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Abstract

Emotions widely affect human decision-making. This fact is taken into account by affective
computing with the goal of tailoring decision support to the emotional states of individ-
uals. However, the accurate recognition of emotions within narrative documents presents
a challenging undertaking due to the complexity and ambiguity of language. Performance
improvements can be achieved through deep learning; yet, as demonstrated in this paper,
the specific nature of this task requires the customization of recurrent neural networks with
regard to bidirectional processing, dropout layers as a means of regularization, and weighted
loss functions. In addition, we propose sent2affect, a tailored form of transfer learning for
affective computing: here the network is pre-trained for a different task (i.e. sentiment anal-
ysis), while the output layer is subsequently tuned to the task of emotion recognition. The
resulting performance is evaluated in a holistic setting across 6 benchmark datasets, where
we find that both recurrent neural networks and transfer learning consistently outperform
traditional machine learning. Altogether, the findings have considerable implications for the
use of affective computing.

Keywords: Affective computing, Emotion recognition, Deep learning, Natural language
processing, Text mining, Transfer learning

1. Introduction

Emotions drive the ubiquitous decision-making of humans in their everyday lives (Oat-
ley et al., 2011; Greene & Haidt, 2002; Schwarz, 2000). Furthermore, emotional states can
implicitly affect human communication, attention, and the personal ability to memorize infor-
mation (Derakshan & Eysenck, 2010; Dolan, 2002). While the recognition and interpretation
of emotional states often comes naturally to humans, these tasks pose severe challenges to
computational routines (e. g., Poria et al., 2017; Tausczik & Pennebaker, 2010). As such,
the term affective computing refers to techniques for detecting, recognizing, and predicting
human emotions (e. g., joy, anger, sadness, trust, surprise, anticipation) with the goal of
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adapting computational systems to these states (Picard, 1997). The resulting computer sys-
tems are not only capable of exhibit empathy (Picard, 1995) but can also provide decision
support tailored to the emotional state of individuals.

Emotional information is conveyed through a multiplicity of physical and physiological
characteristics. Examples of such indicators include vital signs such as heart rate, muscle
activity or sweat production on the surface of the skin (e. g., Lux et al., 2015; Tao, Jianhua
and Tan, Tieniu and Picard, Rosalind W, 2011). A different stream of research tries to infer
emotions from the content and its mode of communication. These approaches to affective
computing are primarily categorized by the modality of the message, i. e., whether it takes the
form of speech, gesture, or written information (Calvo & D’Mello, 2010). In this terminology,
affective computing can comprise both unimodal and multimodal analyses. For instance,
videos allow for the recognition of facial expressions and vocal tone (Chen et al., 2017; El
Ayadi et al., 2011; Shan et al., 2009).

The focus of this work is on the unimodal analysis of written materials in English.
This choice reflects the prominence of textual materials as a widespread basis for decision-
making (Hogenboom et al., 2016). Illustrative examples are as follows (a detailed review is
given later in Section 5.3). For instance, the use of affective language as a proxy for emotional
closeness can be used to measure the strength of interpersonal ties in social networks (Mars-
den & Campbell, 2012). Similarly, marketing utilizes the recognition of emotional states in
order to predict the purchase intentions of customers (Ang & Low, 2000), satisfaction with
services (Greaves et al., 2013), and even to measure the overall brand reputation (Al-Hajjar
& Syed, 2015). In a related context, decision support can leverage affective signals in financial
materials in order to suggest trading decisions (Gilbert & Karahalios, 2010) or forecast the
economic climate (Ormerod et al., 2015). Furthermore, affect can also improve processes and
decision-making in the provision of healthcare (Spiro & Ahn, 2016) or education (Rodriguez
et al., 2012).

Previous research on affective computing has merely utilized methods from traditional
machine learning, while recent advances from the field of deep learning – namely, recurrent
neural networks and transfer learning – have been widely overlooked. However, their use
promises further improvements. In fact, techniques from deep learning have become promi-
nent in various decision support activities involving sequential data (e. g., Evermann et al.,
2017) and especially linguistic materials (e. g., Kraus & Feuerriegel, 2017; Mahmoudi et al.,
2018), where deep learning was able to enhance the performance when deriving decisions from
unstructured data. One of the inherent advantages of deep learning is that it can successfully
model highly non-linear relationships.

This work draws upon existing solution techniques from the realm of deep learning (Kraus
& Feuerriegel, 2017) and applies them to a problem domain different from that of our re-
search objective. First and foremost, we extend existing techniques from the discipline of
deep learning to the task of text-based emotion recognition in order to expand the body of
knowledge. Following Kraus & Feuerriegel (2017), we also utilize long short-term memory
networks (LSTMs) that can make predictions based on running texts of varying lengths.
However, affective computing differs substantially from related tasks due to the high number
of often imbalanced target labels. Thus, this task requires both customized network archi-
tectures and procedures. Hence, its applicability is only made possible through the several
methodological innovations that we summarize in the following.
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In order to handle class imbalances in affective computing, we propose the following
modifications beyond Kraus & Feuerriegel (2017): (i) bidirectional processing of the text,
(ii) dropout layers as a means of regularization, and (iii) a weighted loss function. The latter
becomes especially critical due to the imbalanced distribution of labels. In fact, without the
weighted loss function, the network ends up resembling merely a majority class vote.

We further propose an extension of transfer learning called sent2affect. That is, the
network is first trained on the basis of sentiment analysis and, after exchanging the output
layer, is then tuned to the task of emotion recognition. To the best of our knowledge, this
presents a novel strategy for better affective computing as the inductive knowledge transfer
is not merely based on a different dataset, but a different task.

Even though affective computing has gained great traction over the past several years
(Ribeiro et al., 2016), there is a scarcity of widely-accepted datasets for text-based emo-
tion recognition that can be used for benchmarking and that facilitate fair comparisons. A
relatively small, but more common, dataset was provided by SemEval-2007 and consists of
annotated news headlines (Strapparava & Mihalcea, 2007). A significantly larger, but un-
derutilized, corpus is composed of affect-labeled literary tales (Alm, 2008). Our literature
review notes considerable differences across datasets that vary in their linguistic style, do-
main, affective dimensions, and the structure of the outcome variable. With regard to the
latter, the majority of datasets involve a classification task in which exactly one affective
category is assigned to a document, while others request a numerical score across multiple
dimensions, i. e., a regression task. Hence, it is a by-product of this research to contribute a
holistic comparison that benchmarks different methods across datasets used in prior research.
For this purpose, we conducted an extensive search for affect-labeled datasets that serves as
the foundation for our computational experiments. As a result, we find that deep learning
consistently outperforms the baselines from traditional machine learning. In fact, we observe
performance improvements of up to 23.2 % in F1-score as part of classification tasks and
11.6 % in mean squared error as part of regression tasks.

The findings of this work have direct implications for management, practice, and research.
As such, various application areas of decision support – such as customer support, market-
ing, or recommender systems – can be improved considerably through the use of affective
computing. Similarly, all systems with human-computer interactions (e. g. chatbots and per-
sonal assistants) could further benefit from emotion recognition and a deeper understanding
of empathy. In fact, emotion detection could significantly impact and refine all use cases in
which sentiment analysis (i. e., only positive/negative polarity) has already proved to be a
valuable approach, since these lend themselves to a more fine-grained analysis and decision-
making beyond only one dimension. In academia, text-based emotion recognition supports
the cognitive and social sciences as a new approach to measuring and interpreting individual
and collective emotional states.

The rest of this paper is structured as follows. Section 2 reviews earlier works on text-
based emotion recognition, including the underlying affect theories, datasets used for bench-
marking, and computational approaches. This reveals a research gap with regard to both
deep neural networks and transfer learning within the field of affective computing. As a rem-
edy, Section 3 introduces our methods rooted in deep learning, which are then evaluated in
Section 4. Based on our findings, we detail implications for both research and management
in Section 5, while Section 6 concludes.
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2. Background

We specifically point out that the terms “sentiment analysis” and “affective computing”
are often used interchangeably (D. Munezero et al., 2014). However, comprehensive sur-
veys (Pang & Lee, 2008; Yadollahi et al., 2017) recognize clear differences that distinguish
each concept: sentiment analysis measures the subjective polarity towards entities in terms of
only two dimensions, namely, positivity and negativity. Conversely, affective computing con-
cerns the identification of explicit emotional states and, hence, this approach is also referred
to as emotion recognition. The choice of emotional dimensions depends on the underlying
affect theory and involves a wide range of mental states such as happiness, anger, sadness,
or fear. For reasons of clarity, we strictly distinguish between the aforementioned concepts
in our terminology.

Accordingly, this section first provides an overview of prevalent emotion models as spec-
ified by affect theories and, based on their dimensions, reviews computational methods for
inferring affective information from natural language. This gives rise to a variety of use cases,
which are detailed subsequently.

2.1. Affect theory

In the field of psychology, there is no consensus regarding a universal classification of
emotions (Frijda, 1988; Izard, 2009), as physiological arousal in the proposed theories varies
with causes, cognitive appraisal processes, and context. Yet a conventional approach is to
distinguish emotions based on how the underlying constructs are defined. On the one hand,
emotions can be defined as a set of discrete states with mutually-exclusive meanings, while,
on the other hand, emotions can also be characterized by a combination of numerical dimen-
sions, each associated with a rating of intensity. The categorization into either a discrete
set or a combination of intensity labels yields later benefits with regard to computational
implementation, as it directly aids in formalizing the different machine learning models.

Categorical emotion models involve a variety of prevalent examples, including the so-
called basic emotions. These introduce a discrete set of emotions with innate and universal
characteristics (Tomkins, 1962; Izard, 1992). One of the first attempts by Ekman et al.
(1987) to classify emotions led to the categorization of six discrete items labeled as basic:
namely, anger, disgust, fear, happiness, sadness, and surprise. The model was later extended
by Averill (1980) to include trust and anticipation, resulting in eight basic emotions. An
alternative categorization by Tomkins (Tomkins, 1962, 1963) classifies nine primary affects
into positive (enjoyment, interest), neutral (surprise), and negative (anger, disgust, dissmell,
distress, fear, shame) expressions.

Dimensional models of emotion locate constructs in a two- or multi-dimensional space (Po-
ria et al., 2017). Here the assumption of disjunct categories is relaxed such that the magnitude
along each dimension can be measured separately (Russell, 1980), yielding continuous inten-
sity scores. Different variants have been proposed, out of which we summarize an illustrative
subset in the following. One of the earliest examples is Russell’s circumplex model (Rus-
sell, 1980), consisting of bivariate classifications into valence and arousal. Depending on the
strength of each component, certain regions in the two-dimensional space are given explicit
interpretations (such as tense, aroused, excited) according to 28 emotional states. The Wheel
of Emotions is an extension of the circumplex model whereby eight primary emotion dimen-
sions are represented as four pairs of opposites: joy versus sadness, anger versus fear, trust
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Ref. Source Samples Emotions Notes

Annotation Dimensions Count Affect theory

Alm (2008) Literary
tales

1,207 Categorical
(m-out-of-n)

Anger, disgust, fear, hap-
piness, sadness, surprise
(pos.), surprise (neg.),
neutral

8 Basic emotions from
Ekman et al. (1987)

Evaluations conven-
tionally draw upon
subset where all
annotators agree

Mohammad et al.
(2015)

Election
tweets

1,646 Categorical (1-
out-of-n)

Anger, anticipation, dis-
gust, fear, joy, sadness,
surprise, trust

8 Basic emotions from
Averill (1980)

Wallbott &
Scherer (1986)

Self-report of
experiences

7,666 Categorical (1-
out-of-n)

Anger, disgust, fear,
guilt, joy, sadness

7 Based on basic emo-
tions from Ekman
et al. (1987)

Referred to as ISEAR
dataset in related lit-
erature

Strapparava &
Mihalcea (2007)

Newspaper
headlines

1,250 Numerical (for
all dimensions)

Anger, disgust, fear, joy,
sadness, surprise; addi-
tional valence score

6 Basic emotions from
Ekman et al. (1987)
with valence score
according to Russell
(1980)

SemEval-2007 (task
14); one numerical
score per class

Mohammad et al.
(2018)

General
tweets

7,902 Numerical
(single dimen-
sion only)

Anger, fear, joy, sadness 4 n/a SemEval-2018 (task
1); for classification
tweets with moderate
and high emotion

Preotiuc-Pietro
et al. (2016)

Facebook
posts

2,894 Numerical Valence, arousal 2 Circumplex model
from Russell (1980)

Table 1: Overview of textual datasets used for affective computing in the literature grouped into classification
and regression tasks for machine learning.

versus disgust, and surprise versus anticipation (Plutchik, 2001). Recent approaches intro-
duce complex hybrid emotion models, such as the Hourglass of Emotions (Cambria et al.,
2012), which represents affective states through both discrete categories and four indepen-
dent, but concomitant, affective dimensions. However, neither the Wheel of Emotions nor the
Hourglass of Emotions has yet found its way into common datasets for affective computing.

2.2. Datasets for benchmarking

Table 1 provides a holistic overview of datasets used for text-based affective computing.
These datasets exhibit fundamentally different characteristics and challenges, as they vary in
size, domain, linguistic style and underyling affect theory. We summarize key observations
in the following.

In terms of text source, the datasets refer to tasks that utilize narrative materials from
classic literature (Alm, 2008), while others are based on traditional media (Strapparava &
Mihalcea, 2007), and even Twitter or Facebook posts (Preotiuc-Pietro et al., 2016). Social
media, in particular, tends to be informal and subject to variable levels of veracity, especially
in comparison with more formal linguistic sources such as newspaper headlines. Similar
variations become apparent in terms of where the annotations originate from. For instance,
emotion labels can rely upon self-reporting of emotional experiences (Wallbott & Scherer,
1986) or stem from ex post labeling efforts via crowdsourcing (Mohammad et al., 2015).

The majority of datasets were annotated based on categorical emotion models, thereby
defining a discrete set of labels. The chosen emotions largely follow suggestions from the
different affect theories and predominantly focus on basic emotions (or subsets thereof) due
to their prevalence. Even though the number and choice of emotions differ, one can identify
four emotions that are especially common as they appear in almost all categorical models:
anger, joy (happiness), fear, and sadness. Some emotions occur more often than others in
the usual routines of humans (Plutchik, 2001; Ekman et al., 1987) and one thus obtains
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datasets (e. g., Strapparava & Mihalcea, 2007; Mohammad et al., 2015) wherein the rel-
ative frequency of emotions is highly unbalanced. This imposes additional computational
challenges as classifiers tend to overlook infrequent classes.

In contrast, dimensional models of emotions appear less frequently. Only one dataset,
composed of newspaper headlines (Strapparava & Mihalcea, 2007), provides a score for each
of the six emotion categories. From a methodological point of view, this categorization into
dimension-based models requires different prediction models. While categorical models refer
to machine learning with single-label classification tasks in the sense that we identify the
appropriate item based on a discrete label, dimensional models allow for regression tasks in
the sense that we predict a score for every item and emotion.

2.3. Computational methods

The automatic recognition of text-based emotions relies upon different computational
techniques that comprise lexicon-based methods and machine learning. Due to wealth of
approaches, we can only summarize the predominant streams of research in the following
and refer to Calvo & D’Mello (2010); Poria et al. (2017) for detailed methodological surveys.

2.3.1. Lexicon-based methods

Lexicon-based approaches utilize pre-defined lists of terms that are categorized accord-
ing to different affect dimensions (Mohammad, 2012). On the one hand, these lexicons are
often compiled manually, a fact which can later be exploited for keyword matching. For in-
stance, the Harvard IV dictionary (inside the General Inquirer software) and LIWC provide
such lists with classification by domain experts (Tausczik & Pennebaker, 2010). These were
not specifically designed for affective computing, but still include psychological dimensions
(e. g., pleasure, arousal and emotion in the case of Harvard IV; anxiety, anger, and sad-
ness for LIWC). The NRC Word-Emotion Association lexicon was derived analogously but
with the help of crowdsourcing rather than involving experts from the field of psychology
research (Mohammad & Turney, 2013). The latter dictionary includes 10 granular categories
such as anticipation, trust, and anger.

In order to overcome the need for manual dictionary creation, heuristics have been pro-
posed to construct affect-related wordlists. Common examples include the WordNet-Affect
dictionary, which starts with a set of seed words labeled as affect and then assigns scores
to all other words based on their proximity to the seed words (Strapparava & Valitutti,
2004). However, the resulting affect dictionary includes only general categories of mood- or
emotion-related words, rather than further distinguishing the type of emotion. More recent
methods operate, for instance, via mixture models (Bandhakavi et al., 2017), fuzzy clustering
(Poria et al., 2014), or by incorporating word embeddings (Li et al., 2017). The precision of
dictionaries can further be improved by embedding these in linguistic rules that adjust for
the surrounding context.

Dictionary-based approaches are generally known for their straightforward use and out-
of-the-box functionality. However, manual labeling is error-prone, costly, and inflexible as it
impedes domain customization. Conversely, the vocabulary from the heuristics is limited to
a narrow set of dimensions that were selected a priori and, as a result, this procedure has
difficulties when generalizing to other emotions (cf. Agrawal & An, 2012).
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2.3.2. Machine learning

Machine learning can infer decision rules for recognizing emotions based on a corpus of
training samples with explicit labels (Danisman & Alpkocak, 2008; Chaffar & Inkpen, 2011).
This can overcome the aforementioned limitations of lexicon-based methods concerning scal-
ability and domain customization. Moreover, it can also learn implicit signals of emotions,
since findings from a comprehensive, comparative study suggest that affect is rarely commu-
nicated through emotionally-charged lexical cues but rather via implicit expressions (Balahur
et al., 2012).

Previous research has experimented with different models for inferring affect from narra-
tive materials. Examples include methods that explicitly exploit the flexibility of machine
learning, such as random forests (e. g., Potapova & Gordeev, 2016) and support vector ma-
chines (e. g., Chatzakou et al., 2017; Danisman & Alpkocak, 2008), both of which have com-
monly been deployed in literature. Studies have shown that random forests tends to compute
faster, while support vector machines yield superior performance (Chatzakou et al., 2017).
These classifiers are occasionally, but infrequently, restricted to the subset of affect cues from
emotion lexicons (Bandhakavi et al., 2017). However, the more common approach relies
upon general linguistic features, i. e., bag-of-words with subsequent tf-idf weighting (Alm
et al., 2005; Strapparava & Mihalcea, 2007). Consistent with these works, we later draw
upon machine learning models (i. e., random forest and support vector machine) together
with tf-idf features as our baseline.

2.3.3. Deep learning

In the following, we discuss the few attempts at applying deep learning to affective com-
puting, but find that actual performance evaluations are scarce. The approach in Potapova &
Gordeev (2016) predicts aggression expressed through natural language using convolutional
neural networks with a sliding window and subsequent max-pooling. However, this approach
is subject to several limitations as the network is designed to handle only a single dimension
(i. e., aggression) and it is thus unclear how it generalizes across multi-class predictions or
even regression tasks that appear in dimensional emotion models. Even though the approach
utilizes a “deep” network, its network architecture can only handle texts of predefined size,
analogous to traditional machine learning. In this respect, it differs from recurrent networks,
which iterate over sequences and thus can handle texts of arbitrary size.

The work in Felbo et al. (2017) utilizes an LSTM that is pretrained with tweets based
on the appearance of emoticons; however, this work does not report a comparison of their
LSTM against a baseline from traditional machine learning. A different approach (Gupta
et al., 2017) utilizes a custom LSTM architecture in order to assign emotion labels to complete
conversations in social media. However, this approach is tailored to the specific characteristics
and emotions of this type of conversational-style data. In addition, the conclusion from
their numerical experiments cannot be generalized to affective computing, since the authors
labeled their dataset through a heuristic procedure and then reconstructed this heuristic with
their classifier. Closest to our approach are experiments that include an LSTM for intensity
estimation of emotions (Goel et al., 2017; Lakomkin et al., 2017; Meisheri et al., 2017; Zhang
et al., 2017), but the results are limited to regression tasks where the presence of specific
affective dimensions is given a priori.

Up to this point, the potential performance gains from using recurrent neural networks
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as the state of the art in deep learning have not yet been studied in relation to text-based
emotion recognition. This fact was also noted in a recent literature survey (Poria et al.,
2017).

2.4. Transfer learning

Transfer learning is a technique whereby knowledge from a source domain is leveraged
in order to improve performance in a (possibly different) target domain. It is often used
to overcome the constraints of limited training data, as well as for tasks that are sensitive
to overfitting (Pan & Yang, 2010). A straightforward approach to transferring knowledge
in natural language applications is to draw upon pretrained word embeddings (Kraus &
Feuerriegel, 2017). This approach merely requires an additional dataset without labels as
it operates in unsupervised fashion. However, it only facilitates the representation of words
and fails to help learning parameters inside the neural network.

More complex strategies can even utilize labels and perform transfer learning from a source
to a target dataset. The underlying transfer can occur either concurrently or sequentially:

• The former trains two networks concurrently on both the source and the target task
with shared parameters. For instance, one network learns to translate sentences, while
the other recognizes named entities (Mou et al., 2016). This is known to help the
network concentrate on a shared understanding and, in practice, puts emphasis on
more abstract relationships.

• The latter sequential procedure first trains a network on a source dataset and, in a
second step, applies the network to the target dataset in order to fine-tune the network
parameters (e. g., Kratzwald & Feuerriegel, 2018). This is often accompanied by minor
modifications to network architectures (e. g., by replacing the prediction layer). While
such an approach seems intriguing, it is impeded by the heterogeneous nature of baseline
datasets for emotion recognition.

However, natural language applications often lack suitable source datasets (Mou et al., 2016).
As a remedy, we propose sent2affect: that is, we employ not only a different dataset but also
a different task (namely, sentiment analysis). To the best of our knowledge, this presents
the first work on affective computing that attempts to accomplish an inductive knowledge
transfer across tasks.

3. Methods

This section presents our methods for inferring emotional states from narrative contents.
We first summarize our baselines from traditional machine learning and deep learning, while
the inherent nature of affective computing requires us to come up with multiple innovations
concerning the network architecture. Our proposed advances are detailed in Section 3.3.
Finally, we detail our novel approach to transfer learning, called sent2affect, whereby knowl-
edge from the related task of sentiment analysis is applied to emotion recognition. Figure 1
illustrates this pipeline.
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Traditional machine learningData

Predictive model

Recurrent neural network

Sent2affect

transfer learning

Documents

Corpus

Feature engineering

Bag-of-words

Word 

embeddings
Embedding layer

Recurrent layer

Dropout layer

Dense layer

Affective states

Figure 1: Illustrative pipeline for inferring affective states from narrative materials. This can either happen
through (i) traditional machine learning with feature engineering or, as proposed in this work, (ii) deep
recurrent neural networks, optionally in conjunction with our proposed sent2affect transfer learning.

3.1. Benchmarks

3.2. Baselines from traditional machine learning

Traditional machine learning can only learn from a fixed-size vector of features and, for
this purpose, features for machine learning are commonly built upon bag-of-words. The fre-
quencies are further weighted by the tf-idf scheme in order to measure the relative importance
of terms to a document within a corpus. Mathematically, the measure of term importance
is obtained by computing the product of the term frequency and the inverse document fre-
quency. This approach serves as a widely-accepted benchmark against which algorithms for
natural language processing are evaluated.

The aforementioned features are then fed into the actual predictive models from tradi-
tional machine learning. Here we chose two approaches for both classification and regression
as our baseline models: namely, random forest and support vector machine (i. e., a support
vector regression for predictive numerical scores). These are known for their superior perfor-
mance in previous studies (e. g., Chatzakou et al., 2017). Moreover, both approaches entail
high flexibility when modeling non-linear relationships and demonstrate high accuracy even
in settings where the number of potential features exceeds the number of observations.

3.2.1. Baselines from näıve deep learning

Deep learning has triggered a paradigm shift in machine learning (Kraus et al., 2018) since
it has yielded unprecedented performance results, especially for natural language processing.
The theoretical argument for this is that recurrent neural networks from deep learning can
iterate over the individual words of a sequence with arbitrary length. Here the input directly
consists of words x1, . . . , xN and thus circumvents the need for feature engineering (e. g., cre-
ating bag-of-words with tf-idf) as used in traditional machine learning. As a result, recurrent
neural networks store a lower-dimensional representation of the input sequence that encodes
the whole document and can even maintain the actual word order with long-ranging seman-
tics (Kraus et al., 2018). For this reason, recurrent neural networks differ from traditional
machine learning, which can only adapt to short texts due to the use of n-grams.

We draw upon Kraus & Feuerriegel (2017) as the basis for our deep neural network archi-
tecture. This basic model consists of three layers: (a) an embedding layer that maps words
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in one-hot encoding onto low-dimensional vectors, (b) a recurrent layer to pass information
on between words, and (c) a final dense layer for making the actual prediction. All three
layers are described in detail in the online appendix. We experimented with this approach,
but found that its performance is almost identical to a majority class vote. Therefore, we
refrain from reporting the exact results; instead, we focus on the following improvements.

3.3. Proposed deep neural networks for affective computing

Using the aforementioned deep learning architectures is non-trivial for the following rea-
sons. First, they are not suited to the small datasets from affective computing and typically
lead to severe overfitting. Hence, we propose the use of a dropout layer as a form of regu-
larization. Second, our task involves complex, open-domain language, which benefits further
from bidirectional processing. Third, severe class imbalances are addressed by a weighted
loss function. This loss function treats each class equally in order to avoid biases towards
certain classes. Altogether, these extensions were necessary for using deep learning in our
research setting.

3.3.1. Dropout layer

Deep neural networks can easily consist of up to millions of free parameters and, con-
sequently, these models run the risk of overfitting. This is especially a problem when the
training data is scarce. As a remedy, the weights in the network are regularized by ran-
domly dropping out a certain share of neurons in order to improve the generalizability of the
network. This prevents the neurons from co-adapting too much during training (Srivastava
et al., 2014). We use dropout within the recurrent layer; that is, we randomly drop out con-
nections between the recurrent LSTM cells. Dropout is disabled, i. e., all neurons are used,
during test time in order to leverage the full predictive power of the learned parameters (cf.
the online appendix for a detailed specification). Furthermore, we apply dropout between
the output of the recurrent layer and the input to the prediction layer.

3.3.2. Bidirectional processing

To further improve the predictive performance of the base model, we draw upon so-called
bidirectional recurrent layers, which have shown success in various other domains. That is,
we use not only one but two LSTM layers to read the text. While one layer processes the
text from left to right, a second one processes the text from right to left. More formally, let
h1 determine the hidden state of the LSTM network that processes the input in the forward
direction and h2 the hidden state of the LSTM that reads the text backwards. We then use
the concatenation of both hidden states, e. g., [h1, h2], as input for the final prediction layer.
Thus we are able to cover long- and short-term dependencies in both directions. We later
abbreviate the bidirectional LSTM via BiLSTM and additionally run separate experiments
for comparing the performance across the LSTM and BiLSTM.

3.3.3. Weighted loss functions for unbalanced data

Affective computing commonly involves multiple, highly imbalanced target labels. Using
a näıve loss function in this case would optimize towards the majority class and thus result in
a performance similar to a majority vote. Such problems are typically addressed by over- or
undersampling, yet these approaches yielded only marginal improvements in our experiments.
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As an alternative, we suggest the use of a weighted loss function. This multiplies the error
of each data point with a weight that is the inverse size of the corresponding class.

Assume a training sample xi with ground-truth label yi, and pik denoting the output of
the prediction layer, e. g., the probability of xi belonging to class k. Then the weighted loss
for xi is calculated via

L(xi, θ) = wi

K∑
k=1

1yi=k log pik (1)

with 1 denoting the indicator function. The weight wi for input xi depends solely on its
ground truth label yi and, similar to King & Zeng (2001), is calculated as

wi =
N

K
∑

j 1yj=yi

, (2)

where K denotes the total number of classes and N the number of samples.

3.4. Sent2affect approach to transfer learning across tasks

Due to the large number of degrees-of-freedom, training deep neural networks is often
associated with challenges (e. g., overfitting, ineffective generalization). In practice, this is
encountered by large datasets in order to prevent overfitting and, hence, a different strategy
is often applied when handling smaller datasets such as those in our experiments. Here
the idea is to implement transfer learning, i. e., the inductive transfer of knowledge from a
different, yet related, task to the problem under investigation. In our case, we develop a
novel approach, sent2affect, as detailed in the following.

The choice of the source task is non-trivial and it is mainly tasks of a semantically sim-
ilar nature that result in the transferability of the network. For this purpose, we suggest
the use of sentiment analysis as a related task, since it shares a certain similarity in the
sense that positive and negative polarity is inferred from linguistic materials; however, sen-
timent analysis differs from affective computing, as it does not address affective dimensions
or emotional states. The relatedness between both tasks enables the network to infer similar
representation for both.

Formally, our approach to transfer learning optimizes the weights of a neural network for
a target task T and dataset DT based on a different, yet related, source task S with dataset
DS . After optimizing the parameters of our network for S on DS we replace the task-specific
prediction layer of the network to yield predictions for our target task T . Therefore, we
utilize the estimated parameters as an initial value for further optimization with the help of
the actual dataset DT (Pan & Yang, 2010). The pseudocode of the overall process is stated
in Algorithm 1.

In our experiments, we utilize a large-scale, public dataset1 as a basis for knowledge
induction. This dataset finds widespread application in sentiment analysis and includes
about 100,000 samples labeled according to positive or negative sentiment. We then optimize
the deep neural network with the goal of predicting the underlying sentiment scores. The

1Kaggle: Twitter sentiment analysis, retrieved from https://www.kaggle.com/c/

twitter-sentiment-analysis2, March 21, 2018.
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resulting coefficients of the network are further trained with an actual dataset from affective
computing. Here the differences in the data type of the prediction outcome (i. e., computing
a positivity/negativity score versus affective dimensions) are handled by removing the dense
layer and, instead, amending a new prediction layer that targets the new output. As a
result, the majority of weights benefits from transfer learning, while only the neurons in the
prediction layer are training after a random initialization. The intuition of this approach
is as follows: deep neural networks generally contain multiple layers, where layers closer
to the final prediction layers are supposed to encode the original input at a higher level of
abstraction.

Algorithm 1 sent2affect transfer learning

Input: Given training data DT for the affective computing task T and additional corpus DS for sentiment
analysis S

1: m← Initialize recurrent neural network (i. e. consisting of recurrent layer f , dense layer ψ, . . . )
2: m← Estimate parameters w.r.t. S using DS
3: ψ ← Replace dense layer with randomly-initialized dense layer according to the dimensions of T
4: ψ ← Fine-tune ψ w.r.t. T using DT
5: return Recurrent neural network m

3.5. Model estimation

Consistent with previous research (Manning & Schütze, 1999), we tokenize each docu-
ment, convert all characters to lower-case, and remove punctuation, numbers, and stop words.
Moreover, we perform stemming, which maps inflected words onto a base form; e. g., “played”
and “playing” are both mapped onto “play”. We conducted all pre-processing operations to
yield bag-of-words representations by using the natural language tookit NLTK.

For those datasets with no designated test set, we introduced a random 80/20 split in
training and test data. For the random forest classifier, we manually optimized over the num-
ber of trees, maximum number of features for every split, and the depth. For the support
vector classifier, we conducted an extensive grid-search over the hyperparameters following
Hsu et al. (2003). In detail, we experimented with linear, radial basis function, and sig-
moid kernels, optimizing the cost C over 2−5, 2−3, . . . , 215 and the radius parameter γ over
2−15, 2−13, . . . , 23. For unbalanced datasets, we weighted the loss function by class frequency
in order to prevent models from predicting the majority classes only.

We used different deep learning models. Depending on the specification, we used pre-
trained GloVe2 embeddings or randomly-initialized embeddings (which are learned jointly
during the training phase). The models were trained using the Adam optimizer, whereby
the process was stopped once we noted an increase in the validation error. For reasons of
reproducibility, we report the performance metrics averaged over 10 independent runs.

4. Evaluation

This section reports our computational experiments evaluating the improvements gained
by using deep neural networks (and especially transfer learning) for affective computing. Here

2The pre-trained word embeddings can be retrieved from http://nlp.stanford.edu/data/glove.6B.

zip.
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we draw upon all datasets from Table 1 and, according to the type of the underlying affect
theory, we divide the performance measurements into classification and regression tasks.

4.1. Classification according to categorical emotion models

We begin with classification tasks according to categorical emotion models, where the ob-
jective is to predict the predominant emotion(s). We follow previous literature (e. g., Chatza-
kou et al., 2017; Danisman & Alpkocak, 2008) and analogously choose two baselines prevalent
in traditional machine learning: namely, the random forest classifier and the support vector
machine. Both are fed with bag-of-words with tf-idf weighting, whereas the proposed deep
neural networks circumvent the need for feature engineering. Here we compare variants that
extend the LSTM3 with bidirectional encodings and pretrained word embeddings. The re-
sulting performance is listed in Table 2, where we account for unbalanced distributions of
labels by using the weight-averaged F1-score. The F1-score for a single class is given by the
harmonic mean of precision and recall, i. e.,

F1 = 2
precision · recall

precision + recall
. (3)

In addition, we report sensitivity and specificity scores. The sensitivity of a single class
equals the recall, while the specificity measures the fraction of true negatives. Similar to the
F1-score, we calculate both independently for each class, i. e.,

sensitivity = TP/(TP + FN ) and specificity = TN /(TN + FP), (4)

where the number of true positives and true negatives is denoted by TP and TN , and the
number of false positives and false negatives is denoted by FP and FN . For the final scores,
we average over all classes weighted by the class size.

Our results in Table 2 consistently reveal superior performance through the use of deep
learning. We observe that, regardless of the architecture, models with pre-trained GloVe
embeddings outperform their counterparts with randomly-initialized word embeddings. In
fact, the use of pre-trained word embeddings yields performance improvements over the best
baseline in 9 out of 10 experiments. An explanation stems from the fact that embeddings
which have not been pre-trained result in considerably more degrees-of-freedom and thus a
greater chance of overfitting. Our initial expectations are met as the imposed dropout layers
and loss-weighting successfully diminish the problem of overfitting. Furthermore, our imposed
architectural enhancements surpass the performance of previous deep learning architectures,
such as that proposed by Kraus & Feuerriegel (2017). As such, the bidirectional recurrent
layers outperform the variant with a unidirectional layer in four out of five experiments,
yielding the only architecture that consistently outperforms the traditional baseline on all
datasets, with improvements between 1.6 % and 23.2 % across the datasets. We experimented
with the näıve network from Kraus & Feuerriegel (2017), but it failed in three out of five
datasets resulting in merely predicting the majority class; hence, we omitted the results.

3We use the acronym LSTM when referring to the unidirectional model. Whenever we refer to the
bidirectional LSTM model, we use the explicit designation BiLSTM.
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The performance gains from our proposed architectural improvements are a result of the
class imbalance and the language noise of the source. For instance, the highest relative
improvement over traditional machine learning is achieved in the case of the dataset of head-
lines (Strapparava & Mihalcea, 2007), constructed of four equally-sized classes and proper
English. On the other hand, the dataset of election tweets (Mohammad et al., 2015), which
is composed of highly unbalanced classes and considerable language noise, yields the lowest
improvement.

Table 3 reports sensitivity and specificity scores as an additional robustness check. The re-
sults confirm our findings, i. e., we witness the largest performance improvements for datasets
with less noise. For the election tweet dataset (Mohammad et al., 2015), the best bidirec-
tional LSTM model achieves a sensitivity of 56.9, while the best baseline achieves a slightly
better score of 57.1. We can significantly strengthen our results for this challenging dataset
by applying transfer learning, as reported in section 4.3.

Dataset Baseline: traditional
machine learning

Deep learning Pre-trained
word embeddings

Random forest SVM LSTM BiLSTM LSTM BiLSTM

Literary tales (Alm, 2008) 63.2 64.7 63.0 61.6 67.9 68.8
(−2.6 %) (−4.8 %) (+4.9 %) (+6.3 %)

Election tweets (Mohammad et al., 2015) 55.0 56.8 54.5 54.8 55.8 57.7
(−4.0 %) (−3.5 %) (−1.8 %) (+1.6 %)

ISEAR (Wallbott & Scherer, 1986), i. e., self-reported 47.0 54.3 54.2 55.8 57.7 56.9
experiences (−0.2 %) (+1.5 %) (+6.3 %) (+4.8 %)

Headlines (Strapparava & Mihalcea, 2007) 35.8 35.3 39.2 39.8 41.7 44.1
(+9.5 %) (+11.2 %) (+16.5 %) (+23.2 %)

General tweets (Mohammad et al., 2018) 52.6 54.2 56.0 55.5 57.7 58.2
(+3.3 %) (+2.4 %) (+6.5 %) (+7.4 %)

Table 2: Holistic comparison of traditional machine learning and recurrent neural networks (with optional
GloVe word embeddings) for affective computing, that is, models as classification tasks. Here the outcome
variable represents a single label according to predefined categorical emotion model. Accordingly, the perfor-
mance is measured based on the F1-score; i. e., the higher the better. All models that outperform the best
baseline model are highlighted in bold. The percentage changes refer to the relative improvement over the
best baseline from traditional machine learning.

Dataset Baseline: traditional
machine learning

Deep learning Pre-trained
word embeddings

Random forest SVM LSTM BiLSTM LSTM BiLSTM

Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

Literary tales (Alm, 2008) 64.0 87.2 66.1 87.4 63.1 88.8 62.0 88.8 68.4 90.6 68.2 91.4
Election tweets (Mohammad et al., 2015) 53.8 79.2 57.1 78.7 52.3 84.7 52.3 84.9 54.0 83.5 56.9 82.9
ISEAR (Wallbott & Scherer, 1986), 45.0 90.3 53.7 92.4 54.2 92.3 56.0 92.6 57.6 93.0 57.0 92.8

i. e., self-reported experiences
Headlines (Strapparava & Mihalcea, 2007) 35.6 86.2 35.0 84.2 39.8 83.8 40.3 84.1 40.0 86.6 44.3 85.6
General tweets (Mohammad et al., 2018) 52.4 84.1 53.9 84.6 55.6 85.2 55.1 85.0 57.3 85.8 57.9 85.9

Table 3: Additional comparison of sensitivity and specificity. The highest values for both are highlighted for
each dataset.
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4.2. Regression according to dimensional affect models

Depending on the affect theory, one can also model emotional categories according to
dimensional ratings and, as a result, this is implemented as a regression task, where the
intensity of emotional states is predicted. We choose the same baselines as in the previous
experiments and compare them to deep neural networks. All models are evaluated based on
the mean squared error (MSE).

Table 4 reports our results. These show a consistent improvement of up to 11.6 % as a
result of using deep learning as compared to traditional machine learning. Similar to the
classification task, our findings identify the BiLSTM with pre-trained word embeddings as
the superior method in all seven experiments. We further note that the BiLSTM appears to
outperform the unidirectional LSTM in all experiments. The relative performance increases
vary between the different affective dimensions.

Dataset Scale Baseline: Traditional
machine learning

Deep learning Pre-trained
word embeddings

Random forest SVM LSTM BiLSTM LSTM BiLSTM

Headlines (Strap-
parava & Mihalcea,
2007)

Valence −100. . . 100 1906.0 1927.3 1870.9 1896.3 1792.7 1791.2
(−1.8 %) (−0.5 %) (−5.9 %) (−6.0 %)

Facebook posts
(Preotiuc-Pietro et al.,
2016)

Valence 0. . . 10 1.030 0.951 1.007 0.990 0.911 0.901
(+5.9 %) (+4.1 %) (−4.2 %) (−5.2 %)

Arousal 0. . . 10 3.960 3.616 3.519 3.550 3.379 3.346
(−2.7 %) (−1.8 %) (−6.6 %) (−7.5 %)

General tweets (Mo-
hammad et al., 2018)

Anger 0. . . 1 0.0314 0.0323 0.0330 0.0330 0.0284 0.0281
(+5.1 %) (+5.1 %) (−9.5 %) (−10.5 %)

Fear 0. . . 1 0.0245 0.0226 0.0238 0.0230 0.0224 0.0222
(+5.3 %) (+1.8 %) (−0.9 %) (−1.8 %)

Joy 0. . . 1 0.0339 0.0294 0.0277 0.0275 0.0262 0.0260
(−5.8 %) (−6.5 %) (−10.9 %) (−11.6 %)

Sadness 0. . . 1 0.0294 0.0274 0.0281 0.0268 0.0246 0.0243
(+2.5 %) (−2.1 %) (−10.2 %) (−11.3 %)

Table 4: Holistic comparison of traditional machine learning and recurrent neural networks (with optional
GloVe word embeddings) for affective computing, that is, models as regression tasks. Here the outcome
variable represents the intensity according to predefined affective dimensions. Accordingly, the performance
is measured based on the mean squared error (MSE); i. e., the lower the better. The best-performing model
for each dataset is highlighted in bold. The percentage changes refer to the relative improvement over the
best baseline from traditional machine learning. We point out that the first task exhibits higher errors due
to the different scale of the outcome variable.

4.3. Transfer learning via sent2affect

The previous experiments revealed consistent improvements through the use of deep learn-
ing; however, several benchmark datasets entail only a fairly small set of samples, which could
impede the training of deep neural networks. For instance, the dataset of inferring emotions
from election tweets (Mohammad et al., 2015) comprises only 1,646 samples for training. A
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potential remedy is utilizing large-scale datasets from other tasks and then inducing knowl-
edge to affective computing. More precisely, we now experiment with the potential perfor-
mance improvements to be gained by additionally applying our transfer learning approach
“sent2affect”. By inducing network parameters from sentiment analysis to affective comput-
ing, we benefit from the considerably larger datasets that are used in sentiment analysis,
since the sentiment dataset consists of about 100,000 tweets that are associated with positive
and negative labels.

Table 5 compares our transfer learning approach against two baselines: (i) a näıve BiL-
STM and (ii) the transfer learning approach of Kraus & Feuerriegel (2017), where only GloVe
word-embeddings are pre-trained. We choose the election tweets (Mohammad et al., 2015)
and general tweets (Mohammad et al., 2018) datasets to demonstrate how we can transfer
the knowledge from thousands of sentiment-labeled tweets to the task of emotion recognition.
Furthermore, näıve deep learning alone yields an inferior performance. While the BiLSTM
with pre-trained word embeddings has previously represented the best-performing architec-
ture, we still observe that transfer learning yields additional improvements. These amount
to 6.6 % for the election tweets and 5.6 % for the general tweets. Evidently, transfer learning
can successfully benefit from the large-scale dataset for sentiment analysis and, as a result,
optimizes the neuron weights such that these find a more generalizable representation of
emotion-laden materials.

Dataset Näıve
BiLSTM

BiLSTM
(pre-trained embeddings)

Transfer
learning

sent2affect

Election tweets (Mo-
hammad et al., 2015)

54.8 57.7 58.4

(+5.3 %) (+6.6 %)
General tweets (Mo-
hammad et al., 2018)

55.5 58.2 58.6

(+4.9 %) (+5.6 %)

Table 5: The numerical results show that transfer learning can yield additional performance improvements
based on an inductive knowledge transfer across tasks (as opposed to the conventional strategy across
datasets). In our sent2affect method, the neural networks are first trained on a sentiment analysis dataset in
order to learn an abstract representation of emotion-laden text, while the final dense layer is subsequently
replaced and fine-tuned using the task-specific dataset. Performance is measured in terms of F1-score; i. e.,
the higher the better. The best-performing model for each dataset is highlighted in bold. The percentage
changes refer to the relative improvement over the best baseline without transfer learning.

5. Discussion

5.1. Comparison

Our series of experiments reveals considerable and consistent performance improvements
over default implementations of deep learning through the use of our customized networks.
This points towards the need to customize deep neural networks according to the unique
characteristics of the underlying task.

In this paper, we refrained from evaluating performance on the basis of a single dataset
and, instead, perform a holistic analysis, demonstrating that our customized networks out-
performed the baselines in all experiments by up to 23.2 %. Interestingly, our proposed
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modifications, such as with regard to regularization, were even able to learn the underlying
relationships from the rather small datasets of merely 1,000 observations. However, we ob-
serve an overall pattern whereby the performance improvements tend to be higher when there
is less language noise. In addition, we observe further improvement through the use of word
embeddings, as these reduce the high-dimensional vectors with terms as one-hot encoding to
lower-dimensional spaces.

In the majority of experiments, the superior results stem from using a bidirectional LSTM
as compared to a simple LSTM. We note that not only traditional machine learning but all
network architectures required extensive training in order to ensure that embeddings and
dropout layer functioned well together. Finally, the task of emotion recognition in affective
computing is related to sentiment analysis, which infers a positive/negative polarity from
linguistic materials. Hence, it is interesting to study whether one can further improve per-
formance through an inductive transfer of knowledge from a different task (rather than a
different dataset), despite the distinct objective, linguistic style, and annotation scheme. As
a result, our sent2affect implementation of transfer learning establishes additional improve-
ments of up to 6.6 %.

5.2. Deep-learning-based affect computing for decision support in social media

As a proof of concept, we utilize our bidirectional LSTM to support the notoriously
difficult task of classifying news into factual and non-factual. This demonstrates how affective
computing can eventually facilitate decision support for social media platforms seeking to
recognize and prevent the spread of “false news”. We utilize the dataset of Shu et al. (2017)
and predict whether a news item is factual. The prediction model is given by a logistic
regression that is fed with the output of our affect prediction layer. Our approach achieves
an accuracy of 53.2 % when using the affective dimensions of the headlines and 58.1 % when
using separate affective dimensions of both headlines and content. This almost matches the
reported baseline performance from prior research (Rubin et al., 2015), where a content-based
classifier was used to detect fabricated news items. However, we refrain from learning towards
certain linguistic devices or individual stories. Instead, our approach ensures generalizability
by identifying highly polarizing language as part of its decision support.

5.3. Further use cases of deep-learning-based affective computing for better decision support

Text-based affective computing drives decision support in a variety of application areas
in which understanding the emotional state of individuals is crucial. Table 6 provides an
overview of interesting examples from research, as well as actual use cases from businesses.
This table is intended to give an overview of areas where decision support could potentially
be improved through the use of our deep-learning-based models for affective computing. It
is evident that affective computing facilitates decision-making in all operational areas of
businesses, such as management, marketing, and finance. For instance, firms can infer the
perceived emotion of customers from online product reviews and base managerial decisions
on this data in order to support product development (Ullah et al., 2016) and advertising
(Ang & Low, 2000). In a financial context, emotional media content has been identified as a
driver in the decision-making of investors (Pröllochs et al., 2016), which can thus serve as a
decision rule for stock investments (Gilbert & Karahalios, 2010).
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Beyond that, deep learning for emotion recognition could also facilitate public decision
support with respect to politics and even education, as well as healthcare for individuals.
For instance, affective computing can infer emotion concerning personal health conditions
(Anderson & Agarwal, 2011; Desmet & Hoste, 2013; Greaves et al., 2013; van der Zanden
et al., 2014) and during learning processes (Rodriguez et al., 2012). Notably, all of the prior
references engage in affect-aware decision-making, but have not yet evaluated the use of deep
learning.

Domain Application Details Reference

Management
& marketing

Strategy development Identification of perceived emotion towards products
as a lever for product development

(Ullah et al., 2016)

Brand management Emotion analysis of firm-related tweets for reputation
management

(Al-Hajjar & Syed, 2015)

Churn prediction Emotions within customer responses to marketing con-
tent serve as a predictor of purchase intention

(Ang & Low, 2000)

Preference learning Examination of consumer behavior and emotional at-
titudes related to product preferences

(Chitturi et al., 2007)

User
interaction

Chatbots Regulation of emotion of stranded passengers through
chatbots

(Medeiros & van der Wal, 2017)

Social networks Measurement of relationship strength in social net-
works with affective language as an indicator of emo-
tional closeness

(Marsden & Campbell, 2012)

Finance Investment decision Prediction of stock market movements based on
emotionally-charged content

(Gilbert & Karahalios, 2010)

Economic growth indicator Excitement and anxiety in media articles as indicators
of financial stability and economic shifts

(Ormerod et al., 2015)

Politics Political participation Emotion recognition for political participation and
mobilization

(Valentino et al., 2011)

Public monitoring Hate speech detection on Twitter (Burnap & Williams, 2015)

Health Depression treatment Analysis of emotional content for recognizing depres-
sive symptoms in chat transcripts

(van der Zanden et al., 2014)

Suicide prevention Early warning of suicide-related emotions in written
notes

(Desmet & Hoste, 2013)

Public health forecast Prediction of mortality from heart disease based on
emotions expressed on Twitter

(Eichstaedt et al., 2015)

Diagnosis Emotional states as predictors of the willingness to
disclose personal health information

(Anderson & Agarwal, 2011)

Diagnosis Social media emotion analysis for detecting poor
healthcare conditions

(Greaves et al., 2013)

Education E-learning Improvement of learning experience through classify-
ing and regulating e-learners’ emotions

(Rodriguez et al., 2012)

Table 6: Selected use cases in research and industry where deep-learning-based affective computing could
help in improving decision support. Importantly, these works still rely upon traditional machine learning
for emotion recognition and thus present viable opportunities for the use of our proposed deep learning
framework.
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5.4. Implications for management and practice

Even though deep learning has gained considerable traction lately, its use cases outside
of academia remain scarce. A possible reason is located in the complexity of operational-
izing deep neural networks. While recurrent architectures have previously been applied to
sentiment analysis, the task of emotion recognition requires several modifications in order to
obtain a better-than-random performance. This specifically applies to the proposed bidirec-
tional processing of texts, regularization, and loss functions that can handle highly imbal-
anced datasets. As a direct recommendation for use cases of affective computing, we propose
a shift towards customized network architectures, even for fairly small datasets of around
1,000 training samples, as in our case. Altogether, this highlights the need for a thorough
understanding by practitioners of the available tools in order to benefit from deep learning.

Affective computing for linguistic materials yields new opportunities for business models
and consumer-centered services (Li et al., 2011; Doucet et al., 2012; Dai et al., 2015; Yin et al.,
2014). Detecting and subsequently responding to the emotional states of users, customers,
patients, and employees has the potential to significantly accelerate and improve management
processes and optimize human-computer interactions. Here text remains a critical form of
communication, while attempts have also been made to apply affective computing to speech
or other multimodal input (Calvo & D’Mello, 2010), including visual data (Chen et al., 2017;
El Ayadi et al., 2011; Shan et al., 2009). Management should assess potential use cases in
critical areas of operations from their own organizations. Our overview in Section 2 provides
illustrative examples, while further applications are likely to arise with recent methodological
innovations.

5.5. Implications for research

The process of improving the performance of affective computing would benefit consid-
erably from a rigorous suite of baseline datasets. In the status quo, a variety of datasets
with distinct goals and purposes is commonly used for benchmarking methodological inno-
vations for affective computing. For instance, our literature survey identified four different
strategies for annotating, including simple labels, multi-class labels, and numerical scores.
Moreover, the set of affective dimensions varied between two (i. e., valence, arousal without
explicitly naming emotions) and a set of 8 emotions (e. g., anger, disgust, surprise). However,
this directly links to challenges concerning comparability and generalizability. In this sense,
a network architecture that has been found effective for one annotation scheme might not
work out for other datasets. On top of that, different labels prohibit transfer learning and
thus impede performance. We therefore suggest a standardized approach to annotations.

According to our literature review, datasets for affective computing vary in size from
1,000 instances to 7,902, and yet all of them remain fairly small when compared to other
applications of deep learning. As a result, this is known to limit the performance of bidirec-
tional LSTMs and other deep neural network architectures, which generally require large-scale
datasets. For instance, datasets for sentiment analysis, such as the one used for our transfer
learning approach, consist of up to 100,000 labeled samples. Future research should thus aim
at creating larger datasets in order to enable the effective exploitation of deep learning.
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6. Conclusion

Affective computing allows one to infer individual and collective emotional states from
textual data and thus offers an anthropomorphic path for the provision of decision support.
Even though deep learning has yielded considerable performance improvements for a variety
of tasks in natural language processing, näıve network architectures struggle with the task of
emotion recognition. As a remedy, several modifications are presented in this paper: namely,
bidirectional processing, dropout regularization, and weighted loss functions in order to cope
with imbalances in the datasets.

Our computational experiments span categorical and dimensional emotion models, which
require tailored algorithmic implementations involving, e. g., multi-class classification, as well
as regression tasks and transfer learning. Our results show that pre-trained bidrectional
LSTMs consistently outperform the baseline models from traditional machine learning. The
performance improvements can even range up to 23.2 % in F1-score for classification and
11.6 % in MSE for regression. We propose sent2affect, a customized strategy of transfer
learning that draws upon the different task of sentiment analysis (as opposed to different
datasets, as is usually the case), which is responsible for further performance improvements
of between 5.6 % and 6.6 %.
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Appendix A. Recurrent Neural Networks

This section presents our methods for inferring emotional states from narrative contents.
This is specifically grouped into classification tasks (where a set of emotions needs to be

determined) and regression tasks (where the intensity of each affective dimension is repre-
sented by a numerical score).
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We utilize a specific variant of the recurrent neural network, the long short-term memory
model, which is known for being especially able to encode long dependency structures Hochre-
iter & Schmidhuber (1997). The overall architecture is arranged according to three layers:
(a) an embedding layer that maps words in one-hot encoding onto low-dimensional vectors,
(b) a recurrent layer to pass information on between words, and (c) a final dense layer for
making the actual prediction. The latter varies according to whether it is an affective cat-
egory or emotional intensity that is to be predicted. In the end, the weights in all neurons
are estimated simultaneously during the training phase. The architecture of each layer is
specified as follows:

(a) Embedding layer : Our first layer replaces the one-hot encoding of each word in the
vocabulary with a numerical representation according to which words in terms of semantic
meaning are optimized to have short distances between their word embeddings. For
instance, the embedding of “good” will eventually be closer to the word embedding of
“great” than to the word embedding of “boring”. This includes explicit semantics and,
in addition, the dense (as opposed to sparse) representation facilitates the optimization
routines for training the subsequent layers.

(b) Recurrent layer : The word embeddings are then passed on to a recurrent layer, i. e. a
unidirectional LSTM or a bidirectional LSTM. The architecture of a recurrent layer is
illustrated in Figure A.2. Here recurrent layers draw upon a single feedforward neural
network f , for which the connections between neurons form cycles. As a result, recurrent
layers can iterate over textual data word-by-word, thereby accumulating and memorizing
information about the meaning of text in a hidden state vector.

··· ··· 

oio1

hihi-1 f

ei et

Recurrent layer

f

e1
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Figure A.2: Schematic illustration of a recurrent layer that is unrolled over the input sequence. The i-th
word is processed by feeding the embedding ei into the neural network f . This computes an output vector oi
(that later links to the emotional state) and a hidden state hi that can pass information to the next, thereby
encoding the sequence e1, . . . , eτ in this hidden state vector.

Formally, let ei be the word embedding of the i-th word. Furthermore, f denotes a
simple feedforward network that serves as the recurrent layer, while hi is a hidden state
vector and oi when processing the i-th element in the sequence. When moving from term
i to i + 1, the recurrent layer calculates the output oi+1 through the neural network f
according to

oi+1 = f(hi, ei+1). (A.1)

The recurrent layer is theoretically capable of accumulating text of arbitrary length, yet it
requires a suitable design to overcome potential instabilities during optimization Bengio
et al. (1994). Therefore, this work follows common choices that advocate the use of
long short-term memory networks. This architecture overcomes numerical instabilities
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by introducing an additional cell that stores the accumulated information with explicit
update rules (see Figure A.3). As an extension, we also experiment with a bidirectional
variant (named BiLSTM) that duplicates the process in order to iterate over the word
sequence in both directions.
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Figure A.3: Schematic illustration of a long short-term memory that is again unrolled over the input sequence.
The forget gate and the input gate are neural networks that update the cell based on the previous hidden
state hi−1, as well as the current input ei. Furthermore, the output gate provides another neural network
that computes the hidden state hi. The hidden state hn, belonging to the final word, then accumulates the
complete document.

(c) Dense layer : The final dense layer ψ draws upon the output of the LSTM layer with the
aim of obtaining the final prediction output, i. e. a label in a classification or a continuous
score in a regression.

Appendix A.1. Dense layer for affect prediction

The choice of the dense layer for making the final prediction depends on the desired
type, i. e. whether we need to classify the document according to an emotional category or
regress it against an intensity rating. Hence, the dense layer follows a linear operation in
which every input neuron is connected to every output neuron through a coefficient that is
optimized during training of the model. In general, dense layers are followed by activation
functions, which are non-linear functions that increase the flexibility of the model or, in the
case of a classification task, map the vector output from the LSTM layer onto a categorical
representation. The choice of the activation function is governed by the underlying task and
we discuss both in the following.

In the case of a classification, one commonly utilizes a softmax activation function σ, i. e.
a generalization of the logistic function that squashes its input values x1, . . . , xk to values in
the range [0, 1]. Mathematically, it computes

σ(x)j =
expxj∑n
k=1 expxk

, (A.2)

for output j with the additional property that σ(x)1, . . . , σ(x)k sums to one. This allows
us predict the membership with regard to k different classes or categorical emotions by
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interpreting the estimate σ(x)j as a probability of x belonging to a specific class. When only
one class is desired, we compute arg maxκ∈{1,...,k} σ(x)κ in order to identify the emotion with
the highest probability.

In the case of the regression task, we implement an affine transformation αxT+β. Thereby,
the underlying representation in the form of numerical values is aggregated onto a single
numerical score that represents the intensity according to the desired affective dimension.
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