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Abstract

Statistical mechanics of relative species abundance (RSA) patterns in biological networks is

presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka-

Volterra equation, with diverse interspecies interactions. Various RSA patterns observed in nature

are derived from a single parameter related to productivity or maturity of a community. The

abundance distribution is formed like a widely observed left-skewed lognormal distribution. It

is also found that the “canonical hypothesis” is supported in some parameter region where the

typical RSA patterns are observed. As the model has a general form, the result can be applied

to similar patterns in other complex biological networks, e.g. gene expression.
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1 Macroscopic ecological patterns as eco-information

The most significant feature of large-scale biological networks, such as food webs[1, 2]Cmetabolic net-

works in a cell[3] and protein networks[4, 5], is overwhelming diversity of components, e.g., species,

chemical constituents and proteins, respectively, great complexity of network topology, and homeo-

static stability of dynamics on the networks. From a theoretical viewpoint, it is a serious question

how living organisms has evolved such a homeostasis because chaotic instability is inherited even in a

simple nonlinear system.

As an approach to such a problem, macroscopic patterns observed in various complex networks

have been studied[6]. Such studies on scale-free networks have been elucidated the characteristics of

topology of natural and artificial complex networks, and the evolutionary conditions which produces

such a topology. Unifying approaches to biological and abiological networks have emphasized their

similarity and difference. For example, it is pointed out that an infection of computer virus on the

internet with scale-free topology is followed by a qualitatively different epidemic dynamics from the

one of biological viruses in nature, and, therefore, the computer viruses are hardly eradicated[7].

On the other hand, in a large-scale complex biological networks such as ecosystems, not only

a topology of the network links but also a thickness of each link, i.e. the strength of interactions,

definitely affect population dynamics and resulting macroscopic patterns. In ecology, classical macro-

scopic patterns observed and studied for a long time is RSA patterns, in other words, abundance

distribution of species, which is one of the most accumulated informations obtained in ecology.

Nevertheless, how to clarify the mechanisms underlying those RSA patterns has been one of the

’unanswered questions in ecology in the last century [8]’ even though the knowledge obtained from

it would affect vast areas of nature conservation. Various models have been applied to ecosystem

communities where species compete for niches on a trophic level [9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], but these models have left the more complex systems

a mystery. Such systems occur on multiple trophic levels and include various types of interspecies

interactions, such as prey-predator relationships, mutualism, competition, and detritus food chains.

Although RSA patterns are observed universally in nature, their essential parameters have not been

fully clarified. In this paper, it is presented that RSA patterns are derived from a statistical mechanical

theory[30], based on a general evolutionary dynamics which is applied in vast area of fields.
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We consider here the replicator equation[31] (RE),

dxi

dt
= xi

(

fi(x)−
1

N
f̄(x)

)

,

(1)

fi(x) ≡
N∑

j

Jijxj ,

f̄(x) ≡
N∑

i

fi(x)xi

where N is the number of species, and 0 ≤ xi(t) ≤ N denotes ith species’ population. The functions

fi(x) and f̄(x) denote fitness of species i and it’s average, respectively. Interaction between ith species

and j is specified by Jij . Note that total population is conserved at any time as
∑

i xi = N and, that

is, the trajectory of the dynamics (1) is bounded in a simplex
∑

i xi = N .

The RE appears in various fields [31]. In sociobiology, it is a game dynamical equation for the evo-

lution of behavioral phenotypes; in macromolecular evolution, it is the basis of autocatalytic reaction

networks (hypercycles); and in population genetics it is the continuous-time selection equation in the

symmetric (Jij = Jji) case. The symmetric RE also corresponds to a classical model of competitive

community for resources[32]. The replicator dynamics, therefore, are often used as a model of complex

systems in which many components changes their numbers through complex reaction, replication and

reproduction of the components.

Here we assume that (Jij) is a time-independent random symmetric (Jij = Jji) matrix whose

elements have a normal distribution with mean m(> 0) and variance J̃2/N as

P (Jij) =

√

N

2πJ̃2
exp

[

−
(

N

2J̃2

)

(Jij −m)
2

]

(i 6= j)

Self-interactions are all set to a negative constant as Jii = −u(< 0). Note that the essential parameter

is unique as p ≡ (u + m)/J̃ because the transformation of the interaction Kij ≡ (Jij − m)/J̃ does

not change the trajectory of the dynamics (1). Although ecologists do not generally believe in the

randomness of interspecies interactions in nature, the discipline has been affected by the random

interaction model [33] as a prototype of complex systems.

Particularly in the context of ecology, the N species RE [31] is equivalent to the N − 1 species

Lotka-Volterra (LV) equation

dyi
dt

= yi



ri −
N−1∑

j

bijyj





.

That is, the abundance yi and the parameters in the corresponding LV are described by those in the
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present RE model as,

yi = xi/xM (i = 1, 2, . . . , N), (2)

ri = JiM − JMM = JiM + u, (3)

bij = Jij − JMj (4)

where the ’resource’ species M (yM = 1) can be arbitrarily chosen from N species in the RE. The

ecological interspecies interactions (bij)(i 6= j) have a normal distribution with mean 0 and vari-

ance 2J̃2/N from Eq. (4), and they are no longer symmetric (bij 6= bji). The present model

therefore describes an ecological community with complex prey-predator interactions ((bij , bji) →

(+,−) or (−,+)), mutualism (+,+) and competition (−,−). Moreover, a community can have a ’loop’

(detritus) food chain ((bij , bji) → (+,−), (bjk, bkj) → (+,−), (bki, bik) → (+,−)). The intraspecific in-

teraction bii turns out to be related to the intrinsic growth rate ri as bii = Jii−JMi = −u−JiM = −ri

and is therefore competitive (bii < 0) for producers (ri > 0) or mutualistic (bii > 0) for consumers

(ri < 0).

By Eq. (3), the intrinsic growth rates also have a normal distribution with mean u+m and variance

J̃2/N . The probability at which ri is positive–that is, that the i-th species is a producer–is therefore

given by the error function,

Prob(ri > 0) =

∫ ∞

−p
√

N/2

dt√
π
exp

(
−t2

)

.

Consequently, the parameter p can be termed as the ’productivity’ of a community because the larger

the p, the greater the number of producers. This can be also understood from the fact that p is

connected to the average growth rate:

1

N

∑

i

ri = 〈JiM + u〉J = m+ u = pJ̃. (5)

The parameter p is also connected to the maturity of an ecosystem because m increases in time in an

evolutionary model [34].

Note that the growth rate (1/xi)dxi/dt in RE (1) has no ecological meaning because it is defined

by the average fitness f̄ subtracted from the fitness fi. We therefore consider the equivalent LV (1)

when we discuss the model in the context of ecology as stated above. Why we do not consider LV

with random asymmetric interactions from the beginning is that the system we consider here is not
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general asymmetric LVs but a class of LVs which is corresponded to a symmetric RE whose symmetry

is crucial to the present analysis.

While random asymmetric interaction matrix (Jij 6= Jji and, Jij and Jji are independent each other)

was assumed in the classical random population models[35, 33, 36], here, the symmetric matrix

(Jij = Jji) enables us to derive RSA patterns and left-skewed[19] canonical[14, 17] lognormal-like

distribution, from a single parameter p[30].

2 Mean field theory of random symmetric replicator dynamics

The symmetry (Jij = Jji) makes the average fitness f̄ ≡ ∑N
j,k Jjkxjxk (the second term of the

r.h.s. of Eq. (1)) a Lyapunov function (Appendix A) [31], which is a nondecreasing function of time in

dynamics (1). Therefore, every initial state converges to a local maximum of f̄ as t → ∞. Interpreting

H ≡ − 1
2 f̄ as an energy function, macroscopic (thermodynamic) functions of the system is derived

from free energy

f = − lim
β→∞

lim
N→∞

〈lnZ〉J
Nβ

(6)

at such a maximum by using the technique of statistical mechanics of random systems [37, 38, 39, 40,

41, 42]. The bracket

〈F (Jij)〉J ≡





N∏

i<j

∫ ∞

−∞
dJijP (Jij)



F (Jij) (7)

denotes the random average[37] over random interactions, by which a typical behavior of the system

can be analyzed. The normalization factor Z denotes a partition function with the condition (
∑

i xi =

N) and is represented as

Z ≡
∫ ∞

0

N∏

i=1

dxiδ(N −
∑

i

xi)e
−βH ≡ Tr

{xi}e
−βH, (8)

where ensemble average is represented by the trace Tr
{xi}.

Why we execute the random average is that free energy is “self-averaging”, that is, it is represented

by an average over random interactions, not by a detail of each sample of interactions, which is justified

in the thermodynamic limit, where the number of species are very large in the context of ecology. The

inequality i < j in (7) denotes the product of the values of i and j satisfying 1 ≤ · · · < i < j < · · · ≤ N .
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If we define Hamiltonian as

H ≡ −1

2

∑

i,j

Jijxixj + h
∑

i

θ(y − xi), (9)

where θ(z)[= 1(z ≥ 0); 0(z < 0)] is the step function, we will be able derive cumulative distribution

function C(y) (proportion of the number of species which has abundance less than and equal to y) as

C(y) ≡ lim
β→∞

lim
N→∞

lim
h→0

〈
1

Z
Tr
{xi}

∑

i θ(y − xi)

N
e−βH

〉

J

= − lim
β→∞

lim
N→∞

lim
h→0

1

Nβ

∂〈lnZ〉J
∂h

= lim
h→0

∂f

∂h
, (10)

where θ(x)[= 1(x > 0); 0(x ≤ 0)] is the step function. Information of equilibrium of RE (1) can be

obtained by setting h = 0. By the identical equation

〈lnZ〉J ≡ lim
n→0

〈Zn〉J − 1

n
(11)

the random average of the logarithm of the partition function, which is hard to execute analytically,

can be transformed to the random average of an equivalent n-replicated partition function

〈Zn〉J =

〈
n∏

a=1

Tr
{xa

i }
e−βHa

〉

J

=

〈
n∏

a=1

Tr
{xa

i }
exp






−β



−1

2

∑

i,j

Jijx
a
i x

a
j + h

∑

i

θ(y − xa
i )











〉

J ,

which is more tractable. Each Ha denotes a replica Hamiltonian where an variable xi is replaced

by xa
i with a replica index a = 1, 2, . . . , n in Eq. (9). The analysis using above transformation of

the Hamiltonian is called as the replica method[37] which enables us to analyze typical behavior of

free energy with random interactions. The replica method was originally invented for analysis of

the spin glass, magnetic alloy. Recently it has been successfully applied to various models[43] with

time-invariant random interactions other than physical systems. By exchanging the order of the trace

and the random average, we can precedently execute the random average. As the integrals (7) are

Gaussian integral of N(N − 1)/2 variables Jij , the replicated partition function becomes

〈Zn〉J = Tr
{xa

i }
expβ




βJ̃2

2N

∑

i<j

(
∑

a

xa
i x

a
j

)2

+
∑

a

∑

i<j

mxa
i x

a
j −

u

2

∑

a

∑

i

(xa
i )

2 − h
∑

a

∑

i

θ(y − xa
i )





.
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As the first term in [· · · ] above can be rewritten as following,

∑

a<b

(
∑

i

xa
i x

b
i

)2

− 1

2

∑

i

[
∑

a

(xa
i )

2

]2

+
1

2

[
∑

i

(xa
i )

2

]2

,

we can derive

〈Zn〉J = Tr
{xa

i }
expβ

{

βJ̃2

2N

∑

a<b

(
∑

i

xa
i x

b
i

)2

︸ ︷︷ ︸

K1

−βJ̃2

4N

∑

i

[
∑

a

(xa
i )

2

]2

+
βJ̃2

4N

∑

a

[
∑

i

(xa
i )

2

]2

︸ ︷︷ ︸

K2

+m
∑

a

∑

i<j

xa
i x

a
j

︸ ︷︷ ︸

K3

−u

2

∑

a

∑

i

(xa
i )

2 − h
∑

a

∑

i

θ(y − xa
i )

}

.

As we rewrite like following,

K3 =
m

2

∑

a

{(
∑

i

xa
i

)2

︸ ︷︷ ︸

K4

−
∑

i

(xa
i )

2

}

and apply the Hubbard-Stratonovich transformation

eλa
2 ≡ 1√

2π

∫ ∞

−∞
dx exp

(

−x2

2
+
√
2λax

)

where λ > 0, the quadratic terms of (
∑

i · · · ) in K1,K2,K4 can be transformed to linear terms. By

this, we can execute the trace Tr
{xa

i }
and obtain

exp(βK1) =
∏

a<b

exp
(βJ̃)2

2N

(
∑

i

xa
i x

b
i

)2

=
∏

a<b

1√
2π

∫ ∞

−∞
dyab exp

{

−y2ab
2

+
βJ̃√
N

∑

i

xa
i x

b
iyab

}

exp(βK2) =
∏

a

exp
(βJ̃)2

4N

[
∑

i

(xa
i )

2

]2

=
∏

a

1√
2π

∫ ∞

−∞
dsa exp

{

−s2a
2

+
βJ̃√
2N

∑

i

(xa
i )

2sa

}

exp(βK4) =
∏

a

exp
mβ

2

(
∑

i

xa
i

)2

=
∏

a

1√
2π

∫ ∞

−∞
dta exp

{

− t2a
2

+
√

mβ
∑

i

xa
i ta

}

.
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If we transform the variables as yab ≡ β
√
NYab, sa ≡ β

√
NSa, ta ≡ β

√
NTa, we obtain

〈Zn〉J = Tr
{xa

i }

[
∏

a<b

∫ ∞

−∞

dYab

L

][
∏

a

∫ ∞

−∞

dSa

L

][
∏

a

∫ ∞

−∞

dTa

L

]

× expβ

[

−
(
Nβ

2

)
∑

a<b

Y 2
ab + βJ̃

∑

a<b

Yab

∑

i

xa
i x

b
i

−
(
Nβ

2

)
∑

a

S2
a +

(

βJ̃√
2

)
∑

a

Sa

∑

i

(xa
i )

2

−
(
Nβ

2

)
∑

a

T 2
a +

√

mNβ
∑

a

Ta

∑

i

xa
i

−
(
u+m

2

)
∑

a

∑

i

(xa
i )

2 − h
∑

a

∑

i

θ(y − xa
i )

]

,

where L ≡
√

2π/β2N . Let us write gab for the terms with
∑

i in [· · · ]. The delta function in the trace

(8) can be represented as a Fourier transformation

Tr
{xa

i }
⇒
∏

i,a

∫ ∞

0

dxa
i

∫ i∞

−i∞

dra
2πi

exp

{

−
∑

a

ra(
∑

i

xa
i −N)

}

.

The terms including gab and the terms of
∑

i above can be represented by a product of independent

terms, and therefore can be written by the Nth power of a term in which index i is omitted as

Tr
{xa

i }
exp

(

gab −
∑

a

ra
∑

i

xa
i

)

=

[

(
∏

a

∫ ∞

0

dxa) exp

(

g′ab −
∑

a

rax
a

)

︸ ︷︷ ︸

A

]N

= exp ln[A]N = expN ln[A].

The term g′ab denotes gab without index i. Now we come to sum up the n-replicated partition function

averaged over samples as

〈Zn〉J =

[
∏

a<b

∫ ∞

−∞

dYab

L

][
∏

a

∫ ∞

−∞

dSa

L

][
∏

a

∫ ∞

−∞

dTa

L

][
∏

a

∫ i∞

−i∞

dra
2πi

]

eNG{Y,S,T,r}

,

(12)

where

G{Y, S, T, r} = −β2

2

(
∑

a<b

Y 2
ab +

∑

a

S2
a +

∑

a

T 2
a

)

+
∑

a

ra + ln

[

Tr
{xa} exp

(

g′ab −
∑

a

rax
a

)]

and Tr
{xa} ≡

(∏

a

∫∞
0

dxa
)
. By the saddle point method, the integral (12) can be replaced by the
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integrand exp(NG), and by substituting this for (6) and (11), the free energy can be represented as

f = − lim
N→∞

lim
n→0

(
1

βNn

)

{exp(−βNMinfn)− 1}

= − lim
N→∞

lim
n→0

(
1

βNn

){

exp

(

−βNn lim
n→0

Minfn
n

)

− 1

}

= − lim
N→∞

lim
n→0

(
1

βNn

){(

1− βNn lim
n→0

Minfn
n

)

− 1

}

= lim
n→0

1

n
Minfn

by the minimum of fn. If we transform the variables as qab = Yab/J̃, σa = Sa

√
2/J̃, τa = Ta

√

β/Nm,

the free energy becomes

βfn =
∑

a<b

(βJ̃)2

2
q2ab +

∑

a

(βJ̃)2

4
σ2
a +

∑

a

βNm

2
τ2a −

∑

a

ra − ln
[

Tr
{xa}e

−βHeff
n (xa)

]

,
(13)

where

H
eff
n (xa) ≡ −βJ̃2

∑

a<b

xaxbqab −
βJ̃2

2

∑

a

(xa)2σa +Nm
∑

a

xaτa +
1

β

∑

a

rax
a

+
u+m

2

∑

a

(xa)2 + h
∑

a

θ(y − xa).

Here we assume the Replica Symmetry (RS) as

q = qab, σ = σa, τ = τa, r = ra for ∀a, b.

By the discussion on the stability of saddle point solution for the estimation of the free energy, RS is

justified at least for p ≥
√
2 [38, 39]. By the RS order parameters, we can write as

gRS ≡ −βHeff
n (xa) =

(βJ̃)2

2
q

︸ ︷︷ ︸

B1

(
∑

a

xa

)2

−β

(

βJ̃2

2
q − βJ̃2

2
σ +

u+m

2

)

︸ ︷︷ ︸

B2

∑

a

(xa)2

− (r +Nβmτ)
︸ ︷︷ ︸

B3

∑

a

xa − βh
∑

a

θ(y − xa).

︸ ︷︷ ︸

B4

9



Here we can execute the trace in (13) and we obtain

Tr
{xa}e

−βHeff
n (xa) =

∏

a

∫ ∞

0

dxaeg
RS

=
∏

a

∫ ∞

0

dxa exp

{

B1(
∑

a

xa)2 +B2

∑

a

(xa)2 − B3

∑

a

xa −B4

}

=
∏

a

∫ ∞

0

dxa 1√
2π

∫ ∞

−∞
dze−z2/2

︸ ︷︷ ︸
∫
dp1(z)

exp

{
√

2B1

∑

a

xaz +B2

∑

a

(xa)2 −B3

∑

a

xa −B4

}

=

∫

dp1(z)

[∫ ∞

0

dx exp
{

zx
√

2B1 +B2x
2 −B3x− βhθ(y − x)

}]n

.

At the final equality, we have replaced the n-fold multiple integral of xa by a integral over a variable

x without the replica index a because each integral of xa is independent each other. Moreover, as we

expect to take the limit n → 0, using an ≃ 1 + n ln aAln(1 + n) ≃ n, we obtain

ln
[

Tr
{xa}e

−βHeff
n (xa)

]

≃ ln

∫

dp1(z)

[

1 + n ln

∫ ∞

0

dx exp
{

B2x
2 + (z

√

2B1 −B3)x − βhθ(y − x)
}
]

= ln

[

1 + n

∫

dp1(z) ln

∫ ∞

0

dx exp{· · · }
]

≃ n

∫

dp1(z) ln

∫ ∞

0

dx exp{· · · }.

We, then, finally obtain the free energy density as

f = lim
n→0

1

n
Minfn = lim

n→0
Min

{

βJ̃2

4
(n− 1)q2 +

βJ̃2

4
σ2 − Nm

2
τ2 − r

β
− 1

β

∫

dp1(z) ln

∫ ∞

0

dxeβg(x)

}

= Min

{

− βJ̃2

4
q2 +

βJ̃2

4
σ2 − Nm

2
τ2 − r

β
− 1

β

∫

dp1(z) ln

∫ ∞

0

dxeβg(x)

}

,

(14)

where

g(x) ≡ −
(

βJ̃2

2
q − βJ̃2

2
σ +

u+m

2

)

x2 +
{

zJ̃
√
q − (r/β +Nmτ)

}

x− hθ(y − x).

Condition which minimizes f̃ , which is the term in {} in the right side of Eq. (14) gives mean field

equations. As the term with h is virtual for cumulative distribution function, we let it to be zero

hereafter. By the calculations, ∂f̃/∂q = 0, ∂f̃/∂σ = 0, ∂f̃/∂τ = 0, ∂f̃/∂r = 0, we obtain the
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mean field equations,

q =

∫

dp1(z)

∫ ∞

0

dx

(

x2 − zx

βJ̃
√
q

)

eβg(x)

Zg ,

(15)

σ =

∫

dp1(z)

∫ ∞

0

dxx2 eβg(x)

Zg ,

(16)

τ =

∫

dp1(z)

∫ ∞

0

dxx
eβg(x)

Zg
= 1, (17)

where Zg ≡
∫∞
0

dx exp(βg(x)). By substituting (16) for (15), we obtain

√
qJ̃β(σ − q) =

∫

dp1(z) z

∫∞
0 dxx exp(βg(x))

Zg .

(18)

To estimate the integral over x in the right side, let us rewrite like following

g(x) = − 1

2
{(u+m)− J̃2β(σ − q))}
︸ ︷︷ ︸

E1

x2 + {J̃√qz − (r/β +Nmτ)}
︸ ︷︷ ︸

E2

x

= −E1

(

x− E2

2E1

)2

+
E2

2

4E1 .

(19)

The condition E1 > 0 should be satisfied for the convergence of the integral of x in (18). When

E2/(2E1) > 0, that is, z > (r/β + Nmτ)/(J̃
√
q) ≡ −∆ in (19), the integral of x in Eq. (18) can be

replaced by the integrand at the apex x1 = E2/2E1 in the limit β → ∞. We, therefore, obtain

∫ ∞

0

dxx eβg(x) =
E2

2E1
eβE

2

2
/4E1

.

As

Zg =

∫ ∞

0

dx eβg(x) = eβE
2

2
/4E1 ,

the contribution to (18) becomes E2/2E1. Similarly, when E2/2E1 ≤ 0Athat is, z ≤ −∆, the integral

of x in Eq. (18) can be replaced by the integrand at x2 = 0, which is zero and has no contribution.

After the similar calculation of the integral in Eq. (17) and some transformation of the expressions,

we obtain the following mean field equations as

p− v =
√
q

∫ ∞

−∆

dp1(z)(z +∆),

(p− v)2 =

∫ ∞

−∆

dp1(z)(z +∆)2,

∆ =
√
q(p− 2v),

11



where v ≡ J̃β(σ − q). As stated previously, the above result is essentially equivalent to the case

m = 0, J̃ = 1 [38]. As the mean field equations can be solved analytically only for some special values

of p (e.g., p =
√
2), we solve them numerically for a general range of p and obtain the order parameters

q, v as a function of p, which are depicted in Figs. 1(a) and 1(b). Macroscopic functions, such as

diversity and abundance distributions, are simultaneously obtained by substituting q and v for them.

3 Diversity and abundance distributions

Among macroscopic functions calculated in the present framework, the most significant for a theory

of RSA patterns is the cumulative distribution function of abundance (10) which is derived from the

free energy f as

Cp(y) ≡ lim
h→0

∂f

∂h
= lim

h→0

∫

dp1(z)

∫ ∞

0

dx θ(y − x)eβg(x)/Zg

=

∫ ∞

−∆

dp1(z)θ(y − E2/(2E1)) +

∫ −∆

−∞
dp1(z)θ(y),

where the saddle point method was used in the last line like in the integral over x in (18). Substituting

E1 and E2 for the above and rewriting the population by x from y, the resulting cumulative distribution

function is represented as

Cp(x) = Cp(0)θ(x) +

∫ ∞

−∆

dp1(z)θ

(

x−
√
q(z +∆)

p− v

)

.

The quantity Cp(0) ≡
∫ −∆

−∞ dp1(z) gives cumulative distribution function of species with zero popula-

tion, that is, a proportion of extinct species.

The function αp(0) ≡ 1− Cp(0) = v(p− v) and αp(1) = 1− Cp(1) of p can be termed ’diversity’,

i.e., the proportion of nonextinct species and that of the species with abundance larger than unity,

respectively, as depicted in Fig. 2. This demonstrates a typical positive correlation between produc-

tivity and diversity [44]. Numerical results for αp(1) are also depicted in Fig. 2 for comparison. We

see good agreement between the analytical and the numerical results for p & 1, while some deviations

appear for small values of p. This small-value deviation is attributable to the occurrence of replica

symmetry breaking (RSB)[37, 39] for p <
√
2, which yields a number of metastable states of Eq. (14),

and the replicator dynamics (1) essentially converges to not only a ground state of (14) but also to

the metastable states. Since the energy H and the diversity are both nonincreasing functions of time

in dynamics (1), the mean-field results here give a lower minimum of diversity. Interestingly, the

12



metastable states enhance the diversity. The analysis of RSB is expected to improve the quantitative

agreement [39].

In Fig.2, we also see a power law of the diversity S ≡ Nαp(0) ∝ pη (p . 1; η ≃ 2.3). This can be

related to the species-area relationships S ∝ Aλ (λ = const.) [45, 17] if p is a power function of area A,

that is, larger the area, more producers are observed than consumers, which is one of the predictions

in the present study.

The function αp(x) ≡ 1−Cp(x) is the survival function, the proportion of species whose abundance

is larger than x. The survival function has been often used in the medical statistics. Note that αp(x)

is also represented as a function of species rank n:

αp(x) =
n

N
for x ∈ [x(n+1), x(n)),

(n = 1, 2, . . . , S ≤ N) if the species abundance is ranked in descending order, as in x(1) ≥ x(2) ≥

· · · ≥ x(n) ≥ · · · ≥ x(S) > 0. As the function αp(x) is a nonincreasing monotonic function, the species

abundance relation, i.e., the abundance x(n) as a function of a rank n, is given by the inverse function

of αp(x) as x
(n) = xp(n/N) = α

(−1)
p (x), depicted in Fig. 3 and Fig. 4 for some values of p.

We observe two typical RSA patterns in different regions [21] and with different species composi-

tions [15]: one is a straight line like the geometric series [9] for a small value of p, and the other consists

of sigmoid curves on a logarithmic vertical axis for some range of p. This latter RSA pattern denotes

a lognormal-like abundance distribution. Remarkably, the transition of the RSA patterns from low

p to high is identical to the observed transition from low- to high-productivity areas; that is, from

a species-poor area such as an alpine or polar region to a species-rich tropical rain forest [21]. The

transition also corresponds to the secular variation of RSA patterns observed in abandoned cultivated

land [16]. This supports the contention that p (orm) is a maturity parameter, as is suggested by an

evolutionary model [34].

The abundance distribution is also derived from the cumulative distribution function Cp(x) by its

derivative as

Fp(x) ≡ dCp(x)

dx

=
p− v√
2πq

exp

{

− (p− v)2

2q

(

x− q(p− 2v)

p− v

)2
}

+ Cp(0)δ(x), (20)

and it is depicted in Fig. 5 for some values of p. The first term is a normal distribution but not

a lognormal distribution. Nevertheless, the curves in Fig. 4 demonstrate a typical sigmoid pattern
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on a logarithmic vertical axis. This pattern indicates the coexistence of very abundant species with

rare ones. This multiscale of abundance is intuitively understood by a divergent behavior of the

variance σ2 ≡ q/(p − v)2 of Fp(x) for small p because q → ∞ and v → 0 for p → 0. Moreover,

the mode of Fp(x) per ’natural’ octave [14] ln(x) is always a positive value (as shown in Fig. 5) at

x∗ = σ
2 (∆ +

√
∆2 + 4) > 0, which denotes a unimodal distribution. Indeed, the mode diverges as

x∗ → σ

|∆| =
1

(p− v)|p− 2v| → ∞

for p → 0. As a result, the abundance distribution is a normal distribution truncated at x = 0 and

given in the positive abundance range x ≥ 0 and it has a large variance σ2 → ∞ and a negatively

divergent mean µ ≡ q(p−2v)
p−v → −∞ satisfying σ

µ = 1
∆ → 0 for p → 0. This indicates that, for small

p, Fp(x) becomes a tail of broad distribution but it still has a peak at a positive abundance x∗ when

plotted on the log-scale horizontal axis. This is why the abundance distribution per octave looks like

a left-skewed lognormal distribution [19] in Fig. 5.

4 Canonical hypothesis

According to the canonical hypothesis [14, 17], the quantity γ ≡ log(xN )/ log(xmax) takes a value

near unity in various real communities, where xmax is the abundance of the most abundant species

and xN gives the position of the mode of individual curve Pp(x) ≡ xFp(x). Using the abundance

distribution (20), we derive an analytical expression for the above functions to check the validity of

the canonical hypothesis. We first evaluate an expected value of the most abundant species xmax.

From the definition of xmax, that is NFp(xmax) = 1, and the conservation of the total abundance
∫∞
0 xFp(x)dx = N , which is equivalent to

∑N
i xi = N , we obtain

xmax =

q(p− v) + σ

√

2 ln
(

σ(1−αp(0))+∆αp(0)√
2π

)

p− v .

On the other hand, the mode of the individual curve Pp(x) per octave is given by xN = σ
2

(
∆+

√
∆2 + 8

)
,

and finally, the parameter γ is evaluated by substituting the values of the order parameters q and v for

each value of p. In the present model, γ is a monotonically increasing function of p and 0.96 < γ < 1.04

for 0.1 < p < 0.6, denoting that the canonical hypothesis is supported in the range of p giving the

typical RSA patterns in Fig. 5. Although the canonical hypothesis was demonstrated to be merely a

mathematical consequence of lognormal distribution [17] rather than anything biological, it is notewor-
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thy that the lognormal-like abundance distribution with γ ≃ 1 derives from basic ecological dynamics.

This still suggests a biological foundation for the hypothesis in a large complex ecosystem, in the same

way that a biological foundation was indicated for the theory of a local competitive community [18].

5 Topology of interactions

The present theory seeks to capture the influence of productivity on the RSA patterns under the

assumption that all species interact randomly; nevertheless, this assumption itself is never justified

because it ignores a biological correlation between interactions produced by evolution. However, note

that the randomness is assumed only for an initial state with N species in Eq. (1). Actually, the

simulation reveals the resulting interactions of nonextinct species to be nonrandom.

In Fig. 6, interspecies interactions (bij) between the non-extinct species of the corresponding LV

equations (1) are depicted, which is obtained by numerical simulations of RE (1) and the transfor-

mation (3) and (4). The numerical integration of RE was executed for initial diversity N = 2048, a

randomly generated interspecies interactions (Jij), a random initial population (xi), and for (a) p = 0.1

and (b) 0.2 by the fourth-order Runge-Kutta method. At the equilibrium of (1) for the parameters, the

number of non-extinct RE species Nαp(x = 1) was (a) 11 and (b) 28. In each figure, the non-extinct

LV species (yi > 0) without the resource species (yM = 1) are depicted by a blue disk which is arranged

clockwise in descending order of the intrinsic growth rate ri as 1 > r1 ≥ r2 ≥ · · · ≥ ri ≥ · · · ≥ rL > 0

(hence every non-extinct LV species is a producer) where the number of non-extinct LV species is (a)

L = 10 and (b) 27. The diameter of the disk is in proportion to | log(r1)|/| log(ri)|. Each type of

interaction is represented by its color: green links denote a mutualistic interaction (bij , bji) = (+,+),

yellow, a competitive (−,−) and blue, an exploitation of more productive i on less productive j(> i)

(+,−) for i < j. No exploitation of less productive j on more productive i(< j) (−,+) is observed (it

were drawn by a red link). The thickness of each link is proportional to the larger value of |bij | and

|bji|.

It should be noted that not only each sample (a) and (b) but also every sample calculated for Fig. 2

evolved to only flora, ∀i ri > 0. In every sample, only green, yellow and blue links are observed but no

red; thus the stable community after extinction dynamics obtains a hierarchical structure. Moreover, it

is observed that more productive species with larger ri tend to have competitive (yellow) relationships

each other and less productive ones have mutualistic ones (green), the quantitative estimations of

which is now in progress. It is suggested that this emergent hierarchy is connected to the stability of

a large-scale plant community with complex interspecies interactions of not only competition but also
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mutualism and exploitation.

6 Discussions

In the present model, all species coexist only in the limit p → ∞, that is, in the trivial cases in

which interspecies interactions are negligible (J̃ ≪ u ) or homogeneous (J̃ → 0), thereby giving

α∞(x) = θ(1 − x), x(n) = x∞(n/N) = 1 for all n and F∞(x) = δ(x − 1). Such a region of too

large productivity, therefore, never corresponds with a real community even if all species coexist. The

symmetric interactions (Jij = Jji) considered in the present study really emerged in a evolutionary

community-assembly model[34]. In the simulation, though the introduced mutants had asymmetric

interactions with existing species, the system evolved to have symmetric interactions. The system

also showed a typical RSA pattern and therefore it can be said that the present study is an analytical

treatment for it. The system moreover was resistant to exotic species, which is manifested in the

functional form of v in Fig. 1(b). As the order parameter v corresponds to susceptibility to external

noise in the context of statistical physics, Fig. 1(b) suggests that an ecosystem with medium produc-

tivity (p ≃
√
2) is more sensitive to external disturbance than ones with lower or higher productivity.

In other words, in the range p .
√
2 where the typical RSA patterns are observed, the lower p, the

RSA patterns are more robust to external noise such as environmental change, which is one of the

predictions of the present study and can be verified by field studies.

Simplicity of the present model with only one parameter conduces to some predictions to be verified

by experimental researches. They are summarized as follows.

(1) A RSA pattern of a community with not only competition but also mutualism and exploitation

shows itself like a tail of broad normal distribution. Although such a truncated normal distri-

bution with negatively large mean and large variance has not been examined to fit field data,

there is still plenty of room to consider alternative distributions for a community with complex

interactions, to which the other models of competition, such as niche apportion models[11, 20]

or the neutral model[21], is not applied.

(2) Diversity (number of non-extinct species) S is a power function of the productivity p which is

proportional to the average growth rate in Eq. (5). As suggested in the first paragraph of

this section, the present theory is not valid for a too large value of the productivity, and the

power law here may be applied to the left half of the hamp-shaped relationships with a peak at

intermediate productivity levels, which has been reported most widely in field and experimental

researches[46, 47].
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(3) Productivity (the average growth rate) p is a power function of area A. If it is, the present

theory also predicts the species-area relationships. The dependence of p on A appears against

the intuition that the average growth rate per species is constant even if we enlarge an area

of observation. It should be, however, noted that such a constant p is justified only if the

distribution Fp(x) is invariable under changes of area A. Although the present analysis assumes

infinite total population N , thereby infinite area A, the finite-area effect on p and Fp(x) will be

an important subject to be addressed in future studies.

(4) The transitions of the RSA patterns from species-poor to species-rich community or from im-

mature to mature community attribute to the productivity or the average growth rate p. Such

relationships between the various RSA patterns and ecological parameters will be one of the

focal points of the next generation of community ecology though some classical models have no

parameter and often gives no explanation on variations of RSA patterns.

(5) The canonical hypothesis is supported. Moreover, the value γ is increasing function of p. Com-

pared to the distribution Fp(x) itself, the statistical evaluation of which is often controversial[23],

quantities like γ seem to be more tractable in quantitative study of field data and there still

is a room for consideration of such macroscopic quantities which may characterize a large and

complex community.

(6) A stable and complex community has a hierarchical structure in which more productive species

exploits less ones, more productive species compete each other, and less productive species have

mutualistic relationships among themselves. Exploring such a hierarchy and the bias of the

competition and the mutualism will be one of the clues to clarify the unsolved problems on the

complexity and the stability in community ecology.

Verification of the above predictions are in progress through collaborations with field ecologists.

In summary, it has been demonstrated that empirically supported patterns are derived from a single

parameter of general population dynamics. This not only suggests the importance of globally coupled

biological interactions in a large assemblage but also provides a unified viewpoint on mechanisms

of similar patterns observed in other biological networks with complex interactions; for example, a

lognormal abundance distribution of a protein in cells [48, 49, 50], which is revealed by gene expression

networks.
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A Average fitness as a Lyapunov function

Since the interaction matrix J is symmetric (Jij = Jji), the time derivative is written as

df̄(t)

dt
=

(
d

dt

)

(x · Jx) =
(
dx

dt

)

· Jx+ x · J
(
dx

dt

)

= 2

(
dx

dt

)

· Jx.

It is, therefore, found that

1

2

df̄(t)

dt
=

∑

i

dxi

dt
(Jx)i =

∑

i

xi[(Jx)i − x · Jx](Jx)i

=
∑

i

xi(Jx)
2
i −

[
∑

i

xi(Jx)i

]2

=
∑

i

xi [(Jx)i − x · Jx]2 ≥ 0,

and the average fitness f̄ is non-decreasing function of time, a Lyapunov function.
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Figure Captions

Figure 1 Order parameters (a) q and (b) v as a function of the productivity parameter p.

Figure 2 Diversity αp(x = 0, 1) as a function of p of log-log scales for x = 0(red) and x = 1(green).

Black circles show numerical solutions of αp(1) averaged over randomly generated 50 samples

of (Jij) for Eq. (1) with N = 2048 and p = 0.1, 0.2, 0.3, 0.4, 0.5,
√
2/2, 1,

√
2, 2, 3. Numerical

integration of RE was executed by the fourth-order Runge-Kutta method. Error bars indicate

the maximum and minimum values found in the samples.

Figure 3 Rank-abundance relations as a function of productivity p on normal-normal scales.

Figure 4 Rank-abundance relations as a function of productivity p on normal-log scales.

Figure 5 Abundance distribution per ’natural’ octave ln(x). Functions Fp(x)x(d(ln(x)) = Fp(x)dx)

for some values of p are depicted, whereas Preston originally defined octaves as logarithms to

base 2 [14].

Figure 6 Interspecies interactions (bij) between the non-extinct species of the corresponding LV

equations.
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Figure 1: (a) TOKITA
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Figure 1: (b) TOKITA
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Figure 2: TOKITA
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Figure 3: TOKITA
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Figure 4: TOKITA
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Figure 5: TOKITA
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Figure 6: (a) TOKITA
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Figure 6: (b) TOKITA
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