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Abstract: Risk interaction changes the probability and impact of a given risk, which may result in a less 

effective risk response decision (RD). This study presents an approach for supporting the project manager 

in making RDs, comprising a simulation model of risk interaction network (RIN) for evaluating the RDs 

and an improved simulated annealing (SA) algorithm for optimizing the RDs. The simulation model 

considers different risk levels and the corresponding risk interaction cases, which is closer to the reality. In 

addition to tailoring the SA algorithm to optimize RDs, it is improved through enhancing its neighborhood 

search with the aid of social network analysis. Specifically, two new network indices are designed for 

calculating the quantitative significance of RIN elements, i.e. the nodes that denote risks and edges that 

reflect the risk interactions. The element with a higher significance is more likely to be dealt with when 

generating a new RD in the neighborhood search. An application is provided to illustrate the utility of the 

proposed approach; a contrastive analysis of the improved SA and standard SA is also conducted to validate 

the effectiveness and efficiency of the former.  

Keywords: Project risk response; Network dynamic analysis; Risk interaction; Social network analysis; 

Simulated annealing. 

 

1. Introduction 

A project is “a temporary and unique endeavor undertaken to deliver a result”, and the characteristics of  

“temporary” and “unique” allow risk to be the entity that appears in all aspects of projects [1, 2]. The need 

for project risk management is therefore well documented. In project risk management, the risk response 

phase follows from the phase of risk assessment, which decides on the rank order of the risks [1]. As it is 

not feasibly possible for projects to manage all the risks equally, the risk response decision (RD) is usually 

proposed to take care of the more critical risks [3, 4]. 

Risk interaction is gaining traction due to the greater project complexity [4, 5], which means that an 

identified risk is typically likely to trigger the occurrence of another one. Conventionally, risks are ranked 

on account of the criticality, which is defined as the product of risk spontaneous probability and impact. 

However, the interactions among risks may affect their probabilities and impacts [6]. For instance, if a risk 
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is triggered by other risks, then its occurrence probability would be higher than the case without any risk 

interaction [6]; a risk would have a greater impact if it can cause the occurrence of any other risk. Therefore, 

risk interactions can alter the risk ranking outcome [2, 6], and may lead to a complex RD making process. 

For instance, a proactive action eliminating the spontaneous probability of a risk may not be effective in 

the presence of risk interactions [7].  

In the context of risk interactions, researchers typically addressed the RD issue through integrating the RD 

evaluation model and the RD optimization model [8, 9]. The evaluation model is used to determine the 

value of the objective function under the given risk probability and impact, which have been changed based 

on the RD from the optimization model. The optimization model searches for optimal or satisfied RD based 

on the output of the evaluation model.  

Specifically, the RD evaluation model is mostly constructed as a network whose nodes and edges represent 

risks and risk interactions respectively [7, 9]. A node is related to the spontaneous probability and loss of a 

risk, and an edge is the likelihood of a risk given that another risk has occurred. Therefore, the analytical 

methods based models, e.g. the model formed by the probability and impact matrices [8, 9], the model 

within a Bayesian belief network [10], the model based on the Bow-tie analysis [11] etc., are used to 

determine the value of the objective function. The objective function usually considers the total risk cost 

[8], deviation-based measures [1], and the utility of the decision makers [9] etc., to be content. For the RD 

optimization model, an RD is a combination of risk actions. Each risk action is defined as eliminating the 

spontaneous probability of or loss due to a risk, or the transition probability between two risks. Accordingly, 

an RD is presented by a set of binary decision variables; 1 for taking the corresponding risk actions and 0 

otherwise [12]. Therefore, the approach that integer linear programming method (ILPM) is commonly used 

for optimizing the RDs [12-14]. The solution techniques offer exact or heuristic RD [15]. The former is 

obtained by the special-purpose techniques, such as column generation, branch-and-cut and branch-and-

bound [12], solvable through the state-of-the-art solver LINGO [9, 11-13]. The latter is determined by 

heuristic-based approaches,  such as the greedy algorithm [8] and the genetic algorithm [6, 16]. 
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However, the risk interaction poses two intractable problems for the analytical models. In these models, the 

risk level is treated as a constant [5]. Unfortunately, embracing risk interaction, the level of a given risk 

should rightly vary with the number of the risks that trigger it simultaneously [2, 6]. In addition, the risk 

interaction network (RIN) may display the loop phenomenon, namely a causal path that starts from an initial 

risk leading to the subsequent occurrence of risks until the initial risk resurfaces [7]. Analytical models are 

inadequate for treating such cases. Therefore, a simulation-based model of RIN is adopted to serve as the 

RD evaluation model. This is then considered as one the of the contributions offered in this paper. 

At the same time, the effect of a risk action differs in level [2, 15, 17], leading to the requirement of a more 

precise setting of the decision variables. Consider a risk whose spontaneous probability is 0.7, the related 

decision variable is the reduced value of its spontaneous probability, i.e. 0, 0.1, 0.2 … 0.7. These numerical 

decision variables lead to a rather large number of combinations of the risk actions. Consequently, searching 

the optimal combination is a classical non-deterministic polynomial-time hard problem, which generally 

befits the use of heuristics. Therefore, a heuristic method named the simulated annealing (SA) algorithm is 

typically adopted in the optimization model considering its good performance in addressing the 

combinational optimization problem [18, 19].  

Also, the heuristic method is confronted with a computing time problem. Specifically, SA generates the 

new RDs randomly and search for the optimal RD by testing the RDs iteratively. However, testing the RDs 

relays on the evolution model, i.e. the RIN simulation model in this paper, which consumes much 

computational effort to yield a representative value as it is stochastic [2, 7]. Therefore, searching for the 

optimal or near optimal RD is extremely time-consuming. Even though some researchers applied heuristic 

methods to the RD optimization model [6, 8, 16], they paid scant attention to improving the heuristics. In 

this work, following the social network analysis (SNA), two new network indices are proposed to calculate 

the quantitative significance of the nodes and edges in the RIN. This is then applied to enhance the 

performance of the SA by increasing the likelihood of generating better RDs, which is the main academic 

contribution of this paper. 
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The rest of this paper is structured as follows. Section 2 provides the framework of our approach. The 

simulation model of RIN is presented in Section 3. Section 4 discusses the application of social network 

analysis, and the improved SA algorithm is described in Section 5. Computational results for an illustrated 

example are reported in Section 6, and finally, a summary of this study and some possible future research 

are provided in Section 7. 

2. Framework of decision support system for project risk response decisions 

Traditional risk management assumes that a risk is triggered by the random factors [5]. However, with the 

consideration of risk interactions, the occurrence of a risk can come from other risks that direct to it in the 

RIN [4]. Fig. 1 gives the examples of risk occurrence type.  

 

Fig. 1 Occurrence types of a risk in the RIN 

Consider risk 03 and risk 04 for example, which are respectively named as R03 and R04 in Fig. 1. Some 

random factors contributing to R03 are not identified due to their small effect to project or possibly a lack 

of information. A primary risk occurrence happens when R03 is triggered by its random factors. If risk R03 

is activated by an associated risk R04, then we have a secondary risk occurrence for R03. 

It should be noted that the change of the risk occurrence is coupled with a change of risk management. The 

traditional project risk management is commonly regarded as a systematic process of risk identification, 

risk assessment, risk response and so forth [1]. As the existence of risk interactions, the process is then 

adjusted. For instance, the identification phase should involve the risk identification as well as the risk 
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interaction identification. Following Fang and Marle’s work [7], a framework of decision support system 

(DSS) for project risk RDs is put forward. The framework consists of four phases: (1) RIN identification; 

(2) RIN assessment; (3) the social network analysis of RIN; (4) RD optimization. Fig. 2 depicts this 

framework. This paper focuses on the phases (3) and (4), whose input is the matrices of RIN from phases 

(1) and (2).  

 

Fig. 2. Framework of DSS for project risk RDs 

In phase (1), risks are identified by the project team, project manager and experts, and the result is a project 

risk list [7]. Consequently, risk interactions are identified and presented as a binary matrix, such that if risk 

݅ is likely to trigger risk	݆, then the entry in the ݅-th row and ݆-th column has a value of 1. 

In phase (2) of the network assessment, the attributes of the node, also noted as risk spontaneous probability 

and loss are evaluated. Meanwhile, the edges recorded as 1 in the binary matrix of phase (1) are evaluated 

as transition probabilities between risks, and as a result, the binary matrix is transformed into a numerical 

one.  

Phase (3) conducts the social network analysis to ascertain the quantitative significance of the nodes (risks) 

and edges (risk interactions) in the RIN. The importance of a node not only relies on the probability of and 

the loss due to its corresponding risk but also its network position. For example, if a node directs many 
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other nodes in the RIN, its corresponding risk can cause loss through triggering other risks. The edge 

importance is also related to its network position, which will be discussed in the next section.  

The RD optimization of phase (4) consists of three activities: (a) constructing RIN simulation model; (b) 

improving SA algorithm using the output of SNA; (c) searching for an optimal or near optimal RD relying 

on  (a) and (b). 

The project team members, project manager and experts provide the knowledge and information of the 

project. This is then translated into data and fed into the DSS in phases (1) and (2) of the framework 

presented in this section. DSS will then output the “best” risk RD comprised of prototypical risk actions in 

phase (4). Each action is presented by a decision variable. For instance, assuming a variable equal to 0.3, 

this points to a need to lower a spontaneous probability of a risk or the transition probability between two 

risks by 0.3. The decision makers can then put forward concrete action by assigning risk control 

responsibilities and allocating the necessary resources. Consequently, a project risk response plan is 

obtained. 

3. Simulation model of risk interaction network 

The RIN simulation model serves as the RD evaluation model. The data on risks and risk interactions form 

the basic input of this model, which is found from the identification and assessment of RIN. An RD will 

change the input data, leading to a new RIN. Hence, the output of the simulation model is the evaluation of 

the RIN as well as the corresponding RD. The output is computed by running the model enough times as it 

is stochastic, to this end, the dynamic process and evaluation approach of RIN are determined in this section. 

3.1. Identification and assessment of risk interaction network 

In terms of describing a network, the design structure matrix is useful [7], which is similar to the adjacent 

matrix in the SNA and network dynamic analysis [2]. Accordingly, assume a binary and square 

matrix	ࣜࣧ ൌ ൣܾ݉௜௝൧, where ܾ݉௜௝ ൌ 1	if risk ݅ can cause risk ݆ directly. For illustration purpose, Fig. 3 

shows an example on using ࣜࣧ to represent the RIN. 
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Fig. 3 Illustration of a binary matrix of RIN (adapted from [7]) 

Matrix ࣜࣧ is developed from the identification of RIN. This can for example be done using the classical 

methods of project management, such as the Delphi-based approach [9]. This method can ensure the 

accuracy of the RIN identification and involves a number of stages: the decision makers are interviewed 

anonymously and separately, collect and combine their opinions regarding the risks and risk interactions 

that should be identified, fed back the result to them and then interview each decision maker again. These 

stages may repeat again and again before these opinions are consentaneous. Besides, other methods and 

tools, such as risk list [9], work breakdown structure [1, 8, 9, 12], cost breakdown structure [1], are adopted 

in the literature for increasing the accuracy of the RIN identification result. 

The RIN assessment entails evaluating the attributes of the nodes and edges, such as risk spontaneous 

probability, risk loss and transition probability between the risks [7]. As an illustration of this, Fig. 4 (a) 

shows the process of evaluating the probabilities.  

  

Fig. 4 Illustration of evaluating the probabilities of RIN 

In Fig. 4 (a), the parameters have the value of 1 in ࣜࣧ are estimated directly by the project team, project 

manager and expert. The binary matrix ࣜࣧ  thus transforms into a transition probability matrix	ࣧ  as 
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shown in Fig. 4(b). Meanwhile, the spontaneous probabilities of the risks are estimated. For the sake of 

simplicity, the parameter	݉௜௜ on the matrix diagonal represents the spontaneous probability of risk	݅, as 

shown in Fig. 4(c). 

Compared with the traditional risk perception, the risk interactions generate varied risk occurrence cases. 

Follow the assumption that “A risk may occur more than once during the project (as witnessed in practical 

situations). Risk frequency is thus accumulative if arising from different causes or if arising several times 

from the same cause.” [20], an assumption is consequently put forward. If risk ݅ is triggered by different 

risks or random factors simultaneously, its level is higher than that triggered by one risk or random factors 

alone.  

Furthermore, when risk ݆ triggers risk	݅, risk	݅’s level depends on the level of risk	݆ as well. For the purpose 

of evaluating such levels of risk ݅ more accurately, an approach following relative assessment is adopted 

[7, 21]. Specifically, let the most common level of risk ݅ be its general level, denoted by	݃௜ . Pairwise 

comparisons are then conducted between each of risk	݅’s levels and	݃௜ . The level coefficients are thus 

obtained. The value of a level of risk ݅ is calculated as the product of the related coefficient and	݃௜. Besides, 

the probability of risk ݆ triggering risk ݅ varies with risk	݆’s level as well. The parameter ݉௜௝ in ࣧ can be 

regarded as the general transition probability of risk ݆ causing the general level of risk	݅. The relative 

assessment is conducted again to yield the transition probabilities from risk ݆ to risk	݅. Apart from the 

relative assessment that takes the general level or transition probability as the reference, there are other 

methods and tools capable of ensuring the quality of RIN assessment. For instance, the improved pairwise 

comparison from Analytic Hierarchy Process [7], the adjusted pairwise comparison from Best Worst 

Method [2, 21], the approach avoiding the need to moderate divergences and consistency test [9]. 

Take R04 and R03 as an example, Fig. 5 introduces the different cases in which the level of R04 influences 

the transition probability and R03’s level. 
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Fig. 5 The influence of R04 level on the transition probability and level of R03   

In Fig. 5, take Case 01 for example. When R04’s level range from 2 to 4, the decision makers compare the 

likelihood of triggering R03 with the general transition probability from R04 to R03 (i.e. 0.7). The 

probability coefficient is 0.8, and then the transition probability of Case 01 is	0.56	ሺ0.7 ൈ 0.8ሻ. At the same 

time, the caused level of R03 in this case is compared with R03’s general level (i.e. 2), from which the level 

coefficient is evaluated as 0.5. Accordingly, the level of R03 is	1	ሺ2 ൈ 0.5ሻ. 

3.2. Dynamic process of risk interaction network 

The primary and secondary occurrences of the risks lead to the dynamic process of the RIN, which is 

presented as the changing of each risk’s level. The Monte Carlo method is used to see whether a risk occurs 

or not in a specific period of the project lifecycle. For instance, in a situation of primary occurrence, if the 

generated random number is no more than the spontaneous probability of risk	݅, then risk ݅ occurs. Let 

matrix	ࣝ௧ ൌ ሾܿ௝௜
௧ ሿ, where ௝ܿ௜

௧ ൌ 1 if risk ݅ happens in the form of primary occurrenceሺ݅ ൌ ݆ሻ  or secondary 

occurrence ሺ݆ ് ݅ሻ in period	ݐ, and 0 otherwise. 

(1) The process of primary risk occurrence 

In the Monte Carlo method, ݀݊ܽݎሺ0,1ሻ performs the function of generating the random values over the 

interval [0, 1]. Through comparing the random number and risk ݅’ s spontaneous probability ݉௜௜, the value 

of ܿ௜௜
௧  that denotes whether risk ݅ is triggered by the its random factors or not is set as:  

ܿ௜௜
௧ ൌ ൜

1, ሺ0,1ሻ݀݊ܽݎ ൑ ݉௜௜

0, ሺ0,1ሻ݀݊ܽݎ ൐ ݉௜௜
,  (1) 
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Accordingly, the risk level ݀݌௜
௧ related to the primary occurrence in period	ݐ is found from	ܿ௜௜

௧ ൈ  ௜, where݌݀

 .௜ is the level of risk ݅ when it is triggered by the random factors݌݀

(2) The process of secondary risk occurrence 

If risk ݅ is directed by risk ݆ in the RIN, the transition probability from risk ݆ to risk ݅ in period	ݐ, denoted 

by	݌௝௜
௧ , is influenced by the level of risk ݆ in period	ݐ െ 1ሺݐ ൒ 2ሻ and written as: 

௝௜݌
௧ ൌ

ە
ۖۖ
۔

ۖۖ
ۓ ,௝௜భݏ	 ௝௜భܦ	 ൑ ݀௝

௧ିଵ ൏ ௝௜మܦ
,௝௜మݏ	 ௝௜మܦ	 ൑ ݀௝

௧ିଵ ൏ ௝௜యܦ
…

,௝௜೓ݏ ௝௜೓ܦ	 ൑ ݀௝
௧ିଵ ൏ 		௝௜೓శభܦ
…

௝௜೓೟೚೟ೌ೗ݏ , ௝௜೓೟೚೟ೌ೗ܦ	 ൑ ݀௝
௧ିଵ		

, ݅ ് ݆, ݐ ് 1,  (2) 

where ݏ௝௜೓is the transition probability from risk ݆ to risk ݅ in the case ݄, which is related to ③	in	Fig. 5; ܦ௝௜೓ 

and ܦ௝௜೓శభ  are the lower and upper bounds of case ݄ respectively; 	 ௝݀
௧ିଵ is the level of risk ݆ in period	ݐ െ 1 

and ݅௛೟೚೟ೌ೗	is the total number of the cases.  

Therefore, the value of 	 ௝ܿ௜
௧  denoting whether risk ݅ is triggered by risk ݆ in the period ݐ is given as: 

௝ܿ௜
௧ ൌ ቊ

1, ሺ0,1ሻ݀݊ܽݎ ൑ ௝௜݌
௧

0, ሺ0,1ሻ݀݊ܽݎ ൐ ௝௜݌
௧ , ݅ ് ݆, ݐ ൒ 2,  (3) 

Following Fig. 5, when risk ݅ is triggered by the risk	݆, i.e.	 ௝ܿ௜
௧ ൌ 1, the level of risk	݆ in period ݐ െ 1 will 

also influence the level of risk ݅ in period	ݐ	ሺݐ ൒ 2ሻ: 

௝௜ݏ݀
௧ ൌ

ە
ۖۖ
۔

ۖۖ
ۓ 	 ௝ܿ௜

௧ ൈ ,௝௜భݏ݀ ௝௜భܦ	 ൑ ݀௝
௧ିଵ ൏ ௝௜మܦ

	 ௝ܿ௜
௧ ൈ ,௝௜మݏ݀ ௝௜మܦ	 ൑ ݀௝

௧ିଵ ൏ ௝௜యܦ
…

௝ܿ௜
௧ ൈ ,௝௜೓ݏ݀ ௝௜೓ܦ	 ൑ ݀௝

௧ିଵ ൏ 		௝௜೓శభܦ
…

௝ܿ௜
௧ ൈ ௝௜೓೟೚೟ೌ೗ݏ݀ , ௝௜೓೟೚೟ೌ೗ܦ	 ൑ ݀௝

௧ିଵ		

, ݅ ് ݆, ݐ ് 1.  (4) 

When ݐ ൌ 1, there is no secondary occurrence of risk ݅, so ݀ݏ௝௜
ଵ=0.  

The secondary level of risk ݅ caused by all the other risks in period ݐ is now stated as: 

௜ݏ݀
௧ ൌ ∑ ௝௜ݏ݀

௧ே
௝ୀଵ,௝ஷ௜ ,	  (5) 

where ܰ is the volume of identified risks. 
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Mathematically, the level of risk ݅ at the end of period	ݐ, ݀௜
௧, is equal to	݀௜

௧ିଵ ൅ ௜݌݀
௧ ൅ ௜ݏ݀

௧. Besides, the 

value of ݀௜
௧ is also influenced by the timeliness of risk elimination during the project lifecycle. When risk ݅ 

occurs, it can be eliminated immediately in the period	ݐ or in the future periods. We assume that the 

increased level of risk ݅ in the period ݐ will be eliminated in the period	ݐ ൅ ݐ) 1 ൏ ܶሻ. 

3.3. Evaluation approach of risk interaction network 

An RD changes the input data of the RIN simulation model. Thus the evaluation of this model is also the 

performance measure of the corresponding RD, which represented by the total risk loss caused by the 

occurrences of all the risks in the project lifecycle, now written as: 

ܮ ൌ ∑ ∑ ቀ݈ݑ௜ ൈ ൫݀݌௜
௧ ൅ ௜ݏ݀

௧൯ቁே
௜ୀଵ

்
௧ୀଵ ,	  (6) 

where ܶ is the duration of the project, ݈ݑ௜ is the loss of risk ݅’s unit level. 

The RIN model is stochastic, this calls for a simulation approach to estimate the total risk loss	[7 ,6] ܮ. 

Therefore, a stable value of ܮ is needed, which can be obtained by simulating RIN model for as many 

iterations as required. For this, ܮሺݍሻ is selected to represent the output of the ݍ-th simulation run. The 

arithmetic mean is given by ܮሺܳሻ෣  when the number of simulation interactions is	ܳ. As ܳ increases, the 

fluctuation of ܮሺܳሻ෣  will decrease. When the fluctuation falls below a given small value, termed as 

  .the stable value is obtained [7] ,݈݀݋݄ݏ݁ݎ݄ܶ

In the process of computing a stable value, an extreme case may happen when Q is small. That is, the 

outputs of the simulations are almost the same but different from the stable value. In this case, it is easy to 

obtain the wrong stable value as the fluctuation of ܮሺܳሻ෣   may be small. Therefore, a warming-up process is 

adopted in the simulation process, that is, only when the computer model has been running for a sufficient 

number of times, denoted by	ܳ௪௔௥௠, will the program judge whether the stable value has been obtained. 

Further, the warming-up process helps to determine the value of	݄݈ܶ݀݋݄ݏ݁ݎ as well. Specifically, after the 

warming-up process, the model has ran 	ܳ௪௔௥௠ times, the corresponding ܮሺܳ௪௔௥௠ሻ෣  denotes the order of 

the magnitude of the stable value. Combining with the required precision on the evaluation of RD, denoted 

by ܲ݊݋݅ݏ݅ܿ݁ݎ, the criterion for evaluating the stable value is formulated as [7]: 
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ଵ

ொ೐೙೏
ൈ ∑ ሻொ೐೙೏ݍሺܮ

௤ୀଵ െ
ଵ

ொ
ൈ ∑ ሻொ೐೙೏ݍሺܮ

௤ୀଵ ൏ 	
௉௥௘௖௜௦௜௢௡

ொೢೌೝ೘
ൈ ∑ ሻொೢೌೝ೘ݍሺܮ

௤ୀଵ , ܳ௘௡ௗ ൒ ܳ௪௔௥௠.  (7) 

where ܳ௘௡ௗ is the simulation times of terminating the RIN simulation model. 

Combing this criterion with the warming-up process makes the RIN simulation model be capable of 

terminating automatically. The stable value of  ܮ is thus obtained with required and no redundant simulation 

times. 

4. Social network analysis of risk interaction network 

The RD is designed for minimizing the total risk loss by reducing the spontaneous probabilities of the risks 

and transition probabilities between the risks, which respectively correspond to the nodes and edges in the 

RIN. The SNA is used for improving SA through allowing the risk or risk interaction with a higher 

significance to be dealt with preferentially. Accordingly, this section continues by developing the network 

indices for quantifying the significance of the node and edge with respect to causing risk loss. 

The concept of the path is vital in SNA, based on which some important indices of evaluating the 

importance of the node and edge, e.g. betweenness, closeness, are put forward [2]. Regard node ݅ and node 

݆ as the start node and end node of a path respectively. The index of distance is used to describe the path, 

which is calculated as the sum of the edge values and reflects the impact from node ݅ to node ݆ through this 

path [2, 22]. For example, in a communication network, if the distance of a path is small, node ݅ could send 

information to node ݆  quickly and accurately [2]. However, the index of distance is not suitable for 

evaluating the path in the RIN. It is the product of the edge values that denotes the impact from the node ݅ 

to node	݆, i.e. the likelihood that risk ݅ would trigger risk ݆ through this path. Therefore, the impact from 

one node to another in the RIN is described by “power” instead of “distance” in this study. 

A path from node ݅ to node ݆ can be described by a vector, where the related edges appear in order. Let ݇ଵ 

and ݇ଶ respectively be the start and end nodes of edge ݇, the value of edge ݇ is then denoted as ݉௞భ௞మ . The 

power of this path is expressed as: 

ோܲሺ௜,௝ሻ ൌ ∏ ݉௞భ௞మ௞∈ோሺ௜,௝ሻ ,  (8) 

where ܴሺ݅, ݆ሻ is a path that from node ݅ to node ݆ and ோܲሺ௜,௝ሻ is the power of this path. 
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As there can exist more than one path from node ݅ to node	݆. In the traditional SNA, The distance of the 

shortest path, i.e. the best path of constructing the impact between the nodes, is selected for reflecting the 

impact of node	݆ on node ݅ [22]. Likewise, the most powerful path with the maximum value regarding with 

Eq. (8) is taken into account in this paper. In the next discussion, without further illustration, the power 

between each node pair is related to the most powerful path and its value is denoted by	 ௜ܲ௝. 

4.1. Network index of the node  

The node significance can be gauged by the direct and indirect losses arising from its corresponding risk. 

The latter is related to the network position of the risk, as shown in Fig. 6. 

 

Fig. 6 The network influence of risk ݅ 

In Fig. 6, some risks in the RIN are influenced by risk	݅, while the others are independent of it. If the paths 

from risk ݅ to the risks denoted by the blank circles are powerful, risk	݅ has a high likelihood of causing loss 

through triggering the occurrences of other risks in the RIN. The powers of these paths aggregate to the 

network impact of risk	݅, denoted by	ܽ௜, is defined as: 

ܽ௜ ൌ ∑ ௜ܲ௝
ே
௝ୀଵ,௝ஷ௜ .  (9) 

With the consideration of the RIN characteristics, the index of ܽ௜ can be weighted from three aspects: the 

loss of risk	݅, risk	݅’s spontaneous probability, and the loss of the risks triggered by risk ݅. Accordingly, the 

index of the weighted network power ܽݓ௜ is updated from Eq. (9): 

௜ܽݓ ൌ ݉௜௜ ൈ ݈௜ ൅ ݉௜௜ ൈ ∑ ௜ܲ௝ ൈ ௝݈
ே
௝ୀଵ,௝ஷ௜ .  (10) 

where ݈௜ is the loss due to the occurrence of risk ݅ and calculated as the product of the its unit loss and 

general level, i.e. ݈ݑ௜ ൈ ݃௜. 
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4.2. Network index of the edge  

Regarding a specific edge	݇, its significance is mainly about the “bridge” function it supplies to the path of 

each pair nodes (see Fig. 7).  In Fig. 7, the paths connecting the nodes on the left and nodes on the right 

rely on edge ݇ seriously. Therefore, edge ݇ is very important in such a network structure. This phenomenon 

is related to the “edge betweenness” in the theory of SNA, which is a measure of the centrality of an edge 

in the network [22]. 

 

Fig. 7 Illustration of the “bridge” function supplied by edge ݇ 

In the traditional SNA, the shortest paths constructing the biggest impact between two nodes are considered 

to calculate the index of betweenness [23]. Similarly, in the RIN, the most powerful paths of one node pair 

are selected. The edge betweenness is defined as a probability, that is, the proportion of all the most 

powerful paths linking node ݅ and node ݆ which pass through edge	݇, and is set as: 

ܾ௞ሺ݅, ݆ሻ ൌ
ௐሺ೔,ೕሻೖ

ௐሺ೔,ೕሻ
,  (11) 

where ܾ௞ሺ݅, ݆ሻ is the betweenness of edge ݇ on the paths from risk ݅ to ݆, ሺܹ௜,௝ሻೖ  is the number of most 

powerful paths from node ݅  to node ݆  that pass through edge ݇ , and ሺܹ௜,௝ሻ  is the number of the most 

powerful path(s) from node ݅ to node ݆.  

Mathematically, the betweenness ܾ௞	of edge ݇ is the sum of its betweenness of each node pair: 

ܾ௞ ൌ ∑ ∑ ܾ௞ሺ݅, ݆ሻ
ே
௝ୀଵ,௝ஷ௜

ே
௜ୀଵ .  (12) 

The index of ܾ௞ሺ݅, ݆ሻ can be weighted as well by treating the following four aspects: the power of the most 

powerful path from node ݅ to node	݆, edge ݇’s contribution to the path, the spontaneous probability of risk 
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݅ and the loss of risk ݆. Accordingly, the weighted betweenness of edge ݇ on the paths from risk ݅ to risk ݆ 

is updated from Eq. (11): 

,௞ሺܾ݅ݓ ݆ሻ ൌ
ଵ

ௐሺ೔,ೕሻ
ൈ ௜ܲ௝ ൈ ∑

௠ೖభೖమ

∑ ௠೗భ೗మ೗∈ೃೢሺ೔,ೕሻೖ

ൈ ݉௜௜ ൈ ௝݈
ௐሺ೔,ೕሻೖ
௪ୀଵ .  (13) 

where ܴ௪ሺ݅, ݆ሻ௞ represents the ݓ-th most powerful path from node ݅ to node ݆ passing through edge	݇. 

Following Eq. (12), the weighted betweenness ܾݓ௞ of edge ݇ is stated as: 

௞ܾݓ ൌ ∑ ∑ ,௞ሺܾ݅ݓ ݆ሻ
ே
௝ୀଵ,௝ஷ௜

ே
௜ୀଵ ൌ ∑ ∑ ൬ ଵ

ௐሺ೔,ೕሻ
ൈ ௜ܲ௝ ൈ ∑

௠ೖభೖమ

∑ ௠೗భ೗మ೗∈ೃೢሺ೔,ೕሻೖ

ൈ ݉௜௜ ൈ ௝݈
ௐሺ೔,ೕሻೖ
௪ୀଵ ൰ .ே

௝ୀଵ,௝ஷ௜
ே
௜ୀଵ   (14) 

The node weighted network power and edge weighted betweenness are used to represent the quantitative 

significance of node and edge respectively, which are both recorded in the significance matrix	ܵ ൌ ሾݏ௜௝ሿ:  

௜௝ݏ ൌ ൜
,ܽݓ ݅ ൌ ݆

,௞ܾݓ ݅ ് ݆, ݅ ൌ ݇ଵ, ݆ ൌ ݇ଶ
,  (15) 

where ݇ଵ and ݇ଶ are the start and end nodes of edge ݇ respectively. 

The proposed approach computing the network indices based on the most powerful paths. However, if there 

is no loop-phenomenon in RIN and the size of RIN is small, all the paths could be considered for improving 

the social network analysis. As a result, the indices can present the quantitative significance of the node and 

edge more accurately. Besides, if the loop-phenomenon appears in the RIN or the size of RIN is too big, 

the number of paths will be too large to be identified, recorded or analyzed. In this case, an alternative is 

selecting the less powerful paths. The paths whose powers are higher than the threshold will be selected for 

computing the indices instead of the most powerful paths. The value of the threshold is set based on the 

expert experience, the complexity of RIN, the RIN size and the conditions for comping the indices. 

5. Improved simulated annealing algorithm 

SA is proposed by an analogy to physical annealing in solids. It is popularized by Kirkpatrick et al. [18], 

and has been applied to many hard combinatorial optimization problems in networks [19, 24]. In the SA 

algorithm, the neighborhood search method is a random process that allows all the decision variables to 

have the same probability to be changed [25], which increases the likelihood of local optima and the 

computing time [26]. In this paper, the SNA result, i.e. the quantitative significance of the risk and risk 
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interaction, is applied to help the neighborhood search to find good candidate solutions, that is, letting the 

decision variables related to the important risks and risk interactions be more likely to be selected when 

generating a new RD. In this section, different parts of the improved SA are introduced, and the relations 

between them is explained. 

5.1. RD representation and initial RD 

Recall that a risk RD is a combination of prototypical risk actions, which can entail the elimination of the 

spontaneous probability of one risk or the transition probability between one pair of risks. Suppose the 

matrix	ܺ ൌ ሾݔ௜௝ሿ represents an RD, where ݔ௜௝ is the decreased value of spontaneous probability of risk ݅ 

if	݅ ൌ ݆, or the transition probability from risk ݅ to risk	݆ if	݅ ് ݆. The value of ݔ௜௝ is set as the integer times 

of the unit probability	ݑ݌, which is set as 0.1 in this study. Fig. 8 illustrates the representation of RD. Note 

that, the RD in this work is conventionally titled the candidate solution in the heuristic method. 

  

 

Fig. 8 Illustration of RD representation 

No project can afford to manage all the potential risks, as it is subject to limited time and tight budget 

constraints [3, 4]. So the RD optimization is under the constraint of the total eliminated value regarding 

spontaneous probability and transition probability, which is denoted by ܶ[27] ݈ܽݐ݋. Meanwhile, the value 

of the decision variable ݔ௜௝  is no more than ݉௜௝  as the former is the decreased value of the latter. 

Accordingly, the optimization of RD has the following structure. 

min	ቀ∑ ∑ ቀ݈ݑ௜ ൈ ൫݀݌௜
௧ ൅ ௜ݏ݀

௧൯ቁே
௜ୀଵ

்
௧ୀଵ ቁ,  (16) 
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s.t. 

0 ൑ ௜௝ݔ ൑ ݉௜௝,  (17) 

∑ ∑ ௜௝ݔ
ே
௝ୀଵ

ே
௜ୀଵ ൑  (18)  .݈ܽݐ݋ܶ

The equal division method is used to determine the initial RD for the SA algorithm [19]. Only the 

parameters in ܺ whose value can be changed based on Eq. (18) are taken as the decision variables and the 

number of them is denoted by	 ௫ܰ. The application of this method includes two phases. The first phase 

increases all the decision variables by the value of ܽ݁ݒ௫, which is equal to ݂݈ݎ݋݋ሺ݈ܶܽݐ݋ ሺݑ݌ ൈ ௫ܰሻ⁄ ሻ ൈ  ,ݑ݌

where ݂݈ݎ݋݋ሺܽሻ is a function that yields the greatest integer no more than ܽ. The second phase is assigning 

the remainder of ݈ܶܽݐ݋ to the decision variables arbitrarily. These two phases are shown as: 

Step 1: Calculate the value of	ܽ݁ݒ௫; 

Step 2: Increase all the decision variables to	ܽ݁ݒ௫; 

Step 3: Calculate the remainder	ܴ݁݉ ൌ ݈ܽݐ݋ܶ െ ௫݁ݒܽ ൈ ௫ܰ; 

Step 4: If ܴ݁݉ is less than	ݑ݌, stop the process and take the current ܺ ൌ ሾݔ௜௝ሿ as the initial RD; if not, go 

to Step 5. 

Step 5: Select a decision variable ݔ௜௝ randomly and increase its value by	ݑ݌ if ݔ௜௝ ൏ ݉௜௝; 

Step 6: Calculate the new remainder through lowering its value by ݑ݌ and go to step 4. 

5.2. Definition of neighborhood search 

The SA is improved through enhancing its neighborhood search with the quantitative significance ܵ ൌ ሾݏ௜௝ሿ. 

For instance, the node ݅ of RIN represents risk ݅ and the quantitative significance of node ݅ is related to 

risk	݅’s influence on the project risk loss. If node	݅’s quantitative significance,	ݏ௜௜, is high, it is logical to 

avoid the occurrence of risk ݅. So the decision variable ݔ௜௜ which is the reduced value of the spontaneous 

probability of risk ݅ should be increased preferentially. The same applied to the edge significance. Thus, 

the quantitative significance is used to calculate the increasing probabilities of the decision variables, 

denoted by	ܫ ௜ܲ௝, such that 
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ܫ	 ௜ܲ௝ ൌ ൬ܭଵ ൅
ௌ೔ೕ

∑ ∑ ௌ೔ೕ
ಿ
ೕసభ

ಿ
೔సభ

൰ /ሺ1 ൅  ଵሻ,  (19)ܭ

where ܭଵ is a constant used to avoid the case 	ܫ ௜ܲ௝ ൌ 0 and the corresponding decision variable ݔ௜௝ has no 

chance to be selected in the candidate RD.  

Next, ܫ ௜ܲ௝
ᇱ , equals to ܫ ௜ܲ௝ ൈ  ௜௝ corresponding toݔ ሺ0,1ሻ, is used to yield the RD. The decision variable݀݊ܽݎ

the maximal (minimal) ܫ ௜ܲ௝
ᇱ  will be increased (decreased) by the unit probability (ݑ݌). If the change of the 

௜௝ݔ  value violates the constraint of Eq. (17), a new ݔ௜௝  will be selected based on the rank of ܫ ௜ܲ௝
ᇱ . For 

example, if the	ݔ௜௝ with minimum	 ௜ܲ௝
ᇱ  cannot be reduced further (ݔ௜௝ ൌ 0), the algorithm will search for the 

next best minimum ܫ ௜ܲ௝
ᇱ  until the associated ݔ௜௝ is positive. This method of searching for the alternative ݔ௜௝ 

also holds for the ݔ௜௝  corresponding to the maximum	ܫ ௜ܲ௝
ᇱ . Specifically, if the ݔ௜௝  corresponding to the 

maximum	ܫ ௜ܲ௝
ᇱ  cannot be increased as its current value is equal to	݉௜௝, the algorithm will search for the ݔ௜௝ 

associated with the next best maximal ܫ ௜ܲ௝
ᇱ  until the value of ݔ௜௝ is less than	݉௜௝. There is another special 

condition that the value of the ݔ௜௝ corresponding to the maximum ܫ ௜ܲ௝
ᇱ  being equal to ݈ܶܽݐ݋ and all the other 

decision variables being zero. In this case, the ݔ௜௝ corresponding to the maximum ܫ ௜ܲ௝
ᇱ  will decrease by ݑ݌ 

and the ݔ௜௝ related to the second maximum ܫ ௜ܲ௝
ᇱ  will increase by	ݑ݌. 

As a consequence, the improved SA algorithm is applied to search for the feasible domain of the decision 

variables more swiftly and effectively, which is denoted by ܺ in the pseudocode in Fig. 9. Our pseudocode 

is an extension of that related to standard SA found in [19]. In Fig. 9, ݆ܾ݋ሺܺሻ represents the process of 

calling the RIN simulation model, whose output is the stable value of total risk loss ܮ under the specific ܺ; 

ܵ ൌ ൛ݏ௜௝ൟ is the set of quantitative significance of the nodes and edges in the RIN;	ܫ௜௧௘௥ represents the total 

number of iterations that the neighborhood search should repeat at a particular temperature; ଴ܶ and ௙ܶ are 

the initial and final temperature respectively; ܭ is the Boltzmann constant used in computing the probability 

of accepting a worse solution; and α  is the coefficient of the cooling schedule [19]. The algorithm 

terminates when either the current temperature is below or equal to	 ௙ܶ, or the best solution is no better for 

௡ܰ௢௡ି௜௠௣௥௢௩௜௡௚ consecutive temperature reductions. 
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Fig. 9.  Pseudocode of proposed improved SA 

6. Illustrative example 

We now highlight the application of the proposed approach to an actual research project conducted by a 

Singapore university and a large logistics service provider. This project concerns the application of machine 

learning in hospital logistics, and aims to reduce the workload of the nurse through delivering the medical 

items to the patients by robots. The following analysis shows the implementation of the proposed approach, 

and the effectiveness and efficiency of the improved SA are indicated by its comparison with the standard 

SA. 

The simulation model of the RIN and the improved SA are implemented in MATLAB R2017b on a 

Windows 10 PC with Intel Core i7 6700 CPU at 3.40 GHz and 16 GB of RAM. 

6.1. RIN modeling   

As to the method of data gathering involving the identification and assessment of the RIN, we followed the 

studies related to risk identification, risk interaction identification and assessment [2, 21]. Data gathering is 

conducted by a project member, who is in charge of the project plan and risk management, and familiar 
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with the related methods. Table 1 shows the identified risks. Fig. 10 presents the interaction relationships 

among the risks. 

Table 1: Risks identified for the project 

Label Risk Label Risk 

R01 Insufficient communication at the top level R13 Too much non value added work 

R02 Poor connection to the pre-project R14 Team atmosphere problem 

R03 Insufficient project needs analysis R15 Cultural conflict 

R04 Inaccurate project  objectives R16 Insufficient internal communication 

R05 Unclear project implementation path R17 Too much rework 

R06 Language, terminology problems R18 
Insufficient communication between the 
team and senior management. 

R07 
Insufficient support from the corporate 
sector 

R19 Additional requirements 

R08 Personnel mobility R20 Project scope spread 

R09 
Poor organizational structure of the project 
team 

R21 Project time delay 

R10 Insufficient staff incentives R22 Failed to achieve the expected results 

R11 
Mismatch between project work and 
researcher study topics 

R23 Cost overrun 

R12 Insufficient time of project members R24 Reputation and trust problems 
 

 

Fig. 10.  Risk interaction network of the project 
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6.2. Social network analysis 

The social network analysis is used for calculating the quantitative significance of the nodes and edges in 

the RIN. A program is written in MATLAB for identifying the paths of each node pair and calculating their 

power based on Eq. (8). Accordingly, the most powerful path of each node pair is identified and the value 

of the index ௜ܲ௝ is obtained. 

The matrix 	ࣧ ൌ ሾ݉௜௝ሿ , where ݉௜௜  is the spontaneous probability of risk ݅  and ݉௜௝  is the transition 

probability from risk ݅  to risk ݆ , and the risk loss ݈௜  caused by the occurrence of risk ݅  are used for 

calculating the node network power	ܽ௜ and the weighted one	ܽݓ௜ based on Eq. (9) and (10) respectively. 

These results are found in Table 2. 

Table 2: Node significance calculation 

Node ݉௜௜ ݈௜ ܽ௜ ܽݓ௜ Node ݉௜௜ ݈௜ ܽ௜ ܽݓ௜ 

R01 0.6 2 4.50 9.65 R13  0.3  0.8  4.40  7.63 
R02 0.6 0.6 6.33 13.59 R14  0.5  4  2.64  7.23 
R03 0.7 2.8 6.21 17.00 R15  0.1  2  0.73  0.49 
R04 0.5 3.2 4.17 8.87 R16  0.7  2  4.19  14.02 
R05 0.2 3 6.03 4.90 R17  0.4  1  3.25  8.39 
R06 0.4 0.1 5.81 7.60 R18  0.6  0.3  5.46  12.59 
R07 0.5 3 2.49 9.37 R19  0.6  1  3.04  7.19 
R08 0.2 3 5.86 4.22 R20  0.3  1.5  2.41  3.67 
R09 0.8 4 8.30 22.53 R21  0.6  3  2.79  8.42 
R10 0.1 2.4 5.55 2.34 R22  0.6  20  3.91  18.76 
R11 0.2 0.4 4.80 4.21 R23  0.1  3  1.63  0.95 
R12 0.2 0.6 5.07 6.15 R24  0.2  6  4.93  4.62 

 

As for the edge significance, the indices of betweenness ܾ௞ and weighted betweenness	ܾݓ௞ are found from 

Eq. (12) and (14) respectively, as shown in Table 3. 

Table 3: Edge significance calculation 

Start 
node 

End 
node 

b୩  wb௞  
Start 
node 

End 
node 

b୩  wb௞  
Start 
node 

End 
node 

b୩ wb௞ 

R01  R03  101  2.04  R09  R10  6  5.42  R16  R17  13  1.00 

R01  R04  22  1.89  R09  R16  5  1.75  R17  R21  1  0.72 

R01  R05  0  0.00  R09  R18  8  2.25  R17  R22  17  5.70 

R01  R07  4  1.93  R10  R12  16  2.32  R17  R23  0  0.00 

R01  R19  28  1.14  R10  R14  13  2.68  R18  R01  50  4.80 
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R02  R05  38  7.39  R10  R16  6  0.26  R18  R07  8  6.36 

R03  R04  1  1.57  R10  R17  0  0.00  R19  R20  23  5.39 

R03  R05  95  7.70  R10  R18  45  0.30  R19  R23  0  0.00 

R04  R05  18  2.88  R11  R12  1  0.06  R20  R21  35  1.82 

R05  R07  0  0.00  R11  R13  17  1.986  R20  R22  2  1.59 

R05  R10  79  2.45  R12  R21  3  0.98  R20  R23  23  3.45 

R05  R11  23  0.05  R12  R22  21  7.85  R21  R24  47  4.32 

R05  R13  37  9.11  R13  R20  26  2.77  R22  R24  144  11.88 

R05  R17  7  0.86  R13  R21  11  2.58  R23  R24  18  0.31 

R06  R16  9  2.55  R13  R22  83  20.72  R24  R01  110  0.89 

R06  R18  10  0.56  R14  R12  12  0.07  R24  R07  21  3.97 

R07  R21  2  0.79  R14  R13  35  1.76  R24  R14  23  0.43 

R07  R22  26  10.67  R14  R17  3  0.22  R24  R16  34  1.12 

R08  R02  20  1.10  R15  R14  19  0.11  R24  R20  16  1.80 

R08  R14  0  0.00  R16  R13  36  7.79         

 

From Eq. (15), the quantitative significance	ܵ ൌ ሾݏ௜௝ሿ is obtained and will be fed into the program of 

improved SA algorithm. 

6.3. Simulation results of the proposed approach 

The proposed approach is programmed in MATLAB, including the program of the optimization model 

within the improved SA and the program of the RLN simulation model. Table 4 shows the values of the 

related parameters.  

Table 4: Parameter values 

Parameter ܶ ܳ௪௔௥௠ ܲܭ ݈ܽݐ݋ܶ ݊݋݅ݏ݅ܿ݁ݎଵ ଴ܶ ௙ܶ ܫ ܭ௜௧௘௥ α  

Value 16  8000 0.0001 50 0.01 2 5 0.01  100 0.2 ݑ݌ 

 

The resulting optimal or near optimal project RD with non-zero decision variables is found to be: ݔ଴ଵ,଴ଵ ൌ

0.2, ଴ଵ,଴ହݔ ൌ 0.3, ଴ଷ,଴ଷݔ ൌ 0.2, ଴ହ,଴ହݔ ൌ 0.2, ଴ହ,଴଻ݔ ൌ 0.1, ଴ହ,ଵଵݔ ൌ 0.2, ଴଼,଴଼ݔ ൌ 0.2, ଴଼,ଵସݔ ൌ

0.1, ଴ଽ,଴ଽݔ ൌ 0.6, ଵ଴,ଵ଻ݔ ൌ 0.1, ଵଵ,ଵଵݔ ൌ 0.2, ଵଶ,ଵଶݔ ൌ 0.2, ଵଷ,ଵଷݔ ൌ 0.3, ଵସ,ଵଶݔ ൌ 0.2, ଵ଻,ଶଷݔ ൌ

0.2, ଵ଼,ଵ଼ݔ ൌ 0.6, ଶ଴,ଶ଴ݔ ൌ 0.1, ଶଵ,ଶଵݔ ൌ 0.1, ଶଶ,ଶଶݔ ൌ 0.6, ଶସ,ଵସݔ ൌ 0.2, ଶସ,ଶସݔ ൌ 0.1. 
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From these results, the optimal RD can be regarded as the optimal combination of the prototypical actions, 

which indicate the risks and risk interactions that should be dealt with. Accordingly, decision makers can 

put forward specific risk actions with the consideration of project actual situation and practical experience. 

Besides, the existing frameworks, principles and cases of controlling risks can better guide decision making 

[2, 3, 28]. For instance, ݔଶ଴,ଶ଴ is equal to 0.1 in the previous results mentioned above, means that the 

spontaneous probability of R20 needs to be reduced by 0.1. R20 is “Project scope spread” which is related 

to the issue of uncertainty in the contract. Meanwhile, technology change is a significant cause of spreading 

project scope as it leads to the change of research route as well as the project implementation path. Therefore, 

a specific action to mitigate R20 is put forward based on the principle of increasing the “contractual 

flexibility” [28], that is, setting modification clause for changing the technology of machine learning model. 

This modification clause is capable of changing the technology in time as well as within a reasonable range.  

The number of decision variables ௫ܰ is 83, within which 24 are related to the risks and 59 are pertain to 

risk interactions. The optimized RD involves only 21 non-zero variables due to the constraint condition 

related to Eq. (18). Previous studies usually perceived RD as the set of 1 and 0, where 1 means taking a risk 

response action and results in eliminating the risk or risk interaction absolutely, 0 otherwise [8, 9]. In this 

study, eliminating the risk or risk interaction absolutely means that the ݔ௜௝ reaches its maximum of ݉௜௝ on 

the basis of Eq. (17). But as a matter of a fact, only 13 of the 21 variables reach their corresponding maxima. 

This demonstrates the necessity of setting the decision variables as the decreased value of probability 

instead of the binary values. 

A research, which is of special significance in the study of risk interaction, reports the importance of making 

RD based on the risk interaction [7]. This previous research compared the action of eliminating the 

spontaneous probability and the action of eliminating the transition probability. The result shows that the 

former makes a very little impact on reducing the frequency of risk occurrence; on the contrary, the latter 

is effective. Nevertheless, the optimized RD in this study mainly focuses on eliminating the spontaneous 

probability. The reduced spontaneous probability (36 ݑ݌) is more than the reduced transition probability 



25 
 

 One explanation for this difference is that the precondition varies in these two studies. The .(ݑ݌ 14)

conclusion of the previous research is specific to one risk in the RIN while our conclusion is drawn from 

the perspective of the entire network. In this case, the risks serve as the interface between the RIN and the 

environment, which can be regarded as a gathering of random factors (see Fig. 1). Only when a risk occurs, 

the environment affects the RIN and generates the risk loss. Therefore, the optimized RD focuses more on 

reducing the spontaneous probability to avoid the occurrence of the risks and eventually cuts down the total 

risk loss fundamentally. 

It is noted that there is still 28% ሺ14ݑ݌50/ݑ݌ሻ	of  ݈ܶܽݐ݋ used to reduce the transition probability. This is 

because that weakening the related interactions destroys the structure of the RIN effectively and ends in a 

decrease in the total risk loss. 

6.4. Contrastive analysis of improved SA and standard SA 

The improved SA is compared with the standard SA for the purpose of indicating its effectiveness and 

efficiency. The SA algorithm searches for the optimal RD by the analogy of annealing. For a fixed value 

of the temperature, an RD is selected using the Monte Carlo process [19]. The evaluation result of the 

selected RD, i.e. the current optimized value of the total risk loss, is corresponding to a temperature, and 

its change represents the searching process of the optimal RD, as shown in Fig. 11.  
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Fig. 11. Optimized value changing process of each SA 

In the initial stage of the temperature decreasing, the full line corresponding to the improved SA decreases 

more quickly than the dot-dash line related to the standard SA. Besides, the temperature of stopping the 

improved SA is higher than that of standard SA. These phenomena turn out that the improved SA can search 

for the optimized result more efficiently. Besides, the lower optimized value of improved SA points to its 

effectiveness. 

To validate this observation, these two SAs run 20 times, and the final optimized value of the total risk loss 

and the temperature of terminating SA are recorded. As the final temperature is usually too small and not 

intuitive, the times of running RIN simulation model is adopted, which denoted as NR and is equal to ܫ௜௧௘௥ ൈ

ఈሺ݃݋݈ ௦ܶ/ ଴ܶሻ. A summary of the contrastive analysis between the two SAs is shown in Table 5. 

Table 5:  Contrastive analysis between improved SA and standard SA 

 Optimized value ሺ100$ሻ   ܴܰ	 

  Mean s.d.   Mean s.d. 

Improved SA 1930.3 29.4943  1223.7 71.5932 

Standard SA 2079.03 80.4948  1384.8 64.0901 
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Percentage gap 7.15% -   11.63% - 

Notes: s.d. is short for standard deviation; Percentage gap = (Mean of standard SA – Mean of improved 
SA)/Mean of standard SA. 
 

It is evident from Table 5 that the improved SA performs better on the respects of effectiveness and 

efficiency. However, it is also necessary to judge whether the difference is significant or not in a statistical 

sense and the significance level is set as 5% by convention.  

With respect to the samples of optimized value, we should judge whether the samples obey the normal 

distribution and have equal variance, which are the foundations of comparing the two samples by parametric 

test [29]. A two-sided goodness-of-fit test, named Lilliefors test is adopted to judge whether the sample 

obeys the normal distribution [30], the p-values of two samples are 0.4620 and 0.5000, which means that 

both of them obey the normal distribution. Furthermore, the Bartlett’s Test is used to judge whether the two 

samples have equal variance [31], the p-value is 5.7788 ൈ 10ିହ, which indicates that the test rejects the 

null hypothesis that the variances are equal across the two samples, in favor of the alternative hypothesis 

that the variances are different. As the basic assumption are not satisfied, so non-parametric test is adapted 

instead of the parametric test [32]. The Kruskal-Wallis Test is used to compare the two samples and the p-

value is	7.2360 ൈ 10ି଼, which indicates the two samples are different from the lens of statistics theory [32]. 

Therefore, it is reasonable to make the conclusion that the improved SA is better than the standard SA on 

the respect of effectiveness. By the same token, the NR samples are compared and the final returned p-

value is 4.0982 ൈ 10ି଻, which in favor of the conclusion that these two samples are different with respect 

to the mean. Therefore, the improved SA is more efficiency than the standard one as well. 

7. Conclusion and perspective 

This study has explored an approach for making the risk response decisions in the context of risk 

interactions. The approach includes a RIN simulation model for evaluating the RDs and an improved SA 

for optimizing the RDs. Different from the analytical model, the simulation model considers different levels 

of risk and the corresponding interaction cases. SA has been improved by enhancing its neighborhood 
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search using SNA. In the SNA, two new network indices are put forward to evaluate the significance of the 

nodes and edges on the respect of causing risk loss. 

The analysis of the optimized RD shows that most of the risk eliminating efforts are allocated to reducing 

the risk spontaneous possibility, which is opposite to the previous study. This is because that the previous 

study focuses on one risk in the RIN and aim to reduce the occurrence of the risk, whereas, our study faces 

all the risk in the RIN with the purpose of reducing the total risk loss. Furthermore, the contrastive analysis 

shows that the improved SA performs better than the standard SA on the respects of effectiveness and 

efficiency, which highlights the value of considering SNA in improving the existing heuristic method. 

The proposed approach provides the project manager with a decision support tool to analyze and control a 

complex RIN, which helps the project manager to allocate the valuable and finite risk control resources 

more judiciously. Besides, we use SNA to describes the risk interactions with a quantity and profoundly 

way. The basic thoughts for designing the network indices, i.e. the whole network influence of the node 

(risk) and the “bridge” function worked by the edge (risk interaction), shifts project manager perspective to 

a holistic and dynamic view of understanding the importance of a risk in the context of risk interactions. 

Moving forward, this research can be expanded. (a) Take into account other risk evaluation measures, e.g. 

the utility of decision makers and the value-at-risk. (b) Consider the time factor “delay”. The process of 

triggering a risk through a path may happen in one period or take several periods in the project lifecycle. 

Add the factor “delay” in the RIN simulation model will further improve the approach’s relevance to actual 

practice. Besides, in the SNA of the RIN, the significance of a path is evaluated based on its power; however, 

a paths with smaller delay is more important as it can trigger a risk more quickly. (c) Improve the application 

of SNA in the research of project risk interaction. The proposed approach uses the most powerful paths and 

the general level of the risk for computing the network indices in SNA. However, the SNA could be 

enhanced by developing a systematic approach to determine the threshold value for selecting the “less 

powerful” paths and taking into account all the levels of a risk. (d) Map the risks and stakeholders for the 

purposes of changing the RD from dealing with the risks to motivating the related stakeholders. This can 

bring the approach closer to the need of top managers as they are not familiar with the specific project risks 
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but in charge of governing the stakeholders, such as ensuring the sustainability and efficiency of the 

stakeholders in the contracts [33, 34]. The proposed approach may also be useful to apply to other network 

optimization problems, such as enhancing the supply-chain/logistics network by increasing the ability of 

the nodes and edges. 
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