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Abstract

Ecological systems are governed by complex interactions which are mainly nonlinear. In order to capture the

inherent complexity and nonlinearity of ecological, and ingeneral biological systems, statistical models recently

gained popularity. However, although these models, particularly connectionist approaches such as multilayered

backpropagation networks, are commonly applied as predictive models in ecology to a wide variety of ecosystems

and questions, there are no studies to date aiming to assess the performance, both in terms of data fitting and

generalizability, and applicability of statistical models in ecology. Our aim is hence to provide an overview for

nature of the wide range of the data sets and predictive variables, from both aquatic and terrestrial ecosystems with

different scales of time-dependent dynamics, and the applicability and robustness of predictive modeling methods on

such data sets by comparing different statistical modelingapproaches. The models used in this study range from

predicting the occurrence of submerged plants in shallow lakes to predicting nest occurrence of bird species from

environmental variables and satellite images. The methodsconsidered include k-nearest neighbor (k-NN), linear and

quadratic discriminant analysis (LDA and QDA), generalized linear models (GLM) feedforward multilayer

backpropagation networks and pseudo-supervised network ARTMAP.

Our results show that the predictive performances of the models on training data could be misleading, and one

should consider the predictive performance of a given modelon an independent test set for assessing its predictive

power. Moreover, our results suggest that for ecosystems involving time-dependent dynamics and periodicities

whose frequency are possibly less than the time scale of the data considered, GLM and connectionist neural network

models appear to be most suitable and robust, provided that apredictive variable reflecting these time-dependent

dynamics included in the model either implicitly or explicitly. For spatial data, which does not include any

time-dependence comparable to the time scale covered by thedata, on the other hand, neighborhood based methods

such as k-NN and ARTMAP proved to be more robust than other methods considered in this study. In addition, for

predictive modeling purposes, first a suitable, computationally inexpensive method should be applied to the problem

at hand a good predictive performance of which would render the computational cost and efforts associated with

complex variants unnecessary.

Keywords: Predictive model; multiple states; nest occurrence; breeding success; habitat selection; satellite imagery;

species distribution;k-nearest neighbor; discriminant analysis; generalized linear model; neural network; multilayer

feedforward backpropagation; ARTMAP
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1 Introduction

Ecological, and in general biological, systems’ dynamics are often governed with nonlinear interactions of

environmental factors. Environmental variables interactwith systems in such a complex way that the whole system

achieves a broader functionality that cannot be deduced by considering individual environmental factors. The goal of

the ecological studies has been to gain insight into this functionality and complexity by observing individual factors

affecting the system in question. System dynamics, and the influence of individual factors to these dynamics as a

whole, has been of primary concern not only for theoretical considerations, but also management and conservation

practices. One natural choice to achieve this purpose is to abstract the system and interactions inherent in it by

mathematical and statistical models.

Ecological modeling studies have traditionally been concentrated on the use of "box-and-arrow" type

differential/difference equation models (Ross, 1976; Jorgensen, 1976; Lassiter and Kearns, 1977). However, while

these models provide valuable insight into the particular ecosystem being studied, because of their strong dependence

on the parameters specific to that system, these models are prone to be criticized as being "case-specific". To achieve

generalizability and thus to gain insight into the ecosystems in general, statistical models have been one of the main

practices (e.g. Tan and Smeins 1996; Maron and Lill 2004; Gutierrez et al. 2005; Tan and Beklioglu 2005a;

Özesmi et al. 2005b). This is especially true for statistical classification and pattern recognition models which

fundamentally aim to characterize a combination of variables and their measurements which lead to particular state(s)

of the ecosystem.

On the other hand, traditional classification, and in general statistical, models require strong assumptions about the

distribution of the underlying observations and/or the system characteristics (Hastie et al., 2001). To overcome this

issue, nonlinear and/or non-parametric models to model ecosystems on the basis of finite-size observations have

become recently popular. Of particular importance in this respect is the use of connectionist artificial neural

network-based approaches such as generalized linear models and feedforward multilayer backpropagation networks.

These models are able to capture the nonlinear interactionsand complexity of the ecosystem without the need for any

assumptions about the distribution of the observations. However, the main problem associated with these approaches

has been their "off-line" iterative nature (Bishop, 1995; Ripley, 1996; Hastie et al., 2001) and the computational costs

associated with these models, compared to traditional approaches (Hastie et al., 2001).

The latter problem can be overcome by considering the use of simpler models where they attain a fairly good

performance. The former problem, on the other hand, being off-line, constitutes to the main issue, especially for

management practices. Each time a new observation is made, these models require to be retrained on the entire data

set in order to include the new observation. Considering thecomputational cost associated with artificial neural

network based approaches, this fact renders these models less practical from a management point of view. However,

though unfamiliar to ecological and biological modelers, several other families of neural network models have been

developed since the early 70’s, including ART and ARTMAP family of models (Grossberg, 1976a,b; Carpenter et al.,

1991a, 1992). These unsupervised and pseudo-supervised, self organizing maps have the advantage of being

real-time models, and thus being able to incorporate new observations easily. In addition, the computational costs

associated with ART-family of models are comparably small compared to connectionist neural network models,

while their performance is reasonably better.
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To assess the performance of a model, several studies showedthe importance of independent test sets (Özesmi et al.,

2005a; Tan and Beklioglu, 2005a,b). Although a given model,particularly neural networks (Hornik et al., 1989), can

perform arbitrarily well on training data set, the actual goal for statistical models is to achieve a high generalizability

at the same time. From this point of view, a given model shouldminimize the training error and at the same time

maximize the generalizability (so-called minimax problem). In that respect, while connectionist neural network

schemes are "universal approximators" of the training dataset (Hornik et al., 1989), there has been several techniques

developed to maximize the predictive performance of a givenmodel simultaneously on both training and test sets,

such as cross-validation (Bishop, 1995; Hastie et al., 2001).

Recently, as mentioned before, the use of statistical techniques gained popularity to explain and predict the outcome

of ecosystem processes, such as occurrence of multiple stable states (Tan and Smeins, 1996; Tan and Beklioglu,

2005a,b), and habitat selection or distribution of species(Baran et al., 1996; Lek et al., 1996; Özesmi and Özesmi,

1999). Predictive modeling attempts in ecology have used several methods ranging from regression (Sawchik et al.,

2003; Gutierrez et al., 2005) to discriminant analysis (Joyand Death, 2003; Maron and Lill, 2004), and from

generalized additive (Seaone et al., 2003; Seoane et al., 2004b; Dunk et al., 2004) and linear models (Meggs et al.,

2004; Tan and Beklioglu, 2005a) to multilayer feedforward backpropagation networks (Scardi, 1996;

Tan and Smeins, 1996; Özesmi and Özesmi, 1999) and time series analysis (Heegaard, 2002). However, considering

above mentioned arguments, it is necessary to assess predictive statistical models and algorithms in terms of their

performance on and suitability for a given ecological problem, which to our knowledge, has not been done yet.

Although there are extensive studies aiming to compare statistical models for artificial data sets (e.g. STATLOG

project; Mitchie et al. 1994), it is obvious that the ecological data differs considerably than artificial data sets since

former data is considerably more prone to observational and/or measurement noise, and the ecological interactions

are inherently more complex and nonlinear. In addition, while all the variables and factors leading to system

dynamics in artificial systems can be known and/or controlled, such is not true for the ecological systems. As such, a

comparative study to asses the performance and at the same time suitability of statistical modeling techniques is

required for the ecological modeling studies to avoid blindapplications and ill allocation of time and effort.

Our aim is here to provide an overview for nature of the wide range of the data sets and predictive variables and their

use in predictive ecological models by comparing differentstatistical modeling approaches. To that end, we studied 6

different data sets from both aquatic and terrestrial ecosystems using 6 different type of statistical models. The

models included traditional methods (k-nearest neighbor:k-NN, and linear and quadratic discriminant analysis: LDA

and QDA), connectionist neural network-type models (generalized linear models: GLM, feedforward multilayer

backpropagation networks) and pseudo-supervised ARTMAP.Some of these data sets used in this paper were

modeled before using one or more of the particular algorithms and discussed extensively in several publications

(Özesmi, 1996; Özesmi and Özesmi, 1999; Özesmi et al., 2005a,b; Per, 2003; Kurt, 2004; Tan and Beklioglu,

2005a,b) and as such, only a broad summary of these data sets are provided among with the relevant citations.
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2 Data Sets

2.1 Data Set 1: Lakes Eymir and Mogan

Lake Eymir is a small shallow lake located in Central Anatolia. The upstream Lake Mogan empties into Lake Eymir

at the southwest corner, forming the main inflow (Beklioglu et al., 2003).

Data used in the model for Lake Eymir and Lake Mogan were collected between 1997 and 2002 (Beklioglu et al.,

2003; Tan, 2002). A total of 91 data points from Lake Eymir were used for fitting the models and the a total of 43

data points from the upstream Lake Mogan were used as an independent test set after fitting the models, to determine

ability of the models to generalize.

Concentrations of total phosphorus (TP,µgl−1), suspended solids (SS, mg l−1), and chlorophyll-a (chl-a,µgl−1),

Secchi disk transparency (Secchi, cm) and water levels (WL,meter above sea level) were used as predictive

(independent) variables. Dependent variable was a binary index of submerged plant occurrence. It was suggested that

the impacts of submerged plants become apparent on ecology of shallow lakes when both the plant volume infested

(PVI%, Canfield et al., 1984 and the coverage exceeded 30% (Sondergaard and Moss, 1997). The formulation of the

dichotomous dependent variable was thus

Y =

{

1 if CP > 0.3 andVP > 0.3

0 otherwise

}

(2.1)

whereY is the binary index to show presence/absence of submerged vegetation; (0: absent; 1: present);

CP ∈ [0.0, 1.0] is the plant cover andVP ∈ [0.0, 1.0] is the PVI. Detailed description of the study sites, data

collection as well as a through discussion of the ecologicalstate of these lakes are given elsewhere (Tan, 2002;

Beklioglu et al., 2003, 2004; Tan and Beklioglu, 2005a).

2.2 Data Set 2: Central Anatolian Shallow Lakes

Data comes from five lakes (Lakes Beyşehir, Işıklı, Marmara, Mogan and Uluabat), which vary in size and depth and

are located from southern to northern Anatolia, Turkey. These lakes were selected to model the impacts of fish

biomass, hydrology and morphology on submerged plant development.

Data used to fit (equivalently to train) and test the models span several years, ranging from 19 years as in the case of

Beyşehir to only two years as in the case of Lake Mogan. A total of 541 data points for all the lakes were obtained

from the literature and pooled together for fitting the models. Pooled data were further randomly split to two sets of

440 and 101 data points which constitute our final training and test data, respectively. The validation test set was not

included in the training, and was reserved for assessment ofthe model performance on an independent data set

(referred hereafter as validation data for set 2). In addition, the data gathered from Lake Mogan, consisting of 24 data

points, was not included either in the training data or in thevalidation data sets, and was reserved for a second test set

to asses the generalizability of the fitted models. This set corresponds to a system spatially and temporally distinct
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from the data used to train the model (referred hereafter as independent data for set 2).

Models consisted of 5 predictive variables, which includedthe ratio of carp (Cyprinus carpio) biomass to total fish

biomass (carp ratio), amplitude of the intra-annual water level fluctuation defined as the difference between yearly

maximum and minimum water depth, morphology index, calculated for each lake as the monthly ratioZmean/Zmax

averaged over whole period spanned by the data, whereZmean is the mean depth andZmax is the maximum depth.

Last two predictive variables were the z-score of water level, and period index, which was simply a sine

transformation of the Julian date of the corresponding datapoint. Occurrence of submerged plants, assessed by

equation [2.1] was used as dependent variable. In some rare cases, where there were no available quantitative data

about the submerged plant coverage and/or volume in the lakes, but qualitative information is provided, we used the

latter to designate the dichotomous dependent variable.

For a detailed description of the predictive and dependent variables, readers are referred to Tan and Beklioglu

(2005b). A detailed description of the study sites, data collection as well as a through discussion of the ecological

states of these lakes are given elsewhere (Tan, 2002; Beklioglu et al., 2004; Tan and Beklioglu, 2005b).

2.3 Data Sets 3 and 4: Nest Occurrence and Breeding Success and of Red-Winged

Blackbird

Data are collected from two marshes in 1995 and 1996 , in Sandusky Bay on Lake Erie, Ohio, USA and collected in

1969 and 1970 from other two located in Connecticut, in the northeastern USA. The Lake Erie marshes were Stubble

Patch and Darr. Data from these marshes included habitat variables and nest occurrence of red-winged blackbird

(Agelaius phoeniceus) (Özesmi, 1996). A detailed description of the study sites and data can be found in Özesmi

(1996). Two marshes in Connecticut were Clarkes Pond and AllSaints Marsh. The data from these marshes included

habitat information and breeding success of the same species (Robertson, 1972). A detailed description of the sites

and data collection can be found in Robertson (1972).

We built two separate sets of models using different dependent variables: nest occurrence and breeding success

models. The nest occurrence model was fit using 1995 data fromthe Lake Erie wetlands Stubble Patch and Darr (data

set 3). The predictive variables were vegetation durability based on an ordinate scale between 0 and 100

(Özesmi and Mitsch, 1997), stem density (number of stems m−2), stem height (cm above water), distance to open

water (m), distance to edge (m), and water depth (cm). The dependent variable was a binary index of nest occurrence.

In the breeding success model, the predictive variables were vegetation durability based on an ordinate scale between

0 and 100 (Özesmi and Mitsch, 1997), nest height (cm), distance to open water (m), distance to edge (m) and water

depth (cm). A binary index of whether or not any nestling fledged was the dependent variable.

Data from Clarkes Pond collected in 1969 - 1970 is used for fitting the breeding success models (data set 4). In total

294 data points were available to fit the models. The final model was tested using the data from All Saints Marsh

from 1969 (n = 101) and from 1970 (n = 130) as independent tests to assess the generalizability. Trained models

were also tested on the Lake Erie wetlands data from Darr and Stubble Patch in 1995 and 1996. Similarly, nest

occurrence models, trained on the Lake Erie data, were tested on the Connecticut wetlands data from Clarkes Pond
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and All Saints in 1969 and 1970. Because one set of the models were developed to predict breeding success and the

other nest occurrence, for this research we assumed that a high probability of nest occurrence corresponds to a high

probability of breeding success and vice versa. In addition, since the Connecticut wetland variables did not include

stem density, the average value of stem density from the LakeErie wetlands was used when testing Connecticut

wetlands data on the Lake Erie model. Note also that nest height was available for the Connecticut wetlands while

stem height was available for the Lake Erie wetlands, and these variables were used interchangeably. Stem heights

were about 50 cm higher than nest heights on average. The assumption was made that stem height and nest height

were correlated. Thus when the models were tested, nest heights were used as predictive variable instead of stem

heights in the nest occurrence model and vice versa for the breeding success model. In addition to the nest occurrence

data from Darr and Stubble Patch, the information on breeding success from Darr and Stubble Patch in 1996 together

with the habitat variables of vegetation durability, nest height, distance to open water, distance to edge, and water

depth under the nest was used as test data for the Clarkes Pondbreeding success model.

2.4 Data Set 5: Breeding Presence of Three Bird Species

Data set 5 collected in spring 2001 and spring 2002 in southeastern Turkey to predict the presence or absence of

breeding bird species depending on the environmental variables. The data gathered included three bird species:

woodchat shrike (Lanius senator;Linnaeus, 1758), short-toed lark (Calandrella brachydactyla;Leisler, 1814), and

olivaceous warbler (Hippolais pallida;Ehrenberg, 1833). Data sets were consisting ofNL = 548, NC = 490 and

NH = 598 data points forL. senator, C. brachydactylaandH. pallida, respectively.

There were 12 predictive variables. 6 of them were satelliteimage data from LANDSAT corresponding to the bands

TM1-TM5 and TM7. Each of these bands are generally implicated in reflecting a different attribute of the vegetation

cover and land geography (Kurt, 2004). Remaining predictive variables included annual mean temperature (oC),

annual mean humidity (%), distance to nearest road (m), distance to nearest water source (m), the height of the

sampling point from sea level, and a vegetation index, whichwas a dimensionless categorical variable indicating the

type of the vegetation with respect to its height, ranging between 1 - 9, 1 being the shortest vegetation type (Kurt,

2004). The dependent variable was binary indicating the breeding presence or absence of bird species in question.

We split the data set for each species into two by randomly selecting half of the data corresponding to each output

category for each species and sparing those selected data astest sets (independent tests), while using the other half for

training the models. Hence, three sets of each model considered in this study were built separately and fit on half of

the data set for each species and then tested on the other halfof the data, which were not used during training, for that

particular species. Detailed description of the study sites and data collection among with a through discussion of the

biology of the bird species can be found in Kurt (2004).

2.5 Data Set 6: Habitat Selection of Bird Species in Central Anatolia

This particular data set concerned the habitat preferencesof 9 bird species in Central Anatolia, namely great reed

warbler(Acrocephalus arundinaceusLinnaeus, 1978), skylark (Alauda arvensisLinnaeus, 1758), short-toed lark

(Calandrella brachydactylaLeisler, 1814), lesser short-toed lark (Calandrella rufescensVieillot, 1820), marsh
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harrier (Circus aeruginosusLinnaeus, 1758), calandra lark (Melanocorypha calandraLinnaeus, 1766), corn bunting

(Milaria calandraLinnaeus, 1758), yellow wagtail (Motacilla flavaLinnaeus, 1758) and isabellina wheatear

(Oenanthe isabellinaIsabellina Temminck, 1829). The data has been collected from Sultan marshes and Tuzla Lake

in Central Anatolia during 2002.

In field studies, the presence (1) or absence (0) of each bird species on a particular spot were recorded along with the

environmental variables, and were used as dependent variable for models. There were 12 predictive variables. These

were vegetation index, which was a categorical variable with 23 categories (Per, 2003), percent vegetation cover (%),

stem height (cm), water depth (cm), grazing, which was a semantic variable with 4 categories ranging from 0 (none)

to 3 (extensive), and 6 satellite imagery bands. The images used were obtained from LANDSAT satellite, and the

bands used as independent variables were TM1-5 and TM7. Sample size for each species is given in Table 5.

Detailed description of the satellite images, and the properties of the bands used here, as well a a description of the

study sites and the biology of the bird species considered can be found in Per (2003).

For this data set 9 separate sets of models have been built foreach species. Five of them (sets 1 - 5) were fit to the

data collected in Sultan marshes for each species and then tested on the data collected in Lake Tuzla for that species

(independent tests). Remaining 4 set of models (sets 6 - 9) were fit to the half of the data randomly split from data

collected in Lake Tuzla for each species separately, and models were then tested on the remaining half (validation).

3 Statistical Methods

In this section, an overview of the pattern recognition and classification models used for this study are reviewed. It is

not meant to be exhaustive, and interested readers are referred to the authoritative references in relevant sections. A

short description of the specific implementation details for the current study is provided at the end of the section.

3.1 Preprocessing

Often, predictive variables in a given model are of different units which are not compatible with each other. For

instance a model may include both a distance measure given inmeters as well as the concentration of a particular

nutrient given inµgl−1 (e.g. data sets 1 and 2; sections 2.1 and 2.2) as a predictive variable. Or it may include a

dimensionless variable among several others with compatible units (e.g. section 2.3). Similarly, some predictive

variables could be given in compatible, or even same units but spanning different ranges of values. For example the

data set from lakes Eymir and Mogan (data set 1; section 2.1) include chlorophyll-a concentration as well as total

phosphorus concentration, both given inµgl−1. But while the former spans a value range between[1, 38], the latter

variable spans a value range of[54, 532]. Such incompatibilities are known to reduce the stability and performance of

statistical models as the initial randomization of model parameters, or the weights, will not be effective if the

predictive variables are on different scales (Bishop, 1995; Hastie et al., 2001). In such cases, to ensure the stability

and convergence of the model to a solution, it is necessary tostandardize the input variables to a consistent

dimensionless interval.
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One commonly employed standardization scheme is to linearly transform the independent variables to mean of zero

and units of standard deviation, also known as z-score transformation (Fisher, 1970), such that theith value of thekth

predictive variable is transformed as:

zi,k =
µk − xi,k

σk

(3.1)

whereµk andσk are the mean and standard deviation of thekth variable.

If standard deviations differ substantially among variables (as is usually the case if binary or categorical variablesare

included in the input space), it is preferable to linearly transform the values of all predictive variables to lie in the

range of±0.5 (Bishop, 1995; Goodman, 1996b). Note that in this case, the mean will not be zero unless the mean of

the raw predictor was centered between its minimum and maximum values.

One other approach to standardize the input space is to use hypercube transformation such that after transforming,

input variables lie in a spaceCP ∈ [0, 1]P whereP is the number of input variables:

xC
i,k =

xi,k −min(xi,k)

max(xi,k)−min(xi,k)
(3.2)

wherexC
i,k ∈ [0, 1]P is the transformed data pointxi,k. In addition to standardization, hypercube transformation also

provides a strictly bounded input space, and thus it is of theoretical importance for classification, and in general

statistical modeling techniques, especially for ART family of models (section 3.2.3). A review of these theoretical

considerations is beyond the scope of this paper, and interested readers are referred to Grossberg (1988),

Carpenter et al. (1991c) and Kosko (1992). In all cases, after fitting the model, the variables can then be inversely

transformed for predictive purposes.

All data used in this study were z-score transformed before feeding into the models except for ARTMAP, for which

the input data were hypercube transformed.

3.2 Model Fitting

3.2.1 Traditional Classification Models

For comparative purposes, we used k-nearest neighbor (k-NN), linear and quadratic discriminant (LDA and QDA)

methods to classify our data points according to the output classes (dependent variables). k-NN method has been

considered as a benchmark classification method, if one considers only the training data. This method uses those

observations in the training setT closest in the input space tox to form Ŷ . More specifically,

Ŷ =
1

k

∑

xi∈Nk(x)

yi (3.3)
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whereNk(x) is the neighborhood ofx defined by thek closest pointsxi in the training sample. It is clear that when

the neighborhoodk is considered to bek = 1, k-NN method potentially can reach to minimum classification error on

the training set. Note that in this case the error on test set is expected to be quite high. Thus, k-NN method with a

neighborhood sizek = 2 is employed in this study as a benchmark of training set performance.

LDA and QDA techniques are models based on the class densities of the output categories. In other words, they

enable one to infer the posterior probabilities of the output categories based on the data observed, using Bayes

theorem:

P(G = k|X = x) =
fk(x)πk

∑K

l=1 fl(x)πl

(3.4)

wherefk(x) is the class-conditional density ofX in classG = k, andπk is the prior probability of classk with
∑K

k=1 πk = 1. LDA and QDA assume Gaussian distribution for class densities. Fundamentally, for two category

cases (as in our case), and assuming that the covariancesΣk of the class densities are equal, linear discriminant

function is given as

δK = xTΣ−1µk −
1

2
µT
kΣ

−1µk + log πk (3.5)

where the parameters of the Gaussian distributions are estimated from the data as

π̂k =
Nk

N
(3.6)

µ̂k =

∑

gi=k xi

Nk

(3.7)

Σ̂ =

∑K

k=1

∑

gi=k(xi − µ̂k)(xi − µ̂k)
T

(N −K)
(3.8)

whereNk is the number of class-k observations. An equivalent decision rule is given asG(x) = argmaxk δk(x). If

the equality assumption of class covariancesΣk does not hold, we obtain quadratic discriminant function

δk(x) = −
1

2
log |Σk| −

1

2
(x− µk)

TΣ−1
k (x− µk) + log πk (3.9)

with an equivalent decision boundary between each pairs of classesk andl described by a quadratic equation

{x : δk(x) = δl(x)}.

Both LDA and QDA are shown to perform astonishingly well on large and diverse set of classification tasks, and both

techniques are widely used in various research areas (Mitchie et al., 1994). Thus, we included these two models as

potential benchmarks to compare the performances of other methods against, assuming that the data considered in

this study are distributed following a Gaussian distribution. Note that discriminant analyses, both linear and

quadratic, strictly require that the underlying data are distributed as a Gaussian. A more in-depth discussion of these

two methods, among with k-NN method, can be found in Hastie etal. (2001)
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3.2.2 Generalized Linear Models and Feedforward Multilayer Backpropagation Networks

A general linear model is similar to classical multiple regression analysis such that the explanatory variables,X,

multiplied by weights,β, obtained by statistical estimation, are summed together for a score,Y:

Yi =
∑

j

βjxj + ǫi = Xβ + ǫi (3.10)

Setting

νi = Xβ + ǫi (3.11)

a general liner model is analogous to multiple regression models with the estimated values being transformed through

a nonlinear signal function (sigmoid, in our case) For simple linear prediction with continuous (analog) dependent

variables,ν might have intrinsic meaning. For binary outcome events, asin our cases, however, a link function that

monotonically constrains the output prediction to lie between 0 and 1 is required. An asymmetric logistic function,

ranging from 0 to 1, is a common choice, as it is analogous to the probability that a given pattern is associated with a

particular output class:

Yi = Pi =
eνi

1 + eνi
(3.12)

For training and performance assessment purposes, a score thresholdPt is required to assign the predicted probability

to one of the output classes such that if the output prediction is abovePt it is classified as 1 and to 0 ifPi < Pt. An

obvious choice for binary outcome events isPt = 0.5.

As with the case of multiple regression, general linear models (GLM) are equivalent to connectionist neural networks

without any hidden layers. GLM are designed to emphasize thelinear combination of predictive variables in

explaining the dependent variable(s), as they do not include any processes for nonlinearly transforming the input

space. However, ecological, or more generally biological systems inherently include nonlinearities (May, 1977;

Scheffer et al., 1993), which may severely limit the performance of linear models (Özesmi et al., 2005a;

Tan and Beklioglu, 2005b). For that reason, artificial neural networks, particularly feedforward multilayer

backpropagation networks, which are designed to capture the nonlinear interactions in the input space, are favored in

recent years (Baran et al., 1996; Lek et al., 1996; Lek and Guegan, 1999; Scardi, 1996, 2001; Özesmi and Özesmi,

1999). On the other hand, artificial neural networks are computationally expensive compared to linear models. In

some cases they offer only a little, if any, improvement overgeneralized linear models (Bishop, 1995; Goodman,

1996b; Tan and Beklioglu, 2005a). GLMs have been successfully applied to several data sets in ecology (e.g.

Meggs et al., 2004; Tan and Beklioglu, 2005a).

Connectionist neural networks are among the most applied and well known class of supervised statistical models.

These networks are composed of an input layer, an arbitrary number of hidden layers with arbitrary number of hidden

units in each layer, and an output layer. The network is commonly (but not necessarily) fully connected, meaning that
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each node in a given layerlj is connected to all of the nodes in the next layerlj+1. These networks are also

feedforward, such that the ’information’ flows from input layer to hidden layer(s) to output layer in only forward

direction. Feedforward neural networks are formally defined as follows:

LetAr be the set of all affine functions fromRr toR, that is the set of all functions in the formA(x) = w ·x+ b. For

any measurable functionG( · ) mappingR toR andr ∈ N , ΣΠr(G) is the class of functions







f : Rr → R : f(x) =

q
∑

j=1

βj ·

lj
∏

k=1

G(Ajk(x))







, x ∈ Rr, βj ∈ R,Ajk ∈ Ar, lj ∈ N, q = 1, 2, ... (3.13)

where the product term disappears for networks without hidden layer, and the equation reduces to that of generalized

linear model.

The functionG( · ) is the activation function, or link function, equivalent tothat of output units in general linear

model. Again, for binary outcome event, an asymmetric logistic activation function, ranging from 0 to 1, is suitable

for output unit. However, a symmetric logistic activation function, ranging between±0.5, is generally suggested for

the hidden units since a symmetric function is shown to enhance the stability of the weights of hidden units during

backpropagation of errors (Rumelhart et al., 1986; Unbehauen and Cichocki, 1996).

Multilayer feedforward backpropagation networks have been successfully applied to a diverse set of data ranging

from phytoplankton production (Scardi, 1996, 2001) to community changes based on climatic inputs

(Tan and Smeins, 1996), and to relationships of different species to habitat variables (Baran et al., 1996; Reyjol et al.,

2001; Özesmi and Özesmi, 1999; Tan and Beklioglu, 2005b). Model fitting procedure for feedforward neural

networks, as well as for general linear models are discussedin detail in Rumelhart et al. (1986), Bishop (1995) and

Ripley (1996). Implementational details of GLM and backpropagation models for the data sets used in this study are

given in Tan and Beklioglu (2005a), Tan and Beklioglu (2005b), Özesmi and Özesmi (1999), Kurt (2004), and Per

(2003).

3.2.3 ARTMAP

A schematic presentation of generic ARTMAP model is provided in Figure 1. Briefly, ARTMAP models consist

basically of two so-called ART modules, which are fundamentally self-organizing maps (Carpenter et al., 1991a), one

for input space and one for output space. Learning occurs separately for each ART module independently, whenever

an expected category matches to presented input pattern (i.e., current combination of predictive variables), or a novel

input pattern is encountered. These modules are linked by anassociative learning network and an internal controller

that ensures autonomous system operation in real time. Thus, ARTMAP models represent a "pseudo-supervised"

learning method (Carpenter et al., 1991a). The controller is designed to create a minimal number of ART recognition

categories (committed nodes; that is, abstract representations of combinations of input vectors) for the input space,or

"hidden units" analogous to backpropagation networks, needed to meet an accuracy criteria, which is given by the

so-called "vigilance" parameterρ (Carpenter et al., 1992). ARTMAP algorithm fundamentally works by increasing

the vigilance parameter of the input ART module by the minimal amount needed to correct a predictive error at ART

module of the output classes.
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There are several variants of ART modules (Carpenter and Grossberg, 1990; Carpenter et al., 1991b,c). Here, we

used fuzzy ART modules, which are developed for pattern recognition models with continuous and/or categorical

input space (Carpenter et al., 1991c, 1992). Fuzzy ART and fuzzy ARTMAP models use fuzzy logic operators

(Kosko, 1992) for category choices and match criteria, as well as for learning in the model operation.

Shortly, each ART system contains an input fieldF0, aF1 field receiving bottom-up signals fromF0 and top-down

input fromF2, the latter of which represents the active category representations. So-calledcomplement coding

(Carpenter et al., 1992) should be employed before feeding the input vectors to fuzzy ART modules. Fundamentally

by complement coding, it is meant that anM -dimensional input matrixa is coded and fed to the model as an

2M -dimensional matrix[a, ac], whereaci = (1− ai). Theoretical considerations for this requirement are discussed

in detail in Carpenter et al. (1992).

At eachF2 category node, there is a weight associated with that node, which are initially set to 1. Each weightwji is

monotonically increasing with time and hence its convergence to a limit is guaranteed (Carpenter et al., 1991a, 1992).

Fuzzy ART dynamics depend on a choice parameterα > 0, a learning rateβ ∈ [0, 1], and a maximum vigilance

parameterρmax ∈ [0, 1]. For each given input pattern andjth node ofF2 layer, the choice functionTj is defined by

TJ(I) =
|I ∧wj |

α+ |wj |
(3.14)

where∧ is the fuzzy AND operator is equivalent to component-wisemin operator (Kosko, 1992),| · | is the

Euclidean norm, andwj = (wj1 · · ·wjM ). The system makes a category choice when at most oneF2 node can

become at a given time, and the category choice is given asTJ = max{Tj : j = 1 . . .N}. In a choice system, the

activity of a given node atF1 layer is given asx = I if F2 node is inactive andx = I∧wJ if J thF2 node is selected.

So-called ’resonance’ occurs in the ART module if

|I ∧wJ |

|I|
≥ ρ (3.15)

and reset occurs otherwise (Carpenter et al., 1991c, 1992).If reset occurs, the value of the choice functionTJ is set to

0, and a new indexJ is chosen. The search process continues until the chosenJ satisfies the resonance criterion

(equation 3.15). Once search ends and resonance occurs, theweight vectorwJ is updated by

w
(new)
J = β

(

I ∧w
(old)
J

)

+ (1− β)w
(old)
J . (3.16)

As briefly mentioned above, fuzzy ARTMAP model consists of two fuzzy ART modules, one for input and one for

target vectors linked by an associative learning network and an internal controller (Figure 1). When a prediction by

ARTa module, which receives the input vectors, is disconfirmed atARTb module, receiving target, or output, vector,

inhibition of map field activation induces the match tracking process, which raises the ARTa vigilanceρa to just

above theF a
1 so that the activation ofF a

0 matches the reset criterion (i.e., decreased just to miss the match criterion

given by equation 3.15). This triggers an ARTa search process which leads to activation of either an ARTa category

that correctly predictb at match field, or to a new node which has not used before (that is, either an already formed
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category that predictsb is selected, or a new category is created). Abstract category representations formed at the end

of a training session are termed as ’committed nodes’ and areanalogous to the units in the hidden layer in

connectionist (i.e., multilayer feedforward backpropagation) networks.

A detailed review of the theory and operation of ARTMAP and fuzzy ARTMAP models is beyond the scope of this

study, and interested readers are referred to Carpenter et al. (1991a), Carpenter et al. (1991b) and Carpenter et al.

(1992). Carpenter et al. (1991c) also provides a geometric interpretation for ART algorithm. Although new to

ecology, ART and ARTMAP theory has been developed since early 70’s, and the reader is referred to

Cohen and Grossberg (1983) and Grossberg (1988) for theoretical considerations. A compact review of

implementational issues can be found in Carpenter (2003).

3.3 Model Assessment and Validation

3.3.1 Performance criteria

To asses the performance of statistical models, a score (error) is employed which is to be maximized (minimized).

For models with continuous-valued dependent variables, a commonly employed choice is the least squares error:

min LSE = min |D−Y| (3.17)

whereD andY are actual and predicted values of the dependent variable, respectively. For binary or categorical

outcome events, however, a cross-entropy measure as a scoremeasure is preferred (Goodman, 1996b; Ripley, 1996;

Hastie et al., 2001):

C =
∑

j,c

dj,c log2(yj,c) + (1 − dj,c) log2(1− yj,c) (3.18)

wheredj,c is the actual activation of output unit andyj,c is the predicted activation. Cross-entropy, as calculatedby

equation 3.18, is approximately equal to the area under receiver-operator curve (Goodman, 1996b; Ripley, 1996), and

it is also equivalent to log likelihood. Hence, maximizing equation 3.18 is equivalent to maximizing the likelihood of

the model estimate (Hastie et al., 2001). Note that by definition of ROC curve, c-index measures the ratio of ’hit’ rate

to ’false-alarm’ rate. Thus, if the number of samples are balanced with respect to each output category, c-index is

equivalent to the percentage of data points correctly classified by the algorithm (Ripley, 1996). However, the latter

measure is significantly biased for unbalanced data sets, and c-index should be preferred in such cases (Ripley, 1996).

For the current study, we used c-index to assess the performances of GLM and backpropagation networks and percent

of the samples correctly classified for k-NN, LDA, QDA, and ARTMAP models. In all of the data sets considered in

this study, whenever the number of data points corresponding to each output category were unbalanced, the data is

truncated by randomly discarding necessary number of samples corresponding to the output category with excessive

number of samples. This ensures the compatibility of different performance indices (c-index and percent correctly

classified) in different models. Hence, the data used in thisstudy were perfectly balanced with respect to the output

categories.
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3.3.2 Overtraining, Cross-Validation and Importance of Independent Test

As briefly mentioned in the introduction, the error rate of a given model decreases monotonically toward zero on

training data set as the model is fitted to the training data. In other words, the model loses its ability to generalize as it

is fitted to the training data more and more, a phenomenon termed as ’overfitting’, or ’overtraining’ in statistical

modeling literature (Bishop, 1995; Fielding, 1999; Hastieet al., 2001). To avoid overfitting of the data during

training, a cross-validation procedure may be employed during training (Bishop, 1995; Ripley, 1996; Hastie et al.,

2001). For cross-validation, the training data set is shuffled and a certain amount of data is used as a holdout subset at

each iteration. At each iteration, model is fit to the rest of the data and the predictive performance is validated on

holdout set, allowing the algorithm to stop training at a point optimal to avoid overfitting and be able to capture the

overall characteristics if the system and not the peculiarities.

Bootstrapping of the training data also enables to determine the maximum number of epochs to train the models, as

well as to assess the stability and variability of the model estimates (Bishop, 1995). To bootstrap the model,N draws

with replacement are performed from the training dataset, whereN is training set sample size, and this process was

repeatedK times, to createK booted data sets, each of sizeN . The booted data sets are samples of the original data

set. Generally, original data set is regarded as a sample of alarger universe of data to which we wish to generalize

(Hastie et al., 2001). Thus, this procedure allows to explore the behavior of a distribution of booted models and

permits to derive statistics and conclusions, which may be applied approximately to the behavior of the original

dataset relative to the larger universe of data. For each booted model, the number of epoch beyond which overfitting

occurs is then determined by standard methods (Bishop, 1995; Hastie et al., 2001) and the final number of epochs to

train the model with the original data set is determined accordingly.

3.4 Implementation Details

All the models in our study have been trained using bootstrapping and cross-validation to optimize the predictive

power and generalizability of the models. LDA, and QDA models were implemented in R-language statistical

software (R, 1991). GLM and backpropagation models were implemented using NevProp3 software (Goodman,

1996a). k-NN and Fuzzy ARTMAP models are implemented in Matlab version 7 (Mathworks Inc.). Implementation

details for GLM and backpropagation models can be found for data sets 1 - 6 in Tan and Beklioglu (2005a),

Tan and Beklioglu (2005b), Özesmi and Özesmi (1999), Kurt (2004) and Per (2003), respectively.

4 Results

All the models were run with 10 different random seeds to assess the variability of the estimates with initial

conditions (Özesmi et al., 2005a). Moreover, all the modelswere run using 100 bootstraps and 5-fold

cross-validation with 10% percent holdout to avoid overfitting. The standard deviation of the performance assessment

criteria (percent correctly classified or c-index) were lowand within±5% of the mean value, unless otherwise noted.

Independent tests were run using the random seed which achieved best performance on the training data sets after

cross-validation. Tables 1 - 5 summarizes the performancesof k-NN, LDA, QDA, GLM, backpropagation and
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ARTMAP models on both training and test samples on differentdata sets considered in the study except for Data Set

4, for which the performances of the models are summarized infigure 2.

The performances of different models on Lakes Eymir (training set) and Mogan (independent test set) (data set 1) are

summarized in Table 1. All models constructed in this study performed considerably well on this data set on training.

The performances of all models were above 0.9 with the exception of k-NN model, and was 1.00 with ARTMAP

model, indicating that ARTMAP classified all the data pointsin the training set correctly with 3 committed nodes.

The backpropagation model was not trained for this particular data set, since the high performance of GLM model

rendered the computational burden associated with backpropagation models in this case unnecessary (see

Discussion). However, despite their considerable successon the training set, none of the models performed

considerably better than random (0.5) on test data, with thenoticeable exception of GLM, which predicted 82% of

the test cases correctly (Table 1).

Table 2 summarizes the performances of different models on central Anatolian shallow lakes (data set 2)

(Tan and Beklioglu, 2005b). As mentioned in section 2.2, this particular data set included data from 5 different

shallow lakes located in the same climatic zone as training set, and part of this data is randomly excluded from the

training set and spared as an validation test set. Data from Lake Mogan is also used as a second test set, which is

spatially and temporally distinct from training data. All of the models performed noticeably good on this data set

during training, the performances being close to or above 0.8. However, note that backpropagation model reaches a

performance of 0.99 with 5 hidden units, while it takes ARTMAP 11 committed nodes to reach to the same level of

performance (0.98; Table 2).

If the validation test set was taken into consideration, allof the models but QDA still performed better than random

chance level (0.5) on data set 2, with obvious superiority ofthe neural network based models (GLM, backpropagation

and ARTMAP). Among those, the difference in the validation test performance was negligible. The difference,

however, became apparent on the performance on Lake Mogan test set, at which, despite of its distinctiveness,

connectionist approaches, GLM and backpropagation, performed significantly better than ARTMAP model. Both

GLM and backpropagation models classified all 24 of the test cases correctly. Considering the fact that ARTMAP

uses a higher number of abstract category representations (i.e., committed nodes) compared to the backpropagation

model (number of hidden units), apparent poor performance of ARTMAP on independent test set is not surprising

(see discussion).

The performances of different models on nest occurrence of red-winged blackbird (data set 3) are summarized in

Table 3. On this particular data set, there is a clear dominance of k-NN, among with ARTMAP, in terms of training

set performance, over the traditional models, LDA and QDA, and connectionist approaches, GLM and

backpropagation. k-NN and ARTMAP models’ performance was 0.8, while other models’ were around 0.6 - 0.7

(Table 3). Considering the degrees of freedom of k-NN and ARTMAP, which had higher performances in classifying

the training data, k-NN achieved a classification performance of 0.8 with 2 degrees of freedom, while ARTMAP

required to use 14 degrees of freedom (number of committed nodes; i.e., abstract category representations) to achieve

the same performance. However, none of the models performedbetter than random on test data sets, the performance

indices being around 0.5, with a slight improvement in GLM and backpropagation models on two test sets. All 6 of

the methods failed to classify the test sets which consist ofthe data collected from a spatially and/or temporally
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distinct system (All Saints, Clarkes, Stubble and Darr marshes) effectively.

The performances of different models on breeding presence of red-winged black-bird (data set 4) (Robertson, 1972)

are summarized in Figure 2. Accordingly, on the training data sets, k-NN performed considerably better than the

other models, with a percent correctly classified ratio of 0.8, followed closely by ARTMAP. A clear exception is that

ARTMAP performed close to 0.9 on the training set, which consisted of the data collected only in 1970. On all three

training sets, nevertheless, k-NN and ARTMAP appeared to perform reasonably well on predicting the breeding

presence compared to other models. On the other hand, inspection of the performances of these two models, k-NN

and ARTMAP, on independent test data sets reveals that k-NN predicts the breeding success better than ARTMAP in

almost all cases. Note that the performance of k-NN models, which are trained on the data collected either in 1969 or

1970, on test sets degrades, if the models are tested on All Saints data collected during 1969 and/or 1970. On the

other hand, the performance is reasonably well on samples collected from Stubble Patch and Darr marsh in 1995

and/or 1996. Nevertheless, when trained on the complete data set (that is Clarkes marshes 1969 and 1970; train set

1), k-NN model successfully predicted the breeding successin all of the test cases without any exceptions (Figure 2).

Table 4 summarizes the performances of different models on habitat selection data forL. senator, C. brachydactyla

andH. pallida (data set 5; Kurt, 2004) on training and independent test sets. All models were built for each species by

splitting the data into training and testing sets. When the performances on training sets are considered, discriminant

analyses, both linear and quadratic, performed considerably worse than other models. The performances of k-NN and

GLM models are similar in terms of training sets, while the performances of backpropagation and ARTMAP are

noteworthy, by classifying all of the training sets correctly, with the exception of backpropagation model on the

training set ofH. pallida. However, note that in contrast with the same models’ performance on central Anatolian

shallow lakes (data set 2), ARTMAP achieved a performance of1.00 with considerably less number of abstract

category representations (2-4 committed nodes) than backpropagation models (5-8 hidden units), and thus ARTMAP

in this case was expected to be more generalizable than backpropagation models. Not surprisingly, the performances

of ARTMAP models independent test sets are noteworthy, being close to 1 for each case, while backpropagation

models suffer from being close to random chance level on independent test sets, with few exceptions.

Table 5 summarizes the performances of different models on habitat selection data for bird species in the central

Anatolia (data set 6; Per, 2003) on training and test sets. For this particular data, 9 sets of models have been built, 5 of

which are trained using the data of a particular species collected in Sultan marshes and tested on the data of the same

species collected in Lake Tuzla (Sets 1-5 in Table 5; independent tests); and remaining 4 sets consisted of the models

trained on the half of the data collected for a given species in Lake Tuzla, and tested in the other half (Sets 6-9 in

Table 5; validation). In general, ARTMAP and k-NN models seem to have a superior predictive performance on

training data, followed by GLM and backpropagation models.QDA models could not have been applied in 6 out of 9

cases for this data set due to numerical instabilities and deficiencies in the data. Linear and quadratic (where

applicable) discriminant analyses appear to have a predictive performance not better than random chance level.

Comparison of predictive performances on validations and independent tests indicates that k-NN has a better

predictive performance compared to that of ARTMAP, successfully predicting the test data sets above chance level

with the only exception of Set 5.
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5 Discussion

Seoane et al. (2005) argued about the redundancy of independent tests in predictive models in ecology, claiming that

there is no particular interest in estimating the predictive ability of a model in a universe different from which it was

built. However, the importance of the ability of a given model, in terms of its performance on an independent test data

set, is emphasized in several studies (Özesmi and Özesmi, 1999; Özesmi et al., 2005a; Tan and Beklioglu, 2005a,b).

Intuitively, observations from a given system correspondsnot to a universe of events, but rather to finite-size samples

from a larger universe of events. Hence, an ideal statistical model should be able to predict not only the outcome of

events (samples) on which it was built, but also to predict the states of the system in the face of events which has not

been encountered in the finite size samples. Hence, a given model should minimize the error rate on training set (that

is, samples used to fit the model) at the same time maximizing the performance on an independent data set which has

not been encountered before, if the model is to be robust (Bishop, 1995; Ripley, 1996; Hastie et al., 2001). Thus, its

performance on independent test data, shows its ability to generalize, and indicates the robustness of the model for a

given system, rather than its performance on training set, which simply indicates its ability to fit to the sample at hand.

The ability of a given model to avoid overfitting and to generalize depends on how closely a model maps the input

space to output space, that is on the number of abstract category representations corresponding to combinations of

predictive vectors, in the case of ’global’ models such as GLM, backpropagation (Bishop, 1995) and ARTMAP

(Carpenter et al., 1992). In the case of traditional classification models, it depends on the number of neighborhoods

for k-NN model, and on the number of output classes and predictive variables for LDA and QDA (Hastie et al.,

2001). Thus, the ’flexibility’ of k-NN, LDA and QDA is fixed, equal tok = 2 for k-NN, and is proportional to the

number of predictive variables for LDA, QDA and GLM, in our case. For backpropagation, it is represented by the

number of hidden units determineda priori, and for ARTMAP by the number of committed nodes after training.

In the extreme case, the ’flexibility’ of a model could be equal or more than the number of observations (i.e., training

points), and in that case, the model would ’memorize’ the training data, fitting perfectly, while any observation

different in the test samples from the training points wouldcause a random prediction, hence rendering the ability to

generalize impossible. This corresponds to so called ’overfitting’ of a model (Bishop, 1995; Fielding, 1999;

Goodman, 1996b). Thus, the ability of a given model to generalize on independent test data would be evident from a

trade-off between its performance on training set and the flexibility of the model achieving that performance. The

importance of the flexibility of a model for fitting the training data and of the independent test to assess the actual

performance of a given model is evident in our study as well.

5.1 Data Sets 1 an 2: Lakes Eymir and Mogan, and Central Anatolian Shallow Lakes

In the case of data set 1, although ARTMAP performs better than other models, independent test performance of

GLM, which is considerably better than ARTMAP, renders GLM to be applicable in that case. Even a more drastic

case took place in data set 2, on which backpropagation model with 5 hidden units and ARTMAP model with 11

committed nodes predicted almost the same fraction of the training sample. Their predictive performances on

validation data set, which consisted of the fraction of datainitially split from the original data, are also appear to bein

close proximity. However, if the same models were tested on an independent test, which consisted of data collected

18



from a spatially and temporally distinct system, predictive performance of ARTMAP model dropped drastically to

0.67, whereas backpropagation model retained its robustness. Considering the fact that ARTMAP used a higher

number of abstract category representations (i.e., committed nodes) compared to the backpropagation model (number

of hidden units), apparent poor performance of ARTMAP on independent test set is not surprising. One can argue,

however, that the system constituting to the independent test sample might be governed be completely different

dynamics and as such it cannot be predicted by a model trainedon separate systems. However, all 5 lakes constituting

to training and test data sets are located in the same climatic zone, and all these 5 lakes are ecologically governed by

more or less similar mechanisms, as far as the predictive variables concerned (Beklioglu et al., 2004; Tan, 2002;

Tan and Beklioglu, 2005b). Furthermore, the fact that backpropagation model indeed predicted all the cases in the

test set correctly renders such an argument unlikely.

5.2 Data Set 3: Nest Occurrence of Red-Winged Blackbird

In the case of data set 3, k-NN and ARTMAP models appear to havea greater predictive power on the training set

compared to other models, the performance criteria being around 0.8. However, none of the models performed better

than random on test data sets, the performance indices beingaround 0.5, with a slight improvement in GLM and

backpropagation models on two test sets. This might be because of the small sample sizes used as training set (230)

though this sample size is considerably larger than that of the data set 1 (N = 91). Moreover, as mentioned in section

2.3, because one set of the models were developed to predict breeding success and the other nest occurrence, the

assumption has been madea priori that a high probability of nest occurrence corresponds to a high probability of

breeding success and vice versa. In addition, since the Connecticut wetland variables did not include stem density,

the average value of stem density from the Lake Erie wetlandswas used when testing Connecticut wetlands data on

the Lake Erie model. Note also that a seconda priori assumption, namely that stem height and nest height were

correlated, was made for using these two sets of data as independent tests for each other. For that reason, it is quite

likely that thesea priori assumptions have been violated by the data, and further datacollection, or further

characterization of habitat variables, might be required in order to ensure the compatibility of these two sets with

each other and to improve the predictive performances of themodels on both training and test sets.

Regardless of the underlying reason, however, this poor performance of all the models on test sets emphasizes the

importance of independent test for assessing the actual predictive performance of a given model. If, for example,

ARTMAP model trained in the data collected in 1995 were applied for predicting the nest occurrence in the same

area in 1996, based purely on its relatively high performance on training data set, it would produce misleading

results. This is indicated by the fact that its performance on test data collected in the same area in 1996 is not better

than random chance level. In this case, it is apparent that the model should be improved by, for example, obtaining

more samples, or changing the model structure and/or type. Model improvement is beyond the scope of the current

study. Nevertheless, there are several techniques based oninformation theoretical approaches for improving the

predictive performance of models, readily available in theliterature (e.g., Hastie et al., 2001), and particular examples

for predicting habitat selection and distribution of bird species are provided in the literature for the case of general

additive models (GAMs), which are marginally related to GLMs (Bustamante and Seoane, 2004; Seoane et al.,

2004a,b).

19



5.3 Data Set 4: Breeding Success of Red-Winged Blackbird

For data set 4, a general pattern emerged for all three sets that k-NN and ARTMAP models are again superior to other

techniques on the training set performance. Inspection of the independent test results, however, revealed that, k-NN

has a broader ability to generalize over the new data sets. Itis especially intriguing that the performance of k-NN

models, which are trained on the data collected either in 1969 or 1970, on test sets degrades when the models were

tested on All Saints data collected during the same period, while the performance is reasonably well on samples

collected in Stubble and Darr marshes collected in 1995 and 1996. Nevertheless, as apparent from Table Figure 2,

when trained on the complete data set (train set 1), k-NN model successfully predicts the breeding success in all of

the test cases without any exceptions. This might probably be as a result of the fact that the data in this case covers a

relatively broad temporal domain (2 years instead of 1 year). Note also that in the case of Robertson data,

performance on the independent tests are boosted for spatial sets, that is, the models are in general more generalizable

on temporal domain but as such is not true for spatial domain,this might in turn indicate the importance of training

data set.

5.4 Data Set 5: Breeding Presence of Three Bird Species

For data set 5, there was a clear dominance of ARTMAP models, in terms of the predictive power on both training

and test sets, Note that in contrast to the same models’ performance on central Anatolian shallow lakes (data set 2),

ARTMAP achieved a performance of 1.00 with considerably less number of abstract category representations than

backpropagation models. Thus ARTMAP is expected to be more generalizable than backpropagation models. For

this case, when the performances on training sets are considered, discriminant analyses, both linear and quadratic,

performed considerably worse than other models. Surprisingly, the performances of ARTMAP models on

independent test sets is noteworthy, being close to 1 for each case, while backpropagation models suffer from being

close to random chance level on validation and independent test sets, with few exceptions.

5.5 Data Set 6: Habitat Selection of Bird Species in Central Anatolia

When considering data set 6, it was apparent that again, k-NNand ARTMAP models are superior to other models, in

terms of their predictive performance on training data sets. Nevertheless, comparison of predictive performances on

validation and independent tests indicated that k-NN had a better predictive performance compared to that of

ARTMAP. k-NN successfully predicted the test data sets above chance level with the only exception of Set 5 . Note

that in the case of these data , sets 1-5 include test samples collected from a spatially distinct region than the samples

for training data. This , in turn, indicates that k-NN models, in this case are particularly robust in terms of their ability

to generalize over new data sets.
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5.6 General Discussion

On all data sets, traditional discriminant analyses, linear and quadratic, had a poor predictive performance on both

training and independent test data sets. Note, however, from section 3.2.1 that discriminant analyses strictly require

that the underlying data to be sampled from a Gaussian distribution. Several studies in the literature appear to employ

discriminant analysis to infer species distribution or occurrence, and attain reasonably good predictive performance

(Joy and Death, 2003; Maron and Lill, 2004), in contrast to our study. Despite their considerable success, however,

we do not recommend traditional discriminant analysis for prediction purposes, unless one makes sure that the

underlying data is distributed appropriately, or filtered through a suitable transformation in preprocessing stage to

satisfy the required parametric distribution.

Statistical learning models associate a probability with each alternative state given the simultaneous observation of all

variables at a given time step (or the whole set of past observations in the case of unsupervised methods) (Kosko,

1992). Once the model is trained, resulting probability densities associated with each state are used to predict and

forecast the state the system will occupy based on the new observations. For predictive modeling of ecosystems

which are known to exhibit multiple stable states and catastrophic regime changes (May, 1977; Scheffer et al., 1993),

this probabilistic design can also be exploited as (at least) a qualitative measure of the distance to threshold for

regime changes, in addition to identifying bifurcations and regime shifts in ecosystem dynamics, by combining

probabilities associated with the points in input space with the sensitivity analyses, which systematically scan the

input space (Recknagel et al., 1997; Scardi, 2001; Tan and Beklioglu, 2005a). Presentation and elaboration of

sensitivity analyses are beyond the scope of this study, however, sensitivity analyses of GLM and/or connectionist

neural network models for our data sets can be found elsewhere (Per, 2003; Kurt, 2004; Tan and Beklioglu, 2005a,b;

Özesmi et al., 2005a), and a through discussion of their use in identifying regime shifts and thresholds associated

with these shifts for data sets 1 and 2 (Lakes Eymir and Mogan,and central Anatolian shallow lakes) can be found in

Tan and Beklioglu (2005a) and Tan and Beklioglu (2005b), respectively.

Note that two main types of ecological data have been considered in this study: one type of data (data sets 1 and 2)

consisted of time-dependent data, meaning that the dynamics governing these systems depend on the passage of time,

including small- to large-scale periodicities. However, the second type (data sets 3-6) was time-independent, or

strictly stationary, in the sense that possible periodic dynamics and trends governing these systems are expected to be

well beyond the time-scale of the data collection. Statistical classification methods are, however, known to be

insensitive to the time correlations or interactions of individual variables over a time series, i.e they can not capture

temporal system dynamics, unless an explicit independent variable reflecting the time-dependence and periodicities

within the series is includeda priori, as such is also true for connectionist neural network models.

5.6.1 Time-Dependency of the Data and Selection of SuitableModel

Note that on the first type of data (data sets 1 and 2), connectionist neural network models (GLM and multilayered

feedforward backpropagation) achieved a fairly good predictive performance, both on training and test data sets.

These models apparently captured the nonlinear interactions between the variables as well as inherent

non-stationarity of the data. However, note that for one of these data (data set 1), we included the z-score

transformation of the water level, which inherently reflects the periodic changes due to the seasonal periodicities of
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the system. In the other data set (2), we included an explicitrepresentation of the time series (period index) as well as

water level data which, again, was expected to reflect the periodicities inherent in the system. Meggs et al. (2004)

used a generalized linear modeling approach to predict the occurrence of a lucanid beetle species based on habitat

variables, but their model attained to a relatively moderate predictive performance on predicting species abundance

and occurrence. We suggest that the moderate discriminatory ability of their model is, at least partly, mediated by the

lack of account to periodic dynamics. Similarly, Dunk et al.(2004) employed a generalized additive model, which is

analogous to generalized linear models, to predict the occurrence of mollusk species, and showed that the inclusion

of climatic variables contributed significantly to the predictive ability of their model. This is presumably because

climatic variables reflect at least seasonal periodic dynamics of the system, considering that climatic forces are

among the most important driving forces for a given ecosystem. As connectionist neural network model are closely

related to generalized linear models (section 3.2.2), the same reasoning is applicable to these models as well. Thus,

we suggest that for data sets over time-scales which are smaller than the seasonal and other possible periodic

dynamics of the system, an explicit predictive variable should be included in the model that potentially reflects these

periodic dynamics, either directly (as period index), or indirectly (as water level z-score), at least for the case of GLM

or connectionist neural network models.

Existing literature of predictive modeling in ecology emphasizes the advantages and predictive power of

connectionist neural network approaches owing to these models’ inherent ability to capture complex nonlinear

interactions between the predictive variables (Lek et al.,1996; Lek and Guegan, 1999; Scardi, 1996, 2001). However,

this celebrated predictive performance also brings about an increased complexity and thus an increased

computational costs resulted from this complexity. The computational cost of these models could be overwhelming

especially with larger data sets. However, as the model on data set 1 shows, GLMs could attain a significant

predictive performance, at the same time avoiding the costsof neural network models. Thus, we suggest that one

should fit a GLM to the data set before considering a neural network approach, a high predictive power of which

would render the computational cost associated with neuralnetworks unnecessary.

For the time-independent data sets (data sets 3-6), our results show that neighborhood-based methods, k-NN and

ARTMAP, are superior in terms of their predictive performances compared to other techniques, both on training and

test data sets. Test performance of k-NN and ARTMAP models ondata set 3 appears to be an exception to this, and

possible reason for this exception is discussed above. Based on our results, nevertheless, we suggest that k-NN and

ARTMAP models are more suitable for spatial data, such as habitat selection and species distribution instead of more

dynamic alternatives such as GLM and connectionist neural network models, at least if the time-scale considered is

assured to be relatively insignificant compared to the time-dependent periodicities governing ecosystem dynamics.

ARTMAP, although considered as a neural network architecture, is implicitly a neighborhood-based classification

technique. A geometric interpretation of the operation of ARTMAP (Carpenter et al., 1991c, 1992) suggests that its

operation is analogous to k-NN neighbor method. An important difference is that while the size of the neighborhood

is fixed for k-NN, it is adaptive in ARTMAP, adjusted on-the-fly depending on the performance of the model on

current data point (and previous ones). Thus, analogous to the relation between GLM and connectionist neural

network models, we consider k-NN to be a relatively primitive, computationally less expensive alternative to

ARTMAP. On our spatial data sets, k-NN performed considerably better than ARTMAP on 2 of the 3 cases (data sets

4 and 6) on independent test sets. Hence, we suggest that k-NNshould be considered for predictive spatial modeling

before considering a more advanced but complex model such asARTMAP.
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6 Conclusions

Our study suggests that different methods for statistical predictive modeling of ecosystems are suitable, depending on

the data sets and ecosystem dynamics that are to be modeled. For the cases involving data sets whose underlying

distribution is unknown, or presumed to be irregular, traditional statistical models such as discriminant analyses have

poor predictive performances and thus could lead to misleading and invalid predictions. For the data sets involving

time-dependent dynamics and periodicities whose frequency are possibly less than the time scale of the data

considered, GLM and connectionist neural network models, such as multilayer feedforward backpropagation models,

appear to be most suitable, in terms of their performance on both training and test sets, provided that a predictive

variable reflecting these time-dependent dynamics, eitherimplicitly or explicitly in included in the model. For spatial

data, which does not include any time-dependence comparable to the time scale covered by the data, on the other

hand, neighborhood based methods such as k-NN and ARTMAP proved to be more robust than other methods

considered in this study. However, for predictive modelingpurposes, one should consider applying first a suitable,

computationally inexpensive method to the data at hand, a good predictive performance of which would render the

computational cost and efforts associated with complex variants unnecessary. Further characterization of the data

included in this study using different and/or variants of the methods considered here, as well as application of the

models considered here to new data sets would, nevertheless, reveal further characterizations and suggestions for

suitability and applicability of statistical predictive modeling techniques in ecology.
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Tables

Table 1: Models trained on Lake Eymir, tested on Lake Mogan data (Tan and Beklioglu, 2005a).

N: number of data points;P: number of independent variables. k-NN, LDA QDA and ARTMAP

results are given as percent correctly classified, backpropand GLM as c-index (corrected c-index

for training set). Integers indicated before the performance values of the training sets for ARTMAP

model indicate the number of committed nodes.

Set N P k-NN LDA QDA GLM BackProp ARTMAP

Training 91 5 .846 .939 .969 .963 — 3;.1.000

Independent Test 43 5 .429 .524 .476 .815 — .643
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Table 2: Models trained on Anatolian Lakes, tested on validation test set, which consisted of data

randomly split from training set and did not included in model fitting phase (see text) and Lake

Mogan data (Tan and Beklioglu, 2005b) as independent test.N: number of data points;P: num-

ber of independent variables k-NN, LDA QDA and ARTMAP results are given as percent correctly

classified, backprop and GLM as c-index (corrected c-index for training set). Integers indicated be-

fore the performance values of the training sets for backpropagation and ARTMAP models indicate

the number of hidden units and number of committed nodes, respectively, of backpropagation and

ARTMAP models.

Set N P k-NN LDA QDA GLM BackProp ARTMAP

Training 440 5 .998 .814 .773 .943 5;.986 11;.977

Validation 101 5 .816 .802 .255 .962 .998 .956

Independent Test 24 5 .750 1.00 .833 1.00 1.00 .667
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Table 3: Models trained on Lake Erie, tested on Lake Erie, All Saints and Clarkes marshes data

(Robertson, 1972; Özesmi, 1996; Özesmi and Mitsch, 1997).N: number of data points;P: number

of independent variables. k-NN, LDA QDA and ARTMAP results are given as percent correctly

classified, backprop and GLM as c-index (corrected c-index for training set). Integers indicated be-

fore the performance values of the training sets for backpropagation and ARTMAP models indicate

the number of hidden units and number of committed nodes, respectively, of backpropagation and

ARTMAP models.

Set N P k-NN LDA QDA GLM BackProp ARTMAP

Training (s95d95) 230 6 .822 .648 .644 .716 6;.730 14;.826

Independent Test-1 (s96) 98 6 .541 .592 .591 .681 .670 .459

Independent Test-2 (d96) 84 6 .560 .524 .536 .578 .550 .440

Independent Test-3 (AllSaints69) 68 6 .500 .501 .500 .380 .430 .382

Independent Test-4 (AllSaints70)110 6 .501 .500 .501 .470 .520 .518

Independent Test-5 (Clarks69) 124 6 .516 .540 .589 .660 .660 .540

Independent Test-6 (Clarks70) 108 6 .472 .444 .435 .480 .470 .454
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Table 4: Models trained and tested on bird habitat selection data(Kurt, 2004; Welch, 2004).N:

number of data points;P: number of independent variables. k-NN, LDA QDA and ARTMAP re-

sults are given as percent correctly classified, backprop and GLM as c-index (corrected c-index for

training set). Integers indicated before the performance values of the training sets for backpropa-

gation and ARTMAP models indicate the number of hidden unitsand number of committed nodes,

respectively, of backpropagation and ARTMAP models.

Training-1 (L. senator) 274 12 .828 .781 .799 .859 8;1.00 2;1.00

Independent Test-1 (L. senator) 273 12 .678 .780 .798 .781 .831 .971

Training-2 (H. pallida) 246 12 .866 .488 .496 .759 3;.874 4;1.00

Independent Test-2 (H. pallida) 245 12 .669 .486 .502 .703 .657 .980

Training-3 (C. brachydactyla) 294 12 .847 .646 .701 .855 10;1.00 3;1.00

Independent Test-3 (C. brachydactyla) 293 12 .765 .648 .703 .769 .809 .962

31



Table 5: Models trained and tested on bird habitat selection data (Per, 2003). N: number of data

points;P: number of independent variables. k-NN, LDA QDA and ARTMAP results are given as

percent correctly classified, backprop and GLM as c-index (corrected c-index for training set). Inte-

gers indicated before the performance values of the training sets for backpropagation and ARTMAP

models indicate the number of hidden units and number of committed nodes, respectively, of back-

propagation and ARTMAP models. k-NN model outperforms other models on both training and

test performance, with the exception of independent test-5(highlighted). Although ARTMAP seem

to have a high performance on training data, its performanceis lower than GLM and Backprop on

independent tests, being at random chance level for four of the independent tests (highlighted).

Set N P k-NN LDA QDA GLM BackProp ARTMAP

Training-1 (ss-acraru) 74 12 .973 .905 — .959 — 4;.946

Independent Test-1 (tuzla-acraru)506 12 .968 .945 — .936 — .986

Training-2 (ss-alaarv) 74 12 .986 .824 .851 .807 — 11;960

Independent Test-2 (tuzla-alaarv)505 12 .798 .430 .551 .705 — .412

Training-3 (ss-calruf) 118 12 .992 .788 — .822 12;.925 5;.924

Independent Test-3 (tuzla-calruf) 506 12 .773 .530 — .875 .909 .714

Training-4 (ss-ciraer) 48 12 .917 .833 .896 .757 12;.905 8;.930

Independent Test-4 (tuzla-ciraer) 506 12 .915 .785 .332 .760 .829 .453

Training-5 (ss-motfla) 50 12 .920 .760 .960 .696 12;.584 9;.960

Independent Test-5 (tuzla-motfla)505 12 .535 .570 .941 .508 .683 .521

Training-6 (tuzla-calbra) 50 12 .940 .780 — .745 12;.900 4;.920

Validation-1 (tuzla-calbra) 516 12 .880 .629 — .778 b.641 .800

Training-7 (tuzla-melcal) 118 12 .983 .729 — .651 12;.902 6;.831

Validation-2 (tuzla-melcal) 515 12 .937 .604 — .608 .657 .555

Training-8 (tuzla-milcal) 56 12 .982 .768 — .698 2;.708 8;.946

Validation-3 (tuzla-milcal) 516 12 .856 .613 — .676 .850 .785

Training-4 (tuzla-oenisa) 102 12 .990 .745 — .858 2;.719 7;.892

Validation-4 (tuzla-oenisa) 505 12 .954 .529 — .818 .835 .745
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Figure Captions

Figure 1: Schematic representation of fuzzy ARTMAP architecture. Input vectors are processed in ARTa module

while target categories are processed in ARTb module. Semi-disks represent adaptive weights. For details, see

text (modified from Carpenter et al. (1992)).

Figure 2: Predictive performance of models on breeding success data of red-winged black-bird (data set 4). k-NN:

k-nearest neighbor; LDA: linear discriminant analysis; QDA: quadratic discriminant analysis; GLM:

generalized linear model; backprop: multilayer feedforward backpropagation neural network. Each panel

shows the training and test performances of the models trained on Clarkes data. Upper panel: models trained

on Clarkes 1960-1970 data; Middle panel: models trained on Clarkes 1969 data; Lower panel: models trained

on Clarkes 1970 data. trn: training performance; tst: test performance (see text).
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