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If Erring is Human, is System Use Divine? Omission Errors During Post-
Adoptive System Use 

Abstract 

Our study contributes to the research on human error during IS use by studying the 

antecedents of the omission errors that occur during routine instances of computerized work.  

While attention lapses have been identified as the main mechanism leading to omission errors, 

we still know little about how such lapses come about during post-adoptive system use. To 

address this limitation, we draw our theoretical insights from theories of attention and 

prospective memory to illustrate how the different forms of system use carry the potential to 

explain patterns of human error. Accordingly, we distinguish between two forms of use history 

that can consist of features that are either related or unrelated to the execution of a focal task 

and examine their effects on the frequency of omission errors. We also examine the interaction 

effects of task variation on the aforementioned relationship. Our hypotheses are tested by 

analyzing log data associated with the use of a newly introduced mobile application in the 

context of a sailing sports event. Our results indicate that restricting one’s system use on 

related task features reduces omission errors, whereas a use history based on unrelated task 

features produces the opposite effects.  Further, task diversity positively moderates the 

relationship between a use history of unrelated features and omission errors, but has no 

significant moderating effect on the relationship between a use history of related features and 

omission errors. Our findings hold a number of implications for the literature on human error, 

and these are discussed alongside with the implications of our study for practitioners and 

system design. 

Keywords: Human error, omission error, attention, use history, task variation, prospective 

memory, post-adoptive system use, mobile application, field study 
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1 Introduction 

The title of this paper, which paraphrases Alexander Pope’s famous quote, “To err is human, 

to forgive is divine”, illustrates the main aim of this paper, viz., an inquiry into the antecedents 

of human error in the context of routine computerized work. Research on human error has a 

long-standing tradition, and several works have examined instances and the implications of 

committing errors during computerized work (Brodbeck et al. 1993; Galletta et al. 1993, 1996; 

Zapf et al. 1992, 1994). However, we still know little about the antecedents of human error 

during IS use, and our paper sets out to make a contribution in this direction.  

Understanding the conditions under which errors occur during IS use is of paramount 

importance, because of the high impact that ‘small’ errors can carry (Carlo et al. 2012). The 

recent outage in Amazon Web Services (AWS) that originally occurred because one employee 

incorrectly typed a command caused disruption to thousands of customers1. Second, ‘small’ 

errors carry significant economic and behavioral consequences: users on average spend 10% 

of their working time correcting their errors (Brodbeck et al. 1993; Zapf et al. 1994). Last, 

committing errors while using computers has also been associated with negative emotions 

such as stress and frustration (Frese et al. 1991; de Vries at al. 2003; Zapf et al. 1992).  

In this study, we focus on omission errors, which is the most frequent form of error (Love et al. 

2009; Reason 2002). Omission errors are typically attributed to some form of attention capture 

(Reason 1984; Reason 1990). In order to examine how attention failures occur and lead to 

error during IS use, we are driven by the premise that human error cannot be understood 

without understanding action, as error is the byproduct of the same cognitive system that 

produces ‘correct’ actions (Booth 1991). From this standpoint, we argue that an enquiry into 

how patterns of system use are formed carries the potential to explain why errors occur.  

As an indicative measure of the different patterns of IS use, we focus on the concept of use 

history, which is defined as the accumulated use of a basket of features that are available in a 

                                                             
1 https://www.nbr.co.nz/article/xero-instagram-other-services-hit-widespread-aws-outage-ck-200134 

https://www.nbr.co.nz/article/xero-instagram-other-services-hit-widespread-aws-outage-ck-200134
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system and are used to accomplish specified tasks (Jasperson et al. 2005; Sun 2012). Most 

importantly, we extend the concept of use history by distinguishing between use histories that 

are either related or unrelated to the execution of a focal task. Last, given the acknowledged 

importance of task characteristics in terms of impacting attention (Randall et al. 2014; Sanjram 

and Khan 2011), we further examine the moderating effect of task variation between the two 

forms of use history and the omission errors committed by IS users.  

We test our hypotheses by examining the patterns of system use in a newly introduced mobile 

application in the context of a sailing sports event, namely the 2012 Kiel Week sailing event. 

Kiel Week involves about 5,000 sailors from 50 different nations and attracts approximately 

three million visitors every year, and is generally considered to be the world’s largest sailing 

event2. The mobile application introduced, named “Race Committee Cockpit” (RCC app), was 

developed for the purpose of facilitating the work of the event’s race officers, who were 

responsible for monitoring the race conditions, as well as ensuring that race participants 

comply with the set of rules imposed by the International Sailing Federation (ISAF).  

The remainder of the paper is organized as follows. The next section provides a synopsis of 

work on human error, followed by the presentation of our hypotheses and research model. 

Section four outlines the research methodology, whereas section five provides the empirical 

analysis and the results of the study. The final section discusses the broader implications of 

our enquiry into the antecedents of human error, along with some limitations of the study.  

2 Related Research on Human Error 

2.1 Defining Error and Understanding its Underlying Causes  

The study of human error can be regarded as a discipline in its own right, as this topic can be 

considered to be as extensive as that covered by the term human performance (Reason 1990). 

Human error is defined as all the occasions in which a planned sequence of mental or physical 

                                                             
2 http://content.time.com/time/magazine/article/0,9171,2117251,00.html  

http://content.time.com/time/magazine/article/0,9171,2117251,00.html
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activities fails to achieve its intended outcome (Reason 1990). In this respect, errors involve 

either a departure from an intended course of action (or a path of actions) planned toward a 

desired goal, or a deviation from an appropriate behavior at work (Reason and Hobbs 2003).  

Several taxonomies of human error have been developed in order to classify errors3. Our study 

sets out to obtain an understanding of the antecedents of error that occur during the execution 

of routine procedural tasks consisting of well-established, goal-oriented task sequences that 

are commonly performed during IS use. The errors that occur while executing routine task 

sequences are known as omission errors (Panko and Aurigemma 2010). An omission error is 

equivalent to a failure to recall the intention to carry out a task at the right time (e.g. being late 

to perform an intention), or instances where a necessary item is unwittingly omitted from a task 

sequence (Reason 2002). Omission errors primarily occur at the rule-based level of behavior 

and monitoring, where the composition of such a sequence of sub-routines in a familiar work 

situation is typically controlled by a stored rule or procedure (Rasmussen 1983; Rasmussen 

and Vicente 1989). Successful task execution at this level involves noticing an environmental 

cue that is associated in memory with a deferred intention (Dismukes 2006). As such, 

individuals need to keep the task goals in mind, given that the relevant cues occur while 

executing a task; moreover, task goals are not uniquely associated with intentions and must 

compete for retrieval with ongoing task goals (Loft and Remington 2010).  

Keeping goal intentions actively maintained is key in terms of avoiding errors (McVay and Kane 

2012). A goal intention comprises of a collection of active cognitive schemata, the activation 

of which depends on the periodic review of the respective intention (Reason 1984). In the 

absence of such a review process, the activation of cognitive schemata will gradually decline 

and lead to errors associated with executing a delayed intention (Sanjram 2013). In such 

cases, internal or external distractors may inappropriately capture ongoing cognition and 

attention and result in goal neglect errors and action slips (McVay and Kane 2012). Prior to 

outlining our theoretical foundations on how attention lapses might occur during IS use and 

                                                             
3 For a detailed review on error taxonomies, see Bolton (2017), and Hofmann and Frese (2011)  
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cause omission errors, we next provide a brief overview of existing IS works on human error.  

2.2 Human Error in IS Research 

Several works in the IS domain have enquired into the topic of human error. Certain studies 

have explored the effects of system characteristics on the errors committed by a system’s 

users (Goswami et al. 2008; Lazar et al. 2007), whereas other works have explored human 

error under the prism of training users to commit fewer errors. An interesting debate that has 

emerged from this literature concerns the connotations associated with committing errors: a 

number of training studies have sought to identify mechanisms of reducing errors by preventing 

them from happening, as errors have been conceived to be frustrating and anxiety provoking, 

and thus disrupting to individual performance (Brodbeck et al. 1989). Other studies have 

stressed the positive effects associated with committing errors, especially with respect to 

exploring the different features of a system and breaking negative habits related to the use of 

a system (Frese et al. 1991; Keith and Frese 2008).  

Instances of human error have also been explored in other domains of IS research: Sein and 

Santhanam (1999) explored the mechanisms through which committing errors can foster 

users’ learning patterns and the effects of training in this relationship. Recent conceptual works 

have also attempted to stress the importance of the concept of human error in the IS usage 

research. For instance, Burton-Jones and Grange (2013) highlighted the role of human error 

in terms of the relationship between effective IS use and performance, by arguing that effective 

use can improve the effectiveness and efficiency of a system’s use by reducing the errors 

committed and also by improving error recovery. 

3 Theoretical Foundation  

3.1 An Attention-Based View of Individual Behavior 

Studies on human error converge on the finding that instances of omission errors can be 

attributed to attention lapses (Norman 1981; Reason 2000; Reason 2002). Attention refers to 
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“the taking possession by the mind, in clear and vivid form, of one out of what seem several 

simultaneously possible objects or trains of thought” (James 1890, p. 403–404). Different types 

of attention have been identified, including selective attention, attentional vigilance, and 

executive attention (Hoffman and Ocasio 2001; Ocasio 2011). According to Ocasio (2011, 

p.1287), “selective attention concerns the process by which individuals focus information 

processing on a specific set of sensory stimuli at a given point in time, whereas attentional 

vigilance describes the process by which individuals are able to sustain concentration or focus 

on a particular stimulus (e.g. waiting for a signal to occur). Last, executive attention involves 

allocating controlled cognitive resources in working memory to information independent from 

incoming sensory data. It enables individuals to process multiple goals quasi-simultaneously 

by switching back and forth between different stimuli, including directly observed stimuli and 

stimuli stored in memory, and bringing them together in working memory”. 

The ability to devote attention towards the execution of a task is guided by a number of 

cognitive control capabilities, defined as “the supervisory cognitive mechanisms through which 

individuals monitor and control their own attention and cognitive processes” (Laureiro-Martinez 

2014, p. 1114). What is also important to note is that individuals’ attentional capabilities are 

bounded because humans have a limited information processing ability and that the number 

of stimuli that can be attend to are limited (Laureiro-Martinez 2014; Pashler 1999). It goes 

without saying that attentional deficits have been associated with negative behavioral and 

performance outcomes, a notable example of which includes human error (Kahneman 1973).  

3.2 Sustaining Attention During Task Execution – A Theory of Prospective Memory 

Within the context of task execution, the role of attention is critical for two reasons: first, 

successful task execution requires individuals to dedicate attention towards monitoring 

environmental stimuli in order to draw memory associations and perform an upcoming task. 

Second, in order to execute of an intended action, attention needs to be shifted to the execution 

of an ongoing task (Sanjram 2013). The latter is contingent upon an individual’s ability to 

maintain attentional control or to recover access to environmental stimuli or stimulus or goal 
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representations if these are outside an individual’s conscious focus (Engle & Kane, 2004).  

Individuals tend to combine mechanisms for conscious monitoring for environmental cues and 

automatic retrieval (Dismukes 2006). The former would involve an attention-demanding 

executive control system that would encode the association between the external event 

pertinent to the intended action and the intended action itself (McDaniel and Einstein 2000). In 

case of the latter, a target event automatically brings to mind the intended action. This system 

is assumed to support conscious recollection when an external cue automatically interacts with 

previously encoded actions stored in memory (McDaniel and Einstein 2000). Automatic 

retrieval mechanisms are increasingly used as individuals gain experience with a task and task 

execution becomes automatic. As Dismukes (2006, p.910) notes, “It would be uncommon for 

an experienced pilot to arrive at work thinking “I will lower the landing gear today when I turn 

onto final approach” (and it would be rather alarming if a pilot found this necessary)”.  

The extent to which attention-demanding or automatic mechanisms are in operation largely 

depends on the characteristics of the tasks an individual has to perform, cue quality and 

strength, as well as the properties of the ongoing activity (McDaniel and Einstein 2000). In 

sum, the more conscious mechanisms are used for cue monitoring, the higher the attentional 

demands placed on an individual. Accordingly, lapses can occur when individuals face either 

external or internal distractions, and their ability to maintain executive control becomes 

compromised (Casner and Schooler 2015; Randall et al. 2014). Attention lapses can also occur 

when an individual’s limited amount of cognitive resources needs to be devoted to an increased 

number of sources at the same time (Smallwood and Schooler 2006; Thomson et al. 2014).  

Taking stock of these insights, our survey of the literature on human error during IS use 

revealed that even if the link between attention lapses and omission error is acknowledged 

(Sanjram and Khan 2011), studies have done little in terms of showing how such lapses come 

about. Our main proposition is that enquiring into the diverse forms of IS use can help better 

understand how attention lapses and omission errors occur. This position is strengthened by 

several studies showing that research into how systems are used can explain performance 
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outcomes (Burton-Jones and Straub 2006). As Burton-Jones and Grange (2013, p. 640) 

argue,” ...There is always the potential that users may overinvest, underinvest, or misdirect 

their efforts in creating and using systems... although the creation and use of information 

systems can improve over time, the process is likely to be never ending and error prone”. 

In order to address this topic, and at the same align our study with works arguing that individual 

experience is a key determinant of human error (Frese and Keith 2015; Sanjram and Khan 

2011), we focus on two distinct forms of system use that evolve over time; a use history that 

consists of related or unrelated features. We propose that these two forms of system use 

produce diverse attentional requirements, and accordingly differentially impact the frequency 

of omission errors that users commit during system use. We explain these concepts in the next 

section, where we outline our proposed model.   

4 A Proposed Model on Omission Error During Post-Adoptive System Use 

In this section, we outline our research model and hypotheses. In particular, we examine how, 

1) the diverse patterns of system use as they evolve over time, and 2) the amount of variation 

in the tasks that users have to perform, can potentially explain the frequency of omission errors 

that users commit, given the strain that these two factors place on an individual’s attentional 

ability. By pursuing 1), we join the call by Benlian (2015) for additional research on how the 

changing patterns of system use over time can influence performance outcomes. Accordingly, 

our choice to study the effects of task variation on the frequency of omission errors that users 

perform is grounded upon existing studies showing that task characteristics significantly impact 

the propensity for human error (Bolton 2017). We explain this argument in more detail in the 

following sub-sections, where we outline our research hypotheses.  

4.1 Related and Unrelated Feature Use History 

Our main hypothesis is that the cumulative IS use history (and the diverse patterns that use 

histories can take) can explain the omission errors that users commit by producing diverse 

attentional requirements. The concept of use history evolves at the post-adoption stage, where 
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users actively choose to explore, adopt, use and possibly extend one or more of a system’s 

features (Jasperson et al. 2005). The latter constitutes one’s features in use, and essentially 

refers to “the basket of system features that are ready to be used by a user to accomplish 

tasks. System features that do not belong to one’s features in use include the features of a 

system that remain unused, such as the features that are unfamiliar or unknown” (Sun 2012, 

p. 455). Users are in many instances faced with these options, as systems (e.g. word 

processors and spreadsheets) have many more features than those mandated for work 

accomplishment (Jasperson et al. 2005). The decision of which features of a system are used 

can exceed the mandatory use of a system, where users are required to use specific features 

of an IS in order to execute their tasks (Jasperson et al. 2005).   

While users decide which system’s features become parts of their basket of features in use, 

they gain experience with what was initially a novel behavior, and engage less frequently in 

reflective consideration of this behavior and rely instead on previous patterns of behavior to 

direct their future behavior (Jasperson et al. 2005). As users routinely apply any IS feature 

within their work context, the ever-accumulating prior-use experiences will imprint these use 

behaviors within their cognitive scripts and direct them towards task execution. Accordingly, 

an individual’s past behavior will form his/her use history, which is defined as “… a collective, 

systematic account of an individual’s prior use of an IT application and its features… and … 

learned situational-behavior sequences with respect to an IT application and its features that 

have become automatic” (Jasperson et al. 2005, p. 542).  

The concept of use history has been successful in terms of overcoming some of the 

shortcomings of earlier measures of system use (e.g. the frequency, duration, and the different 

system functionalities that are used) that have been considered to be too simplistic to capture 

the relationship between system use and its resulting outcomes (Benbasat and Barki 2007; 

Sun 2012). This has been achieved through the integration of the diverse features of a system 

that actively form a user’s basket of features in use with the evolution of use over time. In short, 

it has been argued that examining post-adoptive behavior at a feature level of analysis can 
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provide insights into why users develop diverse patterns of feature use and, as a result, extract 

differential value from an IS (Jasperson et al. 2005).  

Notwithstanding the promise of the construct of use history in terms of explaining behavioral 

and performance outcomes (omission errors in our case), the related research on the features 

in use has yielded inconclusive results with respect to user performance. For instance, it has 

been argued that expanding one’s basket of features in use is a form of exploratory behavior 

that enhances one’s knowledge and mastery of a system’s features that enhances individual 

performance (Sun 2012). An extended number of features in use also leads to other positive 

outcomes, such as an increased sense of autonomy and cognitive stimulation from the work 

environment (Gill 1996). In contrast, other studies have shown that a higher number of features 

in use does not necessarily lead to performance increases; the adoption of additional features 

can take place in nonproductive ways, or similarly users may be overwhelmed by the presence 

of too many features, resulting in an inability to choose among feature sets or to apply the 

features effectively in their work (Jasperson et al. 2005; Silver 1990). 

We address these seemingly contradicting results by distinguishing between a related feature 

use history (RFUH) and an unrelated feature use history (UFUH). The difference between the 

two constructs is that RFUH includes all those features in use that are necessary for the 

execution of a focal task, whereas UFUH includes the use of features that are not directly 

related to the successful completion of this task, but can nevertheless exist in a system and 

form a user’s basket of features in use (and one’s use history). To offer an example of UFUH, 

while typing this paper on a Microsoft Word processor, one of the authors clicked on the 

‘SmartArt’ feature and started experimenting with different options, even though the task of 

writing this paper did not require the use of this feature in any way. In short, the cumulative 

use of features that are unrelated to the execution of a task (even though the use of this feature 

might have been required in the execution of a different task) constitutes UFUH. It can 

therefore be inferred that what counts as UFUH is dictated by the nature of the task that has 

to be performed, hence what is as an unrelated feature in use could be considered as a related 
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feature in use at another point. This distinction can be particularly salient in work environments 

that involve the execution of routine tasks, where the potential of adapting the different features 

in use in order to exploit the benefits of explorative behavior makes little sense, given that 

successful task execution is performed in standardized, pre-specified ways.  

Given that task execution at the rule-based level of regulation tends to become automatic over 

time (Dismukes 2006; Sanjram 2013), we essentially propose that a use history based on 

related features will lead to fewer omission errors, whereas a use history of unrelated features 

will produce the exact opposite results. RFUH implies higher attentional affordances that can 

be beneficial in the context of task execution, as the increased ability to maintain focus on task 

execution will lead to a less error-prone behavior (Aggarwal and Woolley 2013). This is 

because cues associated with an upcoming task will be able to produce a stronger association 

with existing memory traces of prior system use that have been based solely on task execution. 

In this respect, users do not have to ‘consume’ significant attentional resources to switch back 

and forth between effortful and automatic forms of monitoring for environmental cues. Similar 

to a routinized behavior that frees up mental resources and allows users to rapidly process 

information with little effort (Bargh and Chartrand 1999; Cohen et al. 1996; Laureiro-Martinez 

2014), RFUH will lead to fewer errors due to the lower attentional demands that it creates. 

Hence, we hypothesize: 

HYPOTHESIS 1 (H1). RFUH is negatively related to the number of omission errors committed 

by a system’s users. 

In contrast, we expect that a use history based on unrelated features will produce the inverse 

effects. UFUH essentially refers to cumulative system use that occurs during task execution 

and is unrelated to it. As UFUH is likely to occur because users want to actively experiment 

with a system or just ‘play around’, it is expected to draw many linkages to the concept of mind 

wandering, which includes situations where “executive control shifts away from a primary task 

to the processing of personal goals that are unrelated to the focal task, and occurs without 

intention or even awareness that one’s mind has drifted” (Smallwood & Schooler, 2006, p. 
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946). Omission errors are known to occur during such instances of mind wandering (Casner 

and Schooler 2015), and recent studies have shown that the link between mind wandering and 

human error becomes even stronger when taking into account the detrimental effects of mind 

wandering when it accumulates over time (McVay and Kane 2012; Thomson et al. 2014). In 

the case of UFUH, users will have to resort to more attention-demanding forms of cue 

monitoring. This is because the link between cues for upcoming tasks and memory traces will 

be weaker, given that an increased number of unrelated features will form part of users’ 

memory scripts. As users will also have to dedicate attentional resources to ongoing task 

execution, as well as to recovery from task-unrelated thinking, we expect UFUH to lead to a 

higher number of omission errors. Accordingly, we hypothesize: 

HYPOTHESIS 2 (H2). UFUH is positively related to the number of omission errors committed 

by a system’s users. 

4.2 Task Variation  

Task characteristics are generally defined as the ‘real world’ dimensions that relate to the 

physical nature of a stimulus (Wood 1986). Research into the different aspects of task 

characteristics (e.g. complexity, variety, autonomy, feedback, identity and significance) has 

widely exhibited how the different task features can influence individual and group 

productivity/performance (Fuller and Dennis 2009, Staats and Gino 2012), as well as users’ 

learning patterns (Mukhopadhyay et al. 2011; Narayanan et al. 2009; Schilling et al. 2003).  

In the context of human error, task characteristics (e.g. task complexity) have been found to 

affect both the frequency of errors, as well as the effectiveness of the different error recovery 

strategies (Chung and Byrne 2008; Galletta et al. 1993; Goswami et al. 2008; Sein and 

Santhanam 1999). Even if in cases of task execution that take place at the rule-based level of 

cognitive control and imply a lower level of complexity, the aforementioned findings regarding 

task complexity are not applicable (Zapf et al. 1992), other task features, in particular the 
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diversity of the tasks that have to be executed, can shed some light on the errors committed 

by a system’s users at this level of cognitive control.  

The concept of task variation, namely the frequency of diverse activities that occur while 

performing a particular task, has gained increased attention in terms of understanding its 

dynamics with respect to behavioral outcomes (Narayanan et al. 2009, Schilling et al. 2003, 

Staats and Gino 2012). To offer a better understanding of the concept of task variation, at a 

general level, while most activities comprising a task can significantly overlap with those of 

other tasks, workers still engage in high levels of cognitive activity, presumably due to variation 

in work content across tasks, such as differences between consulting projects, surgeries, or 

legal cases (Avgerinos and Gokpinar 2018). In line with related works that examined the effects 

of task characteristics on IS success (e.g., Sharma and Yetton 2007), we hypothesize that task 

variation will moderate the relationship between use history and omission errors. 

Multitasking is widely known to produce additional attentional requirements (Kahneman 1973).  

In the case of task variation, users will tend to encounter diverse situations, which will require 

a higher amount of information processing. Moreover, in such cases preplanning tends to be 

difficult and thus leads to a greater need for acquiring information on an ongoing basis (Karimi 

et al. 2004). The more absorbing an ongoing activity is, the less likely that resources will be 

available for attention-demanding approaches to prospective remembering or that subjects will 

be able to successfully deploy strategic approaches to cue monitoring (McDaniel and Einstein 

2000). Accordingly, tasks requiring more focus will leave fewer cognitive resources available 

for task-unrelated activities (Smallwood & Schooler, 2006). Engaging in the latter under higher 

task variation should result in larger performance decrements (e.g. errors), because they 

require more active cognitive control (Kanfer and Ackerman 1989).  

Translating these insights into our study, we expect that conditions of higher task variation will 

place a bigger strain on a user’s limited cognitive resources, given that under conditions of 

higher task variation successful performance will require users to divide attention among 

competing task activities. Therefore, users who maintain and enhance a use history of 
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unrelated features are likely to commit more omission errors under task variation. The logic 

behind this builds on our previous hypothesis: As a use history of unrelated features is in itself 

attention-consuming, the likelihood of committing omission errors under conditions of higher 

task variation will be even higher, as users will be less likely to maintain attentional control, 

given their limited amount of cognitive resources (Smallwood and Schooler 2006). 

 Following the same logic, a use history of related features is also likely to be negatively 

affected by an increased level of task variation, as the increased workload will direct users into 

the more effortful and resource-consuming patterns of cue monitoring. Under such conditions, 

users’ ability to maintain attentional control might also be compromised, even if such users 

have a higher ‘attentional buffer’ due to maintaining a use history of related features. In sum, 

our third and fourth hypotheses are the following:  

HYPOTHESIS 3 (H3). Task variation will moderate the relationship between RFUH and the 

number of omission errors that are committed by a system’s users, such that the negative 

relationship between RFUH and the number of omission errors will be weaker when users 

have to perform a wider variety of tasks. 

HYPOTHESIS 4 (H4). Task variation will moderate the relationship between UFUH and the 

number of omission errors that are committed by a system’s users, such that the positive 

relationship between UFUH and the number of omission errors will be stronger when users 

have to perform a wider variety of tasks. 

5 Research Methodology 

In this section, we first describe the research setting of our study. This is followed by an 

overview of our sources of empirical data, which include a combination of hand-written protocol 

data and log data that were derived from the usage of the RCC app that was deployed in the 

2012 Kiel Week sailing event that took place between 16-24 June 2012. The last part in this 

section presents the operationalization of the variables in our model.  
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5.1 The 2012 Kiel Week Sailing Event and the Deployment of the RCC App 

In our attempt to identify omission errors during IS use, we collected data from the field 

deployment of a tablet application, called the Race Committee Cockpit application (RCC app). 

The RCC app incorporates the ISAF sailing rules4 and, among others, allows the race officers 

to schedule races, communicate start violations, manage the flags, and end races.  To further 

ensure user acceptance of the new system, the race officers of 2012 Kiel week were involved 

in the iterative design and development processes of the RCC app. During the design and 

development processes, screenshots and early prototypes were demonstrated to them on a 

weekly basis. Prior to the 2012 Kiel Week sailing event, there was a preparatory sailing event 

where the application developers joined the race committee boat, and operated the RCC app 

to show how the RCC app should be used. In the evening before the first day of Kiel Week, 

there was a briefing session with all race officers. Besides communicating instructions on how 

to use the RCC app, the race officers were asked to practice using the app with ‘dummy’ races.  

During the nine days of Kiel Week 2012, 360 races were conducted in 8 different race courses, 

with each race course including a number of races taking place in parallel. For each of the race 

courses, one dedicated team of race officers located on a boat next to the race course was 

responsible for monitoring and refereeing the races. The head of the team was responsible for 

refereeing the races and communicating with members at shore via a handheld transceiver 

(VHF radio). One member was responsible for recording race events to the RCC app, which 

would then be transmitted via cellular network to an information system on the shore and 

broadcasted live onto the Internet; and two other members of the team were responsible for 

independently handwriting the race events into pre-defined forms, the so-called race protocols.  

5.2 Data Set: App Log Data and Protocol Data 

Our first source of data is the hand-written race protocol data (PD) that served as the official 

description of events that took place in each race. In case of official complaints by one of the 

                                                             
4 http://www.sailing.org/tools/documents/ISAFRRS20132016Final-%5B13376%5D.pdf 

http://www.sailing.org/tools/documents/ISAFRRS20132016Final-%5B13376%5D.pdf
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contestant teams, PD would be examined to respond to the complaints. Hence, we considered 

PD as our reference data.  PD informed us of the actions/tasks that had to be performed in the 

RCC app. Our second source of data included data that was derived from the use of the RCC 

app. Each action (equal to a click) on the RCC app was logged and stored on the tablet device. 

Accordingly, the app log data (LD) recorded all the actions that were performed during the 

races. The use of the RCC app and accordingly the recorded LD actions also mirror tasks that 

had to be performed; RCC users were encouraged to use the app as accurately as possible, 

given that the use of hand-written protocols would gradually be substituted by the RCC app (in 

fact, Kiel Week 2015 was the first event where race monitoring was exclusively based on the 

RCC app). The comparison between PD and LD allowed us to classify the actions recorded in 

LD to: use of related features, use of unrelated features, and omission errors. 

Some error types are detected from mismatches between LD and PD (e.g., the necessary 

actions indicated in PD are not evident in LD). In this case we assume that PD serves as the 

valid reference point and any mismatches in LD indicate errors. One could question this, in the 

sense that PD could also be a source of errors. We nevertheless maintain PD as a more 

objective ‘mirror’ of the tasks that had to be performed, firstly because PD was used as the 

reference point for official complaints, and second because all of the errors that we counted 

depended on actions that had to be performed according to PD; given the nature of tasks that 

race officers had to perform, we consider it unlikely that false actions were reported in PD.   

In total, 360 races were monitored by eight race officers, who were named after the code words 

of maritime alphabet: Alpha, Charlie, Delta, Echo, Foxtrott, Golf, Juliett and Kilo. Out of the 360 

races, 230 races could be linked to complete PD access and be translated into a digital format, 

and were consequently included in the data set. During the 230 races, a total of 3,439 actions 

were recorded that were classified as related and unrelated feature uses. During a majority of 

the races (144 races), each race officer had to administer at least two races in parallel. These 

144 parallel races that corresponded to 2,381 actions (related and unrelated feature uses) 



17 
 

were used for the analysis. Our analysis was limited to 144 races, as the computation of some 

of our variables required the administration of at least one parallel race.  

5.3 Operationalization of the Variables 

The dependent variable in our study is the number of omission errors committed in each race, 

which are classified as errors (ERROR). The main variables in our study are: related feature 

use history (RFUH), unrelated feature use history (UFUH), and task variation (TV). 

𝐸𝑅𝑅𝑂𝑅𝑖𝑗 is the number of omission errors in race 𝑗 committed by the race officer 𝑖. 𝑂𝐸𝑅𝑅𝑂𝑅𝑖𝑗
∈

[0,9] consists of the following errors: 

error1 : The running flag was not set. 

error2 : The running course was not set. 

error3 : The XRAY flag was set, but was never unset. 

error4 : The BLUE flag was set, but was never unset. 

error5 : According to PD, the race had ended, but the BLUE flag was not set. 

error6 : The BLUE flag was set and immediately unset. This means the user noticed that 

he/she did not properly set the BLUE flag, and corrected it by firstly setting the BLUE flag, 

and then unsetting the BLUE flag again. 

error7 : According to PD, a race started at time 𝑡, but the start of the race in LD was recorded 

at time 𝑡 + 𝑛. To account for the possible processing delay of the RCC app and after 

consulting with the race committee officers, we only count this error if |𝑛| > 90 seconds. 

error8 : According to PD, the first boat crossed the finish line at time 𝑡, but the event in LD 

was recorded at time 𝑡 + 𝑛 . To account for the possible processing delays and after 

consulting with the race committee officers, we only count this error if |𝑛| > 60 seconds. 

error9 : According to PD, the last boat crossed the finish line at time 𝑡, but the event in LD 

was recorded at time 𝑡 + 𝑛 . To account for the possible processing delays and after 

consulting with the race committee officers, we only count this error if |𝑛| > 60 seconds. 
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Our pool of omission errors includes both ‘pure’ omissions (error1-error5), where a necessary 

item is unwittingly omitted from a task sequence, as well as an additional set of omission errors 

(error6-error9), where the intention to carry out an action is not recalled at the right time 

(Reason 2002). For errors 7-9, we had to decide on a decide on an acceptable minimum 

amount of delay that would count as an omission error beyond reasonable doubt. To achieve 

this, we consulted the Race Committee Officers, as well as the Head of the Racing Committee 

whose role was instrumental in the design and rollout of the RCC app. Examples of errors 

derived from LD and PD are shown in Figure 1. This example shows a correct setting of the 

PAPA flag (marker 1), but there was an error in scheduling the race (error2; the actual starting 

time according to PD is 17:00, but it was scheduled in LD to start at 17:05) (marker 2), and 

there was a missing action of unsetting the BLUE flag (error4) (marker 3). 

Figure 1: Examples of errors derived from LD and PD 

The set of observed actions in the RCC app that was performed by race officer 𝑖 on race 𝑗 can 

be classified as related feature use (RFU), unrelated feature use (UFU), and ERROR. Let 𝑎𝑖𝑗 

denote an action performed by race officer 𝑖  on race 𝑗 , and a classifier 𝑐𝑙𝑎𝑠𝑠(𝑎) ∈

{𝑅𝐹𝑈,𝑈𝐹𝑈, 𝐸𝑅𝑅𝑂𝑅}. Previously, we explained the list of actions coded as errors that define 

our dependent variable. The list of actions coded as RFU and UFU are summarized in 

Appendix A. We first created this list and split actions into related and unrelated features. In 

order to avoid any mistakes with the operationalization of actions into related and unrelated 

actions, we checked and confirmed our operationalization of the two variables with the Head 

of the Race Committee Officers, who was instrumental in the design and rollout of the RCC 
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app. Following the consultation process, we did not make the operationalization of the 

variables, as we had a 100% overlap with the Head of the Race Committee5.  

Let 𝐴𝑖𝑗 = {𝑎𝑖𝑗: 𝑐𝑙𝑎𝑠𝑠(𝑎𝑖𝑗) ≠ 𝐸𝑅𝑅𝑂𝑅} denote the set of related and unrelated features in use 

during race j on course 𝑖. The set of prescribed actions consists of a set of 4 necessary actions 

derivable from PD (see Appendix B). Let 𝑝𝑎𝑖𝑗 denote a prescribed action performed by race 

officer 𝑖 on race 𝑗, and let 𝑃𝐴𝑖𝑗 denote the set of prescribed actions during race j on course 𝑖.  

Related Feature Use History (𝑅𝐹𝑈𝐻)𝑖𝑗 is defined as the cumulative number of related features 

in use in the RCC app by race officer 𝑖,  before race j. That is 𝑅𝐹𝑈𝐻𝑖𝑗 = ∑ |{𝑎𝑖𝑙 ∈
𝑗−1
𝑙=1

𝐴𝑖𝑙: 𝑐𝑙𝑎𝑠𝑠(𝑎𝑖𝑙) = 𝑅𝐹𝑈}|.  

Unrelated Feature Use History (𝑈𝐹𝑈𝐻)𝑖𝑗 is defined as the cumulative number of unrelated 

features in use in the RCC app by race officer 𝑖 , before race 𝑗 . That is 𝑈𝐹𝑈𝐻𝑖𝑗 =

∑ |{𝑎𝑖𝑙 ∈ 𝐴𝑖𝑙: 𝑐𝑙𝑎𝑠𝑠(𝑎𝑖𝑙) = 𝑈𝐹𝑈}|
𝑗−1
𝑙=1 .  

Task Variation (𝑇𝑉𝑖𝑗) is defined as the amount of variation in the prescribed actions between 

race 𝑗 (𝑃𝐴𝑖𝑗) and its corresponding parallel races. A detailed explanation of how we computed 

task variation can be found in Appendix C.  

Control Variables 

In addition to the dependent and independent variables, we also measured several control 

variables that we deemed important. These are: 1) the external environmental conditions in 

terms of the wind strength, 2) the ‘normality’ of a race, and 3) the individual-specific effects of 

the different race officers. 

Wind strength (WIND) was measured for each race and documented in PD. Measurement was 

done using a wind measurement device on the race committee boats. The unit of wind is knot. 

                                                             
5 Naturally, what counts as a related/unrelated feature has to be seen in the context of the sailing event; 
using a different artifact in another setting would have a different ‘basket of features in use’, as well as 
related and unrelated features. 
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Since the race officers using the RCC app were on a boat offshore, the environmental condition 

in terms of the wind strength may have an impact on user performance, given that external 

distractions can potentially cause interruptions and increase the frequency of errors (Speier et 

al. 1999), and are also known to impact the propensity of experiencing attention lapses and 

consequently performing omission errors (Casner and Schooler 2015). 

Race Flag (FLAG): In ‘normal’ race situations, race officers start with raising the PAPA flag. In 

‘special’ situations, such as restarting an aborted race, the race officers may start the race with 

other flags, such as the BLACK flag. We thus include the race flag as a dummy variable for 

controlling for the ‘normality’ of the race (i.e., FLAG=0 -> PAPA, FLAG=1 -> other than PAPA). 

The ‘normality’ of the race may therefore affect the race officers’ tendency to commit errors. 

Race Officer (OFFICER): To account for the individual differences in cognitive resources (e.g. 

general mental ability and working memory capacity) that are known to affect the propensity 

of experiencing attention lapses (Kane and Engle 2003) and conducting omission errors 

(Randall et al. 2014), we included each race officer as a control variable. Those are: ALPHA, 

CHARLIE, DELTA, ECHO, FOXTROTT, GOLF, JULIETT, and KILO. The number associated 

with each officer refers to the frequency of parallel races that he/she had to administer 

throughout the sailing event. For the analysis, officer ALPHA was used as the baseline.  

6 Data Analysis and Results 

Before listing the correlation and the descriptive statistics for the variables in our model (Tables 

1 and 2), we would like to make a note on the impact and the magnitude of errors in our study: 

the number of omission errors performed on average per race was 2.43 (St. Dev. = 1.18). To 

offer a sense of the relative impact of omission errors, the average number of related features 

in use (RFU) that RCC users performed per race was 10.2 (St. Dev. = 6.03). Also, every error 

counts; given the criticality of capturing the race accurately in order to avoid and/or address 

formal complaints from the contestants of the sailing event, no error can be taken lightly.  
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We also conducted robustness checks for our model using errors 1-5 and errors 6-9 

respectively. We obtained similar results as in our main model, with the only difference that the 

interaction effect between TV and UFUH in the model with errors 1-5 as the dependent variable 

was not statistically significant. We attribute this to the unbalanced frequency of errors in the 

two models, given that errors 1-5 did not occur in 52 of the 144 races, whereas errors 6-9 did 

not occur in only 17 of the 144 races. 

Continuous Variables 

 Min Max Mean Std.Dev 

ERROR 0 6 2.43 1.18 

WIND 4.5 27.0 14.13 4.00 

RFUH 0 402 207.45 90.14 

UFUH 0 585 191.42 150.63 

TV 0 1 0.37 0.26 

Categorical Variables 

Variable Frequency % 

FLAG-0 

FLAG-1 

96 

48 

66.7 

33.3 

COURSE-ALPHA 

COURSE-CHARLIE 

COURSE-DELTA 

COURSE-ECHO 

COURSE-FOXTROTT 

COURSE-GOLF 

COURSE-JULIETT 

COURSE-KILO 

3 

25 

23 

20 

16 

32 

21 

4 

2.1 

17.4 

16.0 

13.9 

11.1 

22.2 

14.6 

2.8 

Table 1: Summary of Descriptive Statistics  

 

 ERROR WIND FLAG OFFICER RFUH UFUH TV 

ERROR 1       

WIND -0.091 1      
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FLAG -0.248 0.061 1     

OFFICER 0.191 0.142 0.336 1    

RFUH 0.055 0.001 -0.046 0.133 1   

UFUH -0.114 0.010 -0.153 0.630 0.362 1  

TV -0.115 0.212 -0.021 -0.154 0.202 0.033 1 

Table 2: Correlation Statistics 

 

Before proceeding with our hypotheses testing, we standardized the coefficients of the 

continuous variables for ease of comparison. To account for the count data in the dependent 

variable, we used a Poisson regression model. Allison and Waterman (2002) suggest using 

the negative binomial model as an alternative to Poisson in the presence of over-dispersion. 

Since there is no significant indication of over-dispersion (we are not able to reject the null-

hypothesis of equi-dispersion at the 5% significance level), we proceed with a Poisson 

regression model6. Model 1 in Table 3 is without the interaction terms (H1 and H2), whereas 

Model 2 in Table 3 is with the interaction terms (H3 and H4).  The values of variance inflation 

factor (VIF) for our continuous variables were not higher than 5, which means that no 

multicollinearity problem exists in any of the models (Cohen and Cohen, 1975). The regression 

results of all models are summarized in Table 4. 

The data analysis shows that RFUH reduces omission errors whereas UFUH increases 

omission errors. Hence, H1 and H2 are supported. The standardized variables make it possible 

to compare the magnitudes between the coefficient estimates. As shown in Model 1, UFUH 

has larger effect on omission errors than RFUH. The effect of UFUH on omission errors is 

magnified by the degree of variation in terms of the parallel tasks that a race officer has to 

perform. Task variation (TV) however has no significant moderating effect on the relationship 

                                                             
6 Over-dispersion in Poisson regression models is present if the conditional variance is larger than the 
conditional mean (Allison and Waterman 2002). Statistical tests for overdispersion (Cameron and 
Trivendi 1990) are done against the null hypothesis of equi-dispersion (conditional variance equals 
conditional mean). 
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between RFUH and omission errors. Hence, only H4 is supported. In the next section, we 

discuss these findings in more detail. 

 Model 1 

DV: ERROR 

Model 2 

DV: ERROR 

Control Variables   

WIND -0.010 (0.060)***  0.015 (0.062) 

FLAG-0 (baseline) 

FLAG-1 

 

-0.166 (0.150) 

 

-0.206 (0.153) 

OFFICER-ALPHA 
(baseline) 

OFFICER-CHARLIE 

OFFICER-DELTA 

OFFICER-ECHO 

OFFICER-FOXTROTT 

OFFICER-GOLF 

OFFICER-JULIETT 

OFFICER-KILO 

 

 
-0.206 (0.407) 

-3.323 (1.261)** 

-0.109 (0.395) 

 0.546 (0.415) 

 0.223 (0.430) 

-0.814 (0.474) 

-0.511 (0.534) 

 

 
-0.125 (0.430) 

-3.482 (1.303)** 

-0.064 (0.410) 

 0.532 (0.433) 

 0.355 (0.445) 

-0.743 (0.485) 

-0.467 (0.566) 

Main Variables   

RFUH -0.399 (0.172)* -0.432 (0.175)* 

UFUH  1.227 (0.476)**  1.335 (0.489)** 

TV  -0.064 (0.062) 

RFUH:TV  -0.078 (0.068) 

UFUH:TV   0.151 (0.061)* 

AIC  474.46  473.71 

***Significant at < 0.001; **Significant at < 0.01; *Significant at < 0.05; .Significant at <0.1 

Table 3. Analysis Results 
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Hypotheses Empirical Support 

H1. RFUH is negatively related to the number of omission 
errors that are committed by a system’s users. 

Supported 

H2. UFUH is positively related to the number of omission 
errors that are committed by a system’s users. 

Supported 

H3. Task variation will moderate the relationship between 
RFUH and the number of errors that are committed by a 
system’s users, such that the positive relationship between 
RFUH and the number of omission errors will be weaker 
when users have to perform a wider variety of tasks. 

 

Not Supported 

H4. Task variation will moderate the relationship between 
UFUH and the number of errors that are committed by a 
system’s users, such that the negative relationship between 
UFUH and the number of omission errors will be stronger 
when users have to perform a wider variety of tasks. 

 

Supported 

Table 4. Summary of the Results 

7 Discussion 

In this section, we discuss the contributions of our study for the research on human error and 

post-adoptive system use. We also discuss the practical implications of our study in terms of 

user training and error management. Last, we elaborate on the limitations of our research and 

the possible extensions that can be made to our study. 

7.1 Contributions to Research 

Our study firstly contributes to the post-adoptive system use literature by empirically 

showcasing how different forms of system use can lead to diverse performance outcomes, and 

in particular into omission errors. We examined the antecedents of omission errors in the 

context of executing largely standardized, procedural task sequences. Omission errors 

occurring at this level have typically been attributed to attention lapses. Earlier studies have 

argued that in such settings, the extent to which such lapses occur can be attributed to the 

degree of user experience and the characteristics of the tasks that users have to perform 

(Sanjram and Khan 2011). We extended this argument by showing that omission errors are 

indeed dependent on individuals’ cumulative use of a system, and as such we join other works 

highlighting the importance of better understanding the patterns of system use over time 
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(Benlian 2015). Most importantly, however, we show that cumulative system use can unfold in 

diverse ways and differentially impact the frequency of omission errors.  

We drew our insights from the concept of use history (Jasperson et al. 2005; Sun 2012), and 

we argued that use histories can unfold in diverse ways and produce the inverse effects in 

terms of committing omission errors; a history of using a system according to features that are 

related to the execution of specific tasks leads to fewer omissions, whereas a use history that 

encompasses an extended number of system features leads to the exact opposite results. In 

this respect, we extend existing studies by arguing that what matters in terms of combatting 

omission errors during the execution of PM tasks is not the cumulative use of a system per se, 

but rather cumulative system use in a focused manner. 

Additionally, our study shows that using an extended number of a system’s features can be a 

double-edged sword: while a number of studies have highlighted the benefits of IS infusion 

(Fadel 2012; Kim and Gupta 2014), or that extended, innovative, or emergent use can be a 

means of fostering individual mindfulness and maintaining performance reliability (Butler and 

Gray 2006; Li et al. 2013; Sun 2012), we show that in the context of routine, procedural tasks 

that do not necessarily require devising innovative solutions, an extended use of a system’s 

features can produce adverse effects on user performance. This is not to say that our study 

downplays any of the acknowledged positive effects of mindful use in terms of combatting error 

(Butler and Gray 2006). Given that mindfulness is equally about the quality of attention as it is 

about the conservation of attention (McAvoy et al. 2013), we argue that it is important to 

emphasize that innovative or extended use (an inherent component of mindful use) is also 

resource consuming and can be redundant in certain task contexts.  

At the theoretical level, we argued that the key to successful task execution is noticing 

environmental cues, which in turn trigger intended actions by involving mechanisms that draw 

associations with existing memory (McDaniel and Einstein 2000). The process of cue 

monitoring can either involve more conscious, effortful and attention-demanding mechanisms, 

or it can involve mechanisms where such associations are done automatically. Automatic 
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retrieval becomes increasingly the norm as task execution becomes repetitive over time. 

Nonetheless, depending on a number of parameters (e.g. task characteristics, cue quality and 

strength), attention-demanding mechanisms can complement the more resource-free 

mechanisms. In sum, given the limited amount of cognitive resources that any individual is 

equipped with, the more conscious mechanisms are used for cue monitoring, the higher the 

attentional demands, and consequently the higher the probability of lapses and errors. 

While this framework initially provides support to our findings, our study nevertheless provides 

some nuanced findings and makes some possible extensions: firstly, contrary to what we 

hypothesized, we did not find support for the moderating effect of task variation on the 

relationship between RFUH and omission error. While it is likely that users were able to 

maintain an ‘attentional buffer’ from this relatively resource-free form of use history, the 

negative coefficient of the moderating effect (albeit not significant) seems to suggest that the 

additional burden of task variation starts to consume the attentional ‘buffer’. Perhaps more 

importantly, there is a need for better conceptualization and measurement of the attentional 

requirements of both ongoing and PM tasks.  

Secondly, the literature on human error argues that it is important to examine the 

characteristics of the prescribed tasks that individuals have to perform in order to assess 

whether attention-demanding or automatic mechanisms of cue monitoring will be in operation. 

Our study shows that it is equally important to complement the study of ongoing task 

characteristics with an examination of the actual activities during task execution, given that the 

two forms of use history in our study lead to the exact opposite performance results. In this 

respect, our study contributes to the ongoing debate around the ways in which task variation 

impacts task performance (Avgerinos and Gokpinar 2018). In sum, our unique empirical setting 

and dataset that included a documentation of both prescribed and performed actions, enabled 

us to conduct such an enquiry and yielded some highly interesting results. 
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7.2 Implications for Practice 

Our study holds several practical implications: First, we observe that providing users with initial 

training is simply not enough in terms of combating errors. In our study, users received training, 

not only in terms of obtaining detailed instructions about the procedures they had to follow prior 

to the real-time use of the system, but also in terms of having ample time to practice with the 

system on their own, thus resembling the two types of procedural and conceptual model 

training procedural (Santhanam and Sein 1994). As a number of users tend to disregard 

training manuals and similar support systems (Lazonder and van der Meji 1994), it is important 

for organizations to understand the conditions under which errors occur in situ. To this effect, 

our study shows that in the case of executing procedural tasks, particular attention should be 

paid on how systems are used over time. Effective error management techniques should 

therefore not only consist of regular monitoring of the ways in which use histories are formed, 

but also of targeted interventions in cases of deviance from patterns of related feature use. 

It is important for such interventions to occur before a use history of unrelated features turns 

into routinized action. An additional implication of our study is that suitable mechanisms of 

sustaining attention also need to be identified, and most importantly including such elements 

into user training also seems imminent. In this respect, investing in training to enhance users’ 

cognitive abilities (i.e. general mental ability and working memory capacity) seems to be a 

worthwhile undertaking. While research on the effects of training on working memory abilities 

has yielded inconclusive results, it has been acknowledged that such efforts make sense in 

the context of executing routine tasks 7. Last, it is important to note that in cases where ‘playing 

around’ during system use cannot be avoided, it is best if such user behavior takes place under 

conditions where task variation is the lowest; even if high task variation might make users more 

alert (Sanjram and Khan 2011), an increasing use of unrelated features will undermine user 

performance, and make the shift to patterns of related feature use more difficult.  

                                                             
7 http://www.the-scientist.com/?articles.view/articleNo/39768/title/Does-Brain-Training-Work-/  

http://www.the-scientist.com/?articles.view/articleNo/39768/title/Does-Brain-Training-Work-/
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From a system design perspective, it is acknowledged that investing in system-based error 

correction mechanisms can be problematic, especially in the case of end user computing (Klein 

et al. 1997). Nevertheless, introducing features that sustain users’ attentional abilities (e.g. 

through arousal techniques and/or regular reminders) appears to be a sensible option. 

Nonetheless, our results indicate that the most important thing in terms of combating omission 

errors is to redirect individuals from the use of unnecessary features, and most importantly to 

avoid that such patterns of usage become routinized over the course of time. As such, 

restricting system use during the earlier stages of system deployment to only related and 

mandatory features appears to be eminent in order to combat omission error, as users have 

limited knowledge of a system’s features at this stage (Durcikova et al. 2011). 

7.3 Limitations and Suggestions for Future Research 

Our study also comes along with a number of limitations: First, we focus only on omission 

errors that take place at the level of rule-based regulation. While on the one hand we cover a 

broad spectrum of omission errors at this level of cognitive control, our study does not explore 

other classes of errors that occur at the knowledge and the skill-based level of cognitive 

regulation. Future studies can complement ours by examining whether and how the diverse 

forms of system use also affect the patterns of errors occurring in settings that involve the 

execution of more complex tasks. It could be the case that under such conditions, an extended 

basket of features in use that accumulates over time and encapsulates patterns of emergent 

and integrative use (Saga and Zmud 1993), might produce different results from ours. Second, 

our hypotheses were tested over a set period of time and in a sailing sport setting; future 

studies could firstly examine whether our inferences hold over a larger time span, given that 

patterns of system use are likely to change over the course of time (Burton-Jones and Gallivan 

(2007). Future studies could also test our hypotheses in more ‘typical’ settings of computerized 

work (e.g. in spreadsheet development), as computerized work in the context of sailing sports 

may produce certain peculiarities that compromise the generalizability of our findings.  



29 
 

Also, we strongly believe that the concept of attention will gain a more prominent position in 

the literature on post-adoptive system use. Testing the effects of the different aspects of usage 

(e.g. the duration and the scope of usage, the intention to use a system and the perceived 

ease of use) on users’ attentional abilities and patterns of attention allocation can yield novel 

insights into how system usage affects both positive and negative aspects of performance.  

Last, a large body of research in the area of mind wandering has shown that when individuals 

experience attention lapses, they tend to lose focus and the mind shifts into internal trains of 

thought that are unrelated to ongoing task execution, which leads to errors (McVay and Kane 

2012; Randall et al. 2014, Smallwood 2013). Future research on post-adoptive system use 

could also benefit from examining the interplay between such internal trains of thought and the 

diverse patterns of system use. Such an enquiry can shed further light into how use histories 

are formed, and how positive and negative aspects of user performance are ultimately affected. 

8 Conclusion 

In this study we have sought to stress the need to study errors during post-adoptive system 

use, and we attempted to examine human error under the prism of how the information 

systems are actually used over time, while executing procedural tasks. Our analysis yielded 

some interesting results: when systems are used repeatedly in a focused manner, users tend 

to commit fewer errors. In contrast, when unrelated features become embedded in individuals’ 

use history, the effects can be deleterious, even more so under conditions of high task 

variation. In sum, human error in system usage is a persistent problem in modern 

organizations, even in times where automation is more pervasive than ever before; given that 

humans are ultimately the end users of a system and those primarily responsible for error, our 

study contributes toward the effective management of error by stressing the need to enquire 

into how systems are used, and in particular by examining the formation of use histories.  
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Appendix A: List of Actions 
 

Identifier Action 
Related 
Feature 

Unrelated 
Feature 

Explanation and Comments 

id1 select race x x 

Selecting a race to officiate. When this action was performed 
one time per each parallel race, we coded it as related feature 
use. When it was performed more than once per each parallel 
race, we coded it as unrelated feature use. 

id2 set start time x   Setting the starting time of a race. 

id3 reset start time x   Reschedule the starting time of a race. 

id4 reset time button x   
Pressing the button reset time after the start time was 
rescheduled 

id5 set running flag/PAPA x x 
Setting running flag. When each of these actions was 
performed one time per race, we coded it as related feature 
use. When they were performed more than once per race, it 
was coded as unrelated feature use, as only one out of the four 
flags can be raised during the course of a race. 

id6 set running flag/ZULU x x 

id7 set running flag/BLACK x x 

id8 set running flag/INDIA x x 

id9 postpone race x   Postpone a race which is not yet started 
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id10 postpone race/ALPHA x   
Postpone a race which is not yet started with a remark that 
there is no more racing today 

id11 postpone race/HOTEL x   
Postpone a race which is not yet started with a remark that 
further information is available offshore 

id12 abortSt x   Abandon and postpone a race during the start phase 

id13 abortSt/ALPHA x   
Abandon race during the start phase with a remark that there 
is no more racing today 

id14 abortSt/HOTEL x   
Abandon a race during start phase with a remark that further 
information is available offshore 

id15 set individual recall /XRAY x   Starting an individual recall  

id16 unset individual recall /XRAY x   Ending of an individual recall 

id17 general recall/yes x   Recall the whole race (answering Ok in confirmation dialog) 

id18 general recall/no   x Canceling recall of the whole race 

id19 set running course/yes x   Setting the running course 

id20 set running course/no    x Cancelling setting the running course 

id21 abortAp x   Abandon and postpone a running race 

id22 abortNovember x   
Abandon a running race with a remark that more information is 
available at the start line 

id23 set blue flag/yes x   Signaling that the first boat has crossed the finish line  

id24 set blue flag/no   x 
Canceling the signal that the first boat has crossed the finish 
line 

id25 unset blue flag/yes x   Signaling that the last boat has crossed the finish line  

id26 unset blue flag/no   x 
Canceling the signal that the last boat has crossed the finish 
line 

id27 login   x Login to another race course administered by another user 

id28 cancel login   x Cancelling login 

id29 select event   x Select sailing event (after login) 

id30 select course   x Select course (after selecting an event) 

id31 select label   x Click on the label of the RCC app that has no functionality 

id32 reset race/no   x Cancelling reset race 

Appendix B: List of prescribed actions 
 

Identifier Action Explanation and Comments 

pa1 Start time 
The start time of the race, as documented on the 
hand-written protocols. 

pa2 Running flag 
The running flag that was raised (PAPA, ZULU, 
BLACK or INDIA) as documented on the hand-
written protocols.  

pa3 Set blue flag 
Signaling that the first boat has crossed the finish 
line (as documented on the hand-written 
protocols) 

pa4 Unset blue flag 
Signaling that the last boat has crossed the finish 
line (as documented on the hand-written 
protocols). 
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Appendix C: Operationalization of Task Variation 
 

Task Variation (TVij) is defined as the variability of the prescribed actions between race 𝑗 

(𝑃𝐴𝑖𝑗) and its corresponding parallel races. We measure TVij as (1 – task similarity). Task 

similarity is quantified in a vector space model, a technique frequently used for information 

retrieval tasks such as comparing similarities of documents or websites (Salton et al. 1975). 

Objects can be represented as a vector. Similarity between the vectors is calculated as the 

absolute value of the cosine of the angle between the vectors. Consider the set 𝑃𝐴𝑖𝑗, for each 

parallel race 𝑘, we extract the overlapping actions (OA) in time for race 𝑘 as follows: 

𝑂𝐴𝑘 = {𝑝𝑎𝑖𝑘 ∈ 𝑃𝐴𝑖𝑘: 𝑡𝑖𝑚𝑒(𝑝𝑎𝑖𝑘) ∈ [𝑡𝑚𝑖𝑛
𝑗 , 𝑡𝑚𝑎𝑥

𝑗 ] }, namely all actions on race k between the first 

action (at time 𝑡𝑚𝑖𝑛
𝑗

) and the last action (at time 𝑡𝑚𝑎𝑥
𝑗

) on race j respectively. 

Let 𝑡𝑚𝑖𝑛
𝑘  and 𝑡𝑚𝑎𝑥

𝑘  denote the time of the first and last related feature use in 𝑂𝐴𝑘 respectively. 

We extract the overlapping actions in the race under investigation (race j) as follows: 

𝑂𝐴𝑗 = {𝑝𝑎𝑖𝑗 ∈ 𝑃𝐴𝑖𝑗: 𝑡𝑖𝑚𝑒(𝑝𝑎𝑖𝑗) ∈ [𝑡𝑚𝑖𝑛
𝑘 , 𝑡𝑚𝑎𝑥

𝑘 ]}, namely all actions on race j between the first 

action (at time 𝑡𝑚𝑖𝑛
𝑘 ) and the last action (at time 𝑡𝑚𝑎𝑥

𝑘 ) on race k respectively. 

We then map the overlapping actions 𝑂𝐴𝑘  and 𝑂𝐴𝑗  to a vector space. As the actions 

correspond to 4 related features in use that are listed in Appendix C, we map 𝑂𝐴𝑘 and 𝑂𝐴𝑗 to 

4-dimensional vectors 𝑂𝐴𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑂𝐴𝑗

⃗⃗ ⃗⃗ ⃗⃗  ⃗  which contain a value of zero or one. The similarity 

between 𝑂𝐴𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝑂𝐴𝑗

⃗⃗ ⃗⃗ ⃗⃗  ⃗ is defined as follows: (𝑂𝐴𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑂𝐴𝑗

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = |
𝑂𝐴𝑘⃗⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗ . 𝑂𝐴𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝑂𝐴𝑘⃗⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗‖ ‖𝑂𝐴𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖
| , whereas 𝑂𝐴𝑘

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is the 

vector with the overlapping actions of race k, and 𝑂𝐴𝑗
⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the vector with the overlapping actions 

of race j. The absolute value of cosine yields a value between 0 and 1, ranging from minimum 

to maximum similarity. In case of multiple parallel races, we take the average of the similarity 

indices to obtain the TS measure.  

 


