy values are

referred to as concepts unless specific meanings are required.

Proposition 1. Concept value interestingness: A concept value iBy is

interesting if it is an interior concept. See Appendix A for proof.

Example (4): Figure 1 (Section 4) shows a concept hierarchy for Diameter

with interior concepts {small, medium, large} { ANY }. Novices may find

range [1..60] and "" ANY values both meaningless and uninteresting.

However, they become interesting when diameter size can be determined

without knowing specific measurements of the ball. Definition 1 enables such

determinations to be made.

Given Proposition 1, generalised attribute iA has concept collections


n

k

kc
1

that give the highest interestingness value, an aggregation of individual

interestingness values. Section 5.2 defines further heuristics for intra-cluster

tightness
kI1 , inter-cluster similarity

kI 2 and cluster quality
kI 3 to calculate

highest aggregated interestingness at any k th iteration [16], called local (L)

interestingness, for each iA , denoted
k

i

i

L AI)]([or simply)(kk

i Xl . When L is

found, generalisation stops. As values
kX vary between attributes at each

iteration, we aggregate these values using a simple harmonic function.

Definition 2. Local Attribute Interestingness. Given an attribute iA , local

heuristic values },,{ 321

kkkk xxxX  , and a harmonic aggregation

function)(kk

i Xl with value)(kk

i

k Xlv  at the k th iteration, the local

attribute interestingness of the attribute is)(111   kk

i

k Xlv obtained at the

)1(k th iteration, where },,..,max{ 10  kkk vvvv and
1 kk vv .

Note from Definition 2 that
kv , the maximum local interestingness (optimum)

value, is greater than
1kv . At this point, no further generalisation occurs.

Lemma 1. Interestingness function I monotonically increases for the first

k iterations to an optimal value
kv and then monotonically decreases

from the 1k th iteration. See Appendix B for proof.

It is easy to determine global interestingness simply by a harmonic aggregation

at each iteration and finding the maximum so far.

Example (5): From Table 2, G.Thr=2, local and global interestingness values

at each iteration were: Diameter {0.0, 0.14, 0.66, 1.0,..}, Colour {0.0, 0.29,

1.5, 0.78} and clusterAOI {0.0, 0.21, 1.1, 0.91} respectively. Diameter has no

optimal value yet but Colour converged at iteration 3 at 0.78 (optimal value

1.5) and clusterAOI at 0.91 (optimal value 1.1). Although Diameter

monotonically increases, further generalisation stops at iteration 3 at 1.0. This

prevents overgeneralisation of both attributes (local case) and clusterAOI

(global case). Further, run-time performance is improved. Lemma 1 helps to

formulate a theorem based on the local interestingness criteria.

Theorem 1. (Global Interestingness). Given attributes miAi 1},{ of a table

T, each attribute has a local interestingness value
k

iv for some iteration 0k ,

global interestingness
1k

gv is the)1(k th value computed when the maximum

value of aggregated local interestingness values in the k th iteration has been

computed. The aggregated maximum value in

}),..,,(max{ 21 k

m

kkT

g

k

g vvvIv  and global interestingness is reached

when
1 k

g

k

g vv (Equation 7, section 5.2). See Appendix C for proof.

To reiterate, we calculate attribute interestingness (Equation 3, [16]) of a

value c by a distance-based linear metric, [0,1] 1] [0,: cI . For example, a leaf

concept ii Ax  for attribute iA has interestingness value

.0
)"("

)"",(
1 

ANYdepth

ANYxd
Ix i

i
Similarly, ,101 ANYcI a complement of the

leaf concept mapping. This function is unreliable in determining

interestingness as "" ANY has the maximum value 1 by the mapping function.

"",
)"("

)"",(
1 ANYc

ANYdepth

ANYcd
I c 

 Eq (3)

Equation 3 satisfies the following three axioms for any given universal set X:

Axiom 1: Boundary conditions: 1)0(cI and 0)1(xcI  .

Axiom 2: Monoticity:)()(bIaI cc  if .ba  For example, given two

values """" 21 ANYxredx   , ,1,0 21  xx ba  then

0)1(1)0( ANYred II . This metric is unreliable for interestingness:

c such that """" ANYcred  ,and if 5.0c then)1()5.0(ANYcc II 

and)5.0()0(credc II  . This violates Proposition 1 and Lemma 1. A non-

linear metric (see Equation 4) may be more suitable.

Axiom 3: Involutive: It is easily shown that 0))0((cc II or 1))1((cc II

We infer that interestingness is non-linearly distributed between leaf and

root nodes. A probability density function, with input from Equation 3,

determines interestingness of a value, and is given as Equation 4:

)2(

)(
2

2

2

1
)(








ix

c eIH

 Eq (4)

where 10  cI with mean and variance values),( , iBc .

Example (6): Using Table 1, mean ,524.0 variance 069.0 for Colour

and ,625.0 0625.0 for Diameter. Observe that Equation 4

gives 1210*48.1)0()( HIH red
while)1()(HIH ANY  = 1210*022.0  . So

interestingness of interior node “reddish”, 33.0reddishI , 124.0)(reddishIH ,

and any cluster C is given by the value


n

i

icH
1

)(.

Note)()()(ANYredreddish IHIHIH  , thus confirming that root and leaf nodes

are less interesting than interior nodes. clusterOAI therefore aims to

generalise values to interior concepts.

5.2 Generalisation Process

For each attribute we find and generalize clusters of values that share common

parents [16] and then computing interestingness heuristics (L2.7-L2.10, Figure

2); see Tables 3-6. Generalised clusters are stored in a hash table. As

clusterAOI may not generalise all clusters, another approach is necessary

(Section 5.4) based on Axiom 2. To derive interesting patterns we measure

cluster tightness (Equation 5); [17] presents a general theory of monotonically

non-increasing tightness functions n that measure the number of attribute

values in clusters i.e. if 'cc  ,)'()(cc nn   . We require)()'(cc nn   to

hold for 'cc  , where the tightness function increases monotonically to an

optimal value. New clusters are generated by generalising common parent

clusters, following a similar generalisation process as in AOI. The output

stores new parent clusters and similarity, tightness and CQ heuristics (L2.9,

Figure 2), aggregated using Equation 5. The final generalised table is produced

in step 3, L3.6 of Figure 2. In Table 2, cluster {2, 7, 8, 16} is generalised to its

nearest common parent “small” because 3.4  diameterThrL . This guarantees

conservative generalisation, cluster by cluster. clusterAOI uses this step to

5.3 clusterAOI algorithm

Figure 2 shows clusterAOI. Step 1 performs pre-clusterAOI.

Input: dataset D with attributes Ai; Concept hierarchies Hi, Global threshold t

Output: A compact table T, Kullback measure KL, Cluster measure IT
g

BEGIN

Step 1. Get Ai from D, Find attribute significance and new local thresholds iter1

Step 2. Process attributes

L2.1 stillInteresting=true

L2.2 convergenceValues [Ai]= false

L2.3 While (stillInteresting) // check Global interestingness

L2.4 For each Ai in D

L2.5 attrConv= convergenceValues (Ai)

L2.6 if (not(attrConv))

L2.7 DprocessAttribute(D, Hi, Ai)

L2.8 DmergeData(D)

L2.9 attrHeur[i]computeHeuristics(interC,intraC, Ii
L) // [16]

L2.10 hashStore=IterationObject(attrHeur[i], iter)

L2.11 harm_total0

L2.12 Ii
g0

L2.13 For each Ai //check attribute convergence

L2.14 if(iter>0)

L2.15 attrConvisAttribConv(iter, i, hashStore)

L2.16 if(attConv= true)// Check Local interestingness

L2.17 convergenceValues(i)attrConv

L2.18 Ii
g  computeGlobal_I(hashStore (iter, Ai)) // eqn (5)

L2.19 harm_total harm_total +Ii
g

L2.20 ID
g =harm_total/m //eqn (6)

L2.21 setHarmValues(ID
g))

L2.22 stillInterestingisInteresting(getHarmValues())

L2.23 iteriter+1

Step 3. Generate final table

L3.1 Dmerge and Copy(D)

L3.2 DgeneraliseLeaf(D)

L3.3 TtopKRules(D, newThreshold)

L3.4 KLKullbackMeasure(T)

L3.5 IT
gTableClusterQuality(T) //eqn (7)

L3.6 Output(T, KL, IT
g)

END

Figure 2 The clusterAOI algorithm

produce better patterns than AOI. Let
ijC be cluster j for a group of values

from attribute iA , ,1 nj  for n tuples with clusters 
k

j

ijCC
1

}{


 as a

collection of all clusters for the attribute, with similar attribute properties. e.g.

equal distances from the root node and the same parent nodes. An attribute’s

global interesting value is obtained using cluster similarity (IntraC), tightness

(InterC) and total local interestingness (L
iI), using Equation 5,

()I,I,(II 321 respectively)§. After computing g
iI , we store the global

interestingness values g
DI for all table attributes (Equation 6). To further

generalise an attribute, the latest and previous g
iI value are compared to

determine the next step. Global interestingness values are compared in the

same way. Comparing values this way avoids overgeneralisation. The cluster

quality of a table T is a summation of all local L
iI values (Equation 7).





n

i

i

g
i

I

n
II

1

/1

)(Eq (5)

m

I

I

m

i

g
i

g
D


 1

Eq (6)





m

i

L
i

g
T II

1

Eq (7)

Step 2 sets global interestingness, processes each attribute, merges resulting

values and stores L
iI values (Equation 5). Each iteration makes parent

§ Defined as 1,

||

)(

1

1 







k

i

ijC

CI , 
 


k

1i

k

1i

ijij |C|-|C| (C) I 2
, 




n

i

icHCI
1

3)()(

clusters per attribute, generalises and processes them per attribute (L2.7,

Figure 2). computeHeuristics() (L2.9) computes interestingness heuristics. We

check each attribute’s local convergence (L2.15) and global convergence

(L2.22) using the heuristics. Global interestingness is checked by the global

harmonic mean of all local interestingness values (L2.20, Equation 6). Step 3

merges the table rows into a new smaller table.

 Table 6. Clusters for Diameter and Colour at generalisation iteration 1

Diameter IntraC InterC
L

iI g
iI (Eqn. 5)

[2, 7, 8, 16] small

[25,34, 28]medium
0.143

0.0 0.0

TOTAL 0.143

Colour

[red, orange, red]reddish
[blue, violet]bluish

[yellow, green]yellowish

 0.167

1.0

0.0

TOTAL 0.286

 Average H. Mean (eqn. 6) 0.429/2=0.215

Example (7): Table 6 shows the initial clusters generated using a global

threshold G.Thr=2. The set of global harmonic means are stored for the

entire generalisation process as sets of vector values. The first iteration’s

global harmonic mean is 0.215. Local interestingness values for Diameter

were]03.1,66.0,143.0,0.0[and for Colour]78.0,5.1,286.0,0.0[. Equation 5 gives

the second local harmonic mean of Colour as 286.0
)

1
1()

167.0
1(

2




. Local

cluster interestingness values (L
iI) are zero as we only have leaf concepts.

Further, note that the algorithm only iterates to iteration 3 up to global

harmonic value 0.907 in the list [0.0, 0.215, 1.08, 0.907,..] and generalisation

stops. Colour essentially converges at iteration 3 (as 1.5>0.78) in the

list]78.0,5.1,286.0,0.0[. As Diameter has not converged yet (as 0.66<1.33),

more interestingness can be found after iteration 3. Consequently, as global

algorithm convergence occurs at iteration 3, no further generalisation of

Diameter occurs. This prevents overgeneralisation and further iterative steps,

and saves execution time.

The complexity analysis of clusterAOI is discussed in Section 6.4.

5.4 Post-clusterAOI Interestingness

Example (8): Table 7 compares outputs: each row represents a rule in

descending order of tuple numbers. clusterAOI recalculates thresholds and

gives three rules containing interior concepts while AOI overgeneralises

Diameter to "" ANY and gives two rules. clusterAOI is superior to AOI:

global interestingness (g
TI , 5th column) is 3 times and KL is 1.6 times better.

 Table 7. clusterAOI and AOI final table comparisons

 Diameter Colour Count
g

TI (Eqn. 7)
KL

clusterAOI Medium Non-Dark 4
4.06

1.38

 Small Bluish 2

 Small Non-Dark 1

AOI ANY Non-Dark 5 1.34

0.86

 ANY Dark 2

 In clusterAOI, ungeneralisable attribute clusters may appear as leaf concepts

in the output [16]. To improve overall interestingness, generaliseLeaf() (L3.2,

Figure 2) searches for an optimal generalisation point for any given leaf

concept. Following Axiom 2, there is an interior level l (or group of interior

parent concept values at this level) which is more interesting than those at

levels 1l and 1l . For performance, we deterministically find the most

“interior” level of a concept hierarchy, the ‘median’, and generalise the leaf to

this level (Proposition 1 and Figure 1). 2/)(rarchydepthOfHie generalisation

steps are used for an even number of levels; one more for an odd number.

6. Experimental Analysis

Experiments have been performed in terms of KL measure, interestingness and

runtime, with as shown in Appendix F. Experiments were run 5 times to obtain

average results on an Intel (R) Pentium (R) Dual 2GHz processor with 2GB

RAM.

6.1 Census-income dataset (50K tuples, 3 attributes)

Table 8 compares performance with global thresholds from 1 to 10. Threshold

1 guarantees excessive generalisation in traditional AOI while higher

thresholds do the opposite. For clusterAOI, mean and variance were calculated

and their significance evaluated as follows: 99.9)(,87.18)( educsigagesig

and ,63.1)(numWorkedsig and local thresholds recalculated (Table 8, final

column). Comparing global interestingness (g
TI values) in Table 8 (see also

Figure 3(b)), clusterAOI is 2.65 times better on average. For thresholds 1 to 4,

often a desirable level to set in AOI, clusterAOI interestingness is 12 times

better, meaning it generates more interesting patterns. Higher thresholds (7 and

over) appear to not differentiate interestingness between the two algorithms on

this dataset. Unsurprisingly, threshold 1 gives interestingness of 22.36 and

clusterAOI recalculated L.Thr as 2 and produced two rules with values (aged,

average education, few) and (aged, basic education, few); in contrast, AOI

produced one overgeneralised rule. The KL measure for clusterAOI is on

average 1.76 times better for thresholds 1 to 4, and 0.91 times better for

thresholds 1 to 10 (Figure 3(a)). The results indicate that clusterAOI

generalises better for smaller thresholds (better distribution or divergence of

output patterns) than for larger ones. clusterAOI is also 1.25 times faster

(Figures 4(a), Table 8). Generally, for smaller thresholds, there is more

clustering, generalisation and merging. Figure 4(b) shows how clusterAOI

 Table 8. clusterAOI and AOI results (50K Census-income dataset)

G.Thr KL g
TI Runtime (x10sec)

 AOI clusterAOI AOI clusterAOI AOI clusterAOI

1 0.00 0.97 0.00 22.36 26.20 20.50

2 0.86 1.54 5.80 10.22 26.20 20.50

3 1.46 1.94 0.002 13.19 26.20 21.00

4 1.46 2.24 0.018 23.10 26.20 21.00

5 2.26 1.83 0.0029 25.00 26.00 21.00

6 2.26 1.83 0.0029 25.60 26.00 21.00

7 2.26 1.83 26.00 25.60 26.00 21.00

8 2.94 1.83 26.00 25.60 26.00 21.00

9 2.94 1.83 26.00 25.60 26.00 21.00

10 2.94 1.83 26.00 25.60 26.00 21.00

Avg. # Times = 0.91 # Times = 2.65 # Times = 1.25

iterates to a global optimal value 5.4k

gv at iteration 3 before finally

converging at iteration 4 at .57.11 k

gv Similarly, each attribute has a local

optimal value
kv before stopping at the next iteration (See Figures 5, 6, 7).

Significance values were calculated as: age (18.87), education (9.98) and

NumWorkedFor (-1.63) meaning that age has the smallest local threshold of

the three attributes and should be generalised further. Note their convergence

graphs in Figures 5, 6 and 7 are similar to the clusterAOI convergence pattern

in Figure 4(b).

 Figure 3 50K census-income: (a) KL (b) Global Interestingness

Figure 4 (a) Runtime 50K (b) Algorithm convergence

 Figure 5 Convergence of Age Figure 6 Convergence of Education

Figure 7 Convergence for NumWorkedFor

6.2 Cancer-Wisconsin dataset (700 tuples, 4 attributes)

Section 1 discussed this dataset. As the dataset is small, values distribution

(concept hierarchy and distinct attribute values) is narrow with a low value for

KL. Each attribute has similar significance values other than mitoses:

04.5)(cellSizesig , 04.5)(bareNucleisig , 04.5)(einormalNuclsig and

89.4)(mitosessig . As shown in Section 1, mitoses is not overgeneralised by

clusterAOI even with the lowest significance, unlike by AOI. Convergence of

the four attributes follows a similar pattern to Figures 5, 6 and 7. Table 9

shows clusterAOI is better than AOI in terms of global interestingness

(g
TI values): 5.42 times better on average; KL for small thresholds (1 to 4):

1.5 times, overall it is 0.94 times better on average; and interestingness and

runtime: 5.84 and 1.24 times respectively.

 Table 9. clusterAOI and AOI results (Breast cancer dataset [19])

G.Thr KL g
TI Runtime (x10sec)

 AOI ClusterAOI AOI clusterAOI AOI clusterAOI

1 0.0 0.66 0.0 23.2 18.4 16.40

2 0.63 1.08 17.4 34.6 17.0 16.00

3 1.08 1.36 23.0 46.4 17.0 16.00

4 1.08 1.36 0.75 46.4 19.0 16.00

5 1.44 1.36 0.90 46.0 19.0 16.00

6 1.59 1.36 1.06 46.4 20.0 15.60

7 1.71 1.36 1.21 46.3 21.0 15.60

8 1.83 1.36 1.36 46.4 20.0 16.00

9 1.92 1.36 1.51 46.4 21.0 16.00

10 2.01 1.36 31.88 46.4 27.0 16.00

Avg. # times = 0.94 # times = 5.42 # times = 1.24

6.3 Census-income dataset (200K tuples, 6 attributes)

Significant values and distinct values ()(iAdist) were calculated as follows:

,94.27)(agesig dist(age)=91; ,01.8)(educationsig dist(education)=17;

,20.64)(det ailedHHoldsig dist(detailedHHold)=38; major industrial code

,00.98)(majIndCodesig dist(majIndCode)=24; ,4.4)(instWeightsig

dist(instWeight)=4 and 6.3)(ornumWorkedFsig ,

dist(numWorkedFor)=7. Global thresholds were set from 1 to 10 and

performance results are shown in Table 10. clusterAOI generates patterns that

are 4 times more interesting (Table 10, Column g
TI and Figure 9) and 1.04

times better in terms of pattern divergence (KL in Figure 8) than AOI.

However, when averaging for thresholds 1 to 4 as previously, clusterAOI

generates patterns that are 14 times more interesting; KL for thresholds 1 to 4

is about 1.5 times better than AOI. As data increases (unlike previously), KL

(value divergence) for clusterAOI also increases. From Figure 8, the greater

the divergence, the more interesting patterns are produced i.e. clusterOAI

shows larger interestingness values (Figure 9). Hence, small thresholds may be

used for many purposes e.g. readability, interpretability etc. clusterAOI is

about twice as fast (Table 10, Figure 10); with lower thresholds (e.g. 1 to 4),

and overall average run-time is about three times better. Note that for attribute

Table 10. clusterAOI and AOI results (Census-income dataset 200K tuples)

G.Thr KL g
TI Runtime (x10sec)

 AOI clusterAOI AOI clusterAOI AOI clusterAOI

1 0.00 1.53 0.00 49.44 96.00 32.00

2 0.92 178 0.00 40.60 68.00 26.00

3 1.86 2.11 9.07 56.00 59.00 26.00

4 2.31 2.35 6.84 71.56 57.00 26.00

5 2.55 2.50 8.21 91.00 57.00 26.00

6 2.63 2.57 14.55 113.75 57.00 26.00

7 2.89 2.57 42.11 140.00 54.00 24.00

8 3.00 2.67 47.80 140.00 54.00 26.00

9 3.14 2.71 53.50 152.00 54000 26.00

10 3.27 2.74 59.20 165.80 54.00 26.00

Avg. # times = 1.04 # times = 4.20 # times = 2.31

significant values lower than zero (e.g. instance weight), convergence

98.11 kv and optimal values 99.1kv are close. This is similar to the

experiment in Section 6.1 with attribute NumWorkedFor (Figure 7). Other

positive significant values follow a nearly normal probability distribution (see

Figure 6, Education attribute) similar to clusterAOI algorithm convergence at

iteration 3 (Figure 11). Attribute convergence obtained similar patterns to

those of Sections 6.1 and 6.2. Moreover, clusterAOI also follows a nearly

Figure 8 KL: 200K Figure 9 Global interestingness: 200K

Figure 10 Runtime: 200K Figure 11 clusterAOI convergence:200K

normal probability distribution, showing the necessity of searching for

optimal turning points (interestingness values) in the generalisation process

(see Figures 4 (b) and 11). The same argument holds for positively significant

attributes. clusterAOI and AOI are also compared in terms of NOT-

ANY/ANY values. Using a global threshold of 3, clusterAOI on average

obtained 100% NOT-ANY values (meaning 0% "" ANY values), across all

datasets (see Table 11). In contrast, AOI gave 41% NOT-ANY values. Clearly

clusterAOI derives more useful, meaningful and informative patterns than

those obtained by AOI. These are consistent with Table 1 results.

Table 11. Comparing NOT-ANY and ANY values (G.Thr=3)

Dataset AOI AOI clusterAOI clusterAOI

 ANY not-ANY ANY not-ANY

Census-200K 15 9 0 30

Cancer-700 8 8 0 16

Population 50K 29 20 0 12

Avg % ANY 59% 0%

Avg % not-ANY 41% 100%

In summary, the experiments show that clusterAOI compared to AOI:

1. is superior in terms of runtime, interestingness and divergence (KL);

2. does not fluctuate between small and large datasets;

3. generates higher interestingness values, up to 13 times, with lower

thresholds (G.Thr 1 to 5);

4. has a run-time complexity of approximately half (Section 6.4);

5. has better KL divergence, 1.5 times for smaller thresholds (up to 4)

6.4 Algorithm space and time complexity analysis

AOI has order complexities ranging from)(npO [8], pnO log()[9] to

)(nO ([4][2]) for n input tuples, p generalised tuples and np log .

Lemma 2. clusterAOI’s time complexity is)(npO with space complexity of

)(*2 nO or ()(npO +)(nO), for n input tuples, p tuples in the prime table

and child concept values stored in their parent cluster hash tables (See

Appendix D for proof).

clusterAOI has better runtime than AOI because it scans the input data

once and creates parent clusters during input (Figure 2: Steps 1, 2). Figures 4a

and 10 show the differences in runtime performance.

7. Conclusions

A heuristic algorithm, clusterAOI, has been introduced that, when compared to

AOI, improves expressiveness and interestingness, divergence and distribution

of concepts in the output, and runtime. Experimental results show

improvement on average of 1.0 to 1.57 times on KL, 4 times on interestingness

and 2 times on runtime compared to AOI. The final output has better pattern

distribution and is more expressive and meaningful than from AOI. clusterAOI

uses pre-clusterAOI to determine attribute significance, intermediate-

clusterAOI to preserve attribute interestingness and post-clusterAOI to

evaluate output. clusterAOI has similar order complexity,)(npO , and storage

requirements,)(*2 npO to established algorithms [2, 4]. Our approach is

applicable to generalisation algorithms using concept hierarchies [12]. Further

work will investigate heuristic optimisation to better exploit the search space.

Acknowledgements

Thanks to Prof Howard J. Hamilton (University of Regina) for technical input.

References

[1] B. Barber and H.J. Hamilton. A comparison of attribute selection

strategies for attribute-oriented generalisation, Symposium on Methodologies

for Intelligent Systems (ISMIS’97), pp 106-116 (1997)

[2] C.L. Carter and H.J. Hamilton. Efficient attribute-oriented generalisation

for knowledge discovery from large databases, IEEE Transactions on

Knowledge and Data Engineering, 10(2):193-208 (1998)

[3] Y.L. Chen, Y.Y. Wu and R. I. Chang. From data to global generalised

knowledge, Decision Support Systems 52(2):295-307 (2012)

[4] D.W. Cheung, A.W. Fu and J. Han. Efficient rule-based attribute-oriented

induction for data mining, Intelligent Information Systems 15:175-200 (2000)

[5] U.M. Fayyad, G. Piatetsky-Shapiro and R. Uthurusamy. Data Mining: the

next 10 years, SIGKDD Explorations 5(2): 191-196 (2003)

[6] D.R. Fudger and H.J. Hamilton. A heuristic for evaluating databases for

knowledge discovery with DBLEARN, Rough Sets and Knowledge

Discovery, pp 29-39 (1993)

[7] H.J. Hamilton and D.R. Fudger. Estimating DBLEARN's potential for

knowledge discovery in databases, Computational Intelligence, 11(2):280-

296, (1995).

[8] J, Han. Towards efficient inductive mechanisms, Theoretical Computer

Science, 133:361-385 (1994)

[9] J. Han. and Y. Fu. Exploration of the power of attribute-oriented induction

in data mining, Advances in Knowledge Discovery and Data Mining,

AAAI/MIT Press, pp 399-421 (1996).

[10] R.J. Hilderman and H.J. Hamilton. Knowledge discovery and measures

of interest. Kluwer Academic Publishers (2001).

[11] R.J. Hilderman, H.J. Hamilton and N. Cercone. Data mining in large

databases using domain generalisation Graphs, Journal of Intelligent

Information Systems, 13(3), 195-234 (1999)

[12] Y-F. Huang, C-M. Wu. Mining generalised association rules using

pruning techniques,ICDM', pp 227-234 (2002).

[13] C-C. Hsu. Extending attribute-oriented induction algorithm for major

values and numeric values, Expert Systems with Applications, 27(2):187-202,

(2004).

[14] K. Julisch. Clustering intrusion detection alarms to support root cause

analysis, ACM Transactions on Information and System Security, 6(4):443-

471 (2003)

[15] B. Liu, K. Zhao, J. Benkler and W. Xiao: Rule interestingness analysis

using OLAP operations, 12th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, USA, pp 297-306 (2006).

[16] M.K. Muyeba, K. Crockett and J.A. Keane. A hybrid interestingness

heuristic approach for attribute-oriented mining, LNCS 6682:414-424 (2011).

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Benkler:Jeffrey.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/x/Xiao:Weimin.html

[17] L. Pitt and R.E. Reinke. Criteria for polynomial-time (conceptual)

clustering, Machine Learning, 2(4):371-396 (1988)

[18] P-N. Tan, V. Kumar. and J. Srivastava. Selecting the right objective

measure for association analysis. Information Systems, 29(4): 293-313 (2004)

[19] UCI Datasets, http://archive.ics.uci.edu/ml/index.html accessed 27/11/12

[20] X. Wu. 10 Years of Data Mining Research: retrospect and prospect,

IEEE International Conference on Data Mining (ICDM), pp 7, (2010).

[21] C. Yen-Liang and S. Ching-Cheng. Mining generalised knowledge from

ordered data through attribute-oriented induction techniques, European

Journal of Operational Research, 166(1), 221-245 (2005).

Appendix A Proof of Proposition 1

Proof: A generalisation function is finite and bounded by values: a lower

bound a on the furthest leaf nodes and an upper bound b on the root node

(Figure 1). There are then at least one or more concepts ii Ho  with

property boa i  of some partial order. Following the work in [6] which

states that leaf and root node values are uninteresting, it follows that for any

interestingness function I ,)()(ioIaI  and)()(bIoI i  if a is a leaf and

b is a root concept. Thus io is an interesting interior concept. {end proof}

Appendix B Proof of Lemma 1

Proof: The proof is a consequence of Proposition 1 and the example given.

Assuming initial attribute interestingness as 0 ,  iteration k where a

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kumar:Vipin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Srivastava:Jaideep.html
http://www.informatik.uni-trier.de/~ley/db/journals/is/is29.html#TanKS04
http://archive.ics.uci.edu/ml/index.html

cluster of concepts with heuristic values
kX give a value greater than 

i.e.  kki

k vXI)(,
kv . Given that further generalisation reduces the

interestingness value of an attribute [16], a (k+1)th iteration,

where
kkki

k vvbXI  



11

1)(. Thus interestingness I increases in interval

],[kv and decreases in interval ,..][1kv . {end proof}.

Appendix C Proof of Theorem 1

Proof: Following Definition 2, let the aggregate harmonic values (local

attribute interestingness values) be mivv k

m

k 1},,..,{ 1 for m attributes at

iteration k . Generalisation interestingness functions [16] and heuristic

aggregation functions are monotonically increasing [17] up to some optimal

value at iteration k, denoted),..,,(21

k

m

kkT

g

k

g vvvIv  . If after further

generalisation, iteration k+1 has value),..,(11

1

1   k

m

kT

g

k

g vvIv 1 k

gv , the

decreasing function reaches a global interestingness value, else generalisation

continues to iteration k+2 and so on {end proof}.

Appendix D Proof of Lemma 2

Proof: Time Complexity: Let n be the input size, p the tuples in a prime

table and m the number of attributes. AOI [9] reads the input into memory,

generalises each attribute, sorts the table in)log(nnO time before merging

the prime table. Thus, time complexity

is)(npO +)log(nnO =)log(nnO , np  . The total space is

)()()(nOpOnO  and total time complexity)log(nnO )log(nnO

+)(pO . At input, clusterAOI clusters attribute values Cji for each iA ,

according to a nearest parent, on-the-fly and stores them under that parent in a

hash table. Given a jth cluster as Cji for k parents, the time complexity is

O(k|Cji|). For h clusters and global threshold G.Thr= 0g , the time to store

concepts is bound by  ||****(jiCghmkO . Note that   nCim j ||* ,

k <<n, h << n and g << n in the worst case where each Cji is generalised,

j=1,..,h. Thus time complexity is)(nO . In addition, we generalise clusters of

child concept values and insert tuples in a prime relation, np  , giving

order complexity)(npO . Further, to merge the prime relation by a merge sort

and inserting in a final table of size q, complexity is O (plogp)*O(q) or simply

)()(pOpqO ). Thus total order complexity is)()(pOnpO  . As q <<p,

q<< n, and p<<n, the order complexity is at most O(np) in the worst case

(and could be)(nO in the best case). Space Complexity: Intuitively, we

need O(n)+O(n) to store initial input and attribute child clusters (unless we

only store child leaf value index positions as in [2]). The prime table size O(p)

and final table O(q) are insignificant. Thus space complexity is)(*2 npO .

{End proof}

Appendix E Table of Notation

Term Meaning

Sig, ,ie Significance or entropy of an attribute

),(ACi Tightness of a cluster C of attribute A

Thr Threshold (G.Thr, L.Thr) – Global and local threshold

kI1 Intra cluster tightness in k clusters (heuristic value 1

kI 2 Inter cluster tightness in k clusters (heuristic value 2)

kI 3 Cluster quality of k clusters (heuristic value 3)

k

i

k lv  Local attribute interestingness (harmonic aggregation) in iteration k

kX Local attribute heuristic values (1, 2 and 3) in iteration k

cI Interestingness linear function on concept value c

)(cIH Interestingness non-linear function (probability density function – pdf)

i

gI Global interestingness for attribute i (harmonic aggregation)

D

gI Global interestingness for table D (harmonic aggregation)

i

LI Total local cluster interestingness

T

gI Total global cluster interestingness

Appendix F Concept Hierarchies

 ANY (Educ)

 basicEduc averEduc wellEduc

elemEduc hghSch fairEduc postGrad profPDoc

chldr <1stGr 1
st

-6th hghSch 7-11
th

 12
th

 assDeg MSc PhD Prof Deg

aged old

ANY (age)

young middle old

children infants teen yng pers

5-9 0-4 10-20 21-40 41-60 >61

vfew

0 1

aboutAve

r

aboveAv

er

high

ANY (instWeight)

few many

2 3 4 5 6 >6

ANY (numWorkedFor)

few many

aboveAv

er

high

4 5 6 >6

vfew

0 1

aboutAve

r

ANY (mitosis)

 aboutAve aboveAve

small medium

1, 2, 3 4, 5, 6

large vLarge

7, 8 9, 10

ANY (cellSize)

 aboutAve aboveAve

small medium

1, 2, 3 4, 5, 6

large vLarge

7, 8 9, 10

large vLarge

7, 8 9, 10

small medium

1, 2, 3 4, 5, 6

ANY (bareNuclei)

aboveAve aboutAve

large vLarge

7, 8 9, 10

small medium

1, 2, 3 4, 5, 6

ANY (normalNuclei)

aboveAve aboutAve

