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Abstract

Ecological systems are governed by complex interactiorishwdre mainly nonlinear. In order to capture the
inherent complexity and nonlinearity of ecological, andjéneral biological systems, statistical models recently
gained popularity. However, although these models, pdaity connectionist approaches such as multilayered
backpropagation networks, are commonly applied as piediotodels in ecology to a wide variety of ecosystems
and questions, there are no studies to date aiming to asmegerformance, both in terms of data fitting and
generalizability, and applicability of statistical modéh ecology. Our aim is hence to provide an overview for
nature of the wide range of the data sets and predictiveblasafrom both aquatic and terrestrial ecosystems with
different scales of time-dependent dynamics, and the egdylity and robustness of predictive modeling methods on
such data sets by comparing different statistical modejpgroaches. The models used in this study range from
predicting the occurrence of submerged plants in shall&esi@o predicting nest occurrence of bird species from
environmental variables and satellite images. The metbodsidered include k-nearest neighbor (k-NN), linear and
quadratic discriminant analysis (LDA and QDA), generalifieear models (GLM) feedforward multilayer
backpropagation networks and pseudo-supervised netwaikvAAP.

Our results show that the predictive performances of theatsazh training data could be misleading, and one
should consider the predictive performance of a given modein independent test set for assessing its predictive
power. Moreover, our results suggest that for ecosystewadving time-dependent dynamics and periodicities
whose frequency are possibly less than the time scale ofataecnsidered, GLM and connectionist neural network
models appear to be most suitable and robust, provided tvatictive variable reflecting these time-dependent
dynamics included in the model either implicitly or expligi For spatial data, which does not include any
time-dependence comparable to the time scale covered lmathgon the other hand, neighborhood based methods
such as k-NN and ARTMAP proved to be more robust than othehaoastconsidered in this study. In addition, for
predictive modeling purposes, first a suitable, computatly inexpensive method should be applied to the problem
at hand a good predictive performance of which would rentiecomputational cost and efforts associated with
complex variants unnecessary.

Keywords: Predictive model; multiple states; nest occurrence; bingesliccess; habitat selection; satellite imagery;
species distributiork-nearest neighbor; discriminant analysis; generalizeshli model; neural network; multilayer
feedforward backpropagation; ARTMAP



1 Introduction

Ecological, and in general biological, systems’ dynamiesaiten governed with nonlinear interactions of
environmental factors. Environmental variables intevéithh systems in such a complex way that the whole system
achieves a broader functionality that cannot be deducedbsidering individual environmental factors. The goal of
the ecological studies has been to gain insight into thistfanality and complexity by observing individual factors
affecting the system in question. System dynamics, andchthesnce of individual factors to these dynamics as a
whole, has been of primary concern not only for theoretioakiderations, but also management and conservation
practices. One natural choice to achieve this purpose isdtract the system and interactions inherent in it by
mathematical and statistical models.

Ecological modeling studies have traditionally been cotreged on the use of "box-and-arrow" type
differential/difference equation models (Ross, 1976g8asen, 1976; Lassiter and Kearns, 1977). However, while
these models provide valuable insight into the particutasgstem being studied, because of their strong dependence
on the parameters specific to that system, these modelsanre far be criticized as being "case-specific". To achieve
generalizability and thus to gain insight into the ecosystén general, statistical models have been one of the main
practices (e.g. Tan and Smeins 1996; Maron and Lill 2004ig@et et al. 2005; Tan and Beklioglu 2005a;

Ozesmi et al. 2005b). This is especially true for stati$titassification and pattern recognition models which
fundamentally aim to characterize a combination of vadalgsind their measurements which lead to particular state(s)
of the ecosystem.

On the other hand, traditional classification, and in gdretagistical, models require strong assumptions about the
distribution of the underlying observations and/or theeayscharacteristics (Hastie et al., 2001). To overcome this
issue, nonlinear and/or non-parametric models to modelystems on the basis of finite-size observations have
become recently popular. Of particular importance in te&pect is the use of connectionist artificial neural
network-based approaches such as generalized linear sranttefeedforward multilayer backpropagation networks.
These models are able to capture the nonlinear interaciothsomplexity of the ecosystem without the need for any
assumptions about the distribution of the observationsvéyer, the main problem associated with these approaches
has been their "off-line" iterative nature (Bishop, 19918y, 1996; Hastie et al., 2001) and the computationalscost
associated with these models, compared to traditionabagpes (Hastie et al., 2001).

The latter problem can be overcome by considering the usenpler models where they attain a fairly good
performance. The former problem, on the other hand, beifalingf, constitutes to the main issue, especially for
management practices. Each time a new observation is nteehe tmodels require to be retrained on the entire data
set in order to include the new observation. Consideringtmputational cost associated with artificial neural
network based approaches, this fact renders these modglgrictical from a management point of view. However,
though unfamiliar to ecological and biological modeleevesal other families of neural network models have been
developed since the early 70's, including ART and ARTMAP ilgraf models (Grossberg, 1976a,b; Carpenter et al.,
19914, 1992). These unsupervised and pseudo-supenadfeatganizing maps have the advantage of being
real-time models, and thus being able to incorporate newrghtons easily. In addition, the computational costs
associated with ART-family of models are comparably smathpared to connectionist neural network models,
while their performance is reasonably better.



To assess the performance of a model, several studies slioevedportance of independent test sets (Ozesmi et al.,
2005a; Tan and Beklioglu, 2005a,b). Although a given maogketticularly neural networks (Hornik et al., 1989), can
perform arbitrarily well on training data set, the actuahbjor statistical models is to achieve a high generalizigbil

at the same time. From this point of view, a given model shauildmize the training error and at the same time
maximize the generalizability (so-called minimax probjein that respect, while connectionist neural network
schemes are "universal approximators" of the training setg¢Hornik et al., 1989), there has been several techniques
developed to maximize the predictive performance of a gimedel simultaneously on both training and test sets,
such as cross-validation (Bishop, 1995; Hastie et al., 001

Recently, as mentioned before, the use of statistical igaks gained popularity to explain and predict the outcome
of ecosystem processes, such as occurrence of multiple stales (Tan and Smeins, 1996; Tan and Beklioglu,
2005a,b), and habitat selection or distribution of spe(Basan et al., 1996; Lek et al., 1996; Ozesmi and Ozesmi,
1999). Predictive modeling attempts in ecology have useerabmethods ranging from regression (Sawchik et al.,
2003; Gutierrez et al., 2005) to discriminant analysis @og Death, 2003; Maron and Lill, 2004), and from
generalized additive (Seaone et al., 2003; Seoane et 84b20unk et al., 2004) and linear models (Meggs et al.,
2004; Tan and Beklioglu, 2005a) to multilayer feedforwaagkpropagation networks (Scardi, 1996;

Tan and Smeins, 1996; Ozesmi and Ozesmi, 1999) and time sevadysis (Heegaard, 2002). However, considering
above mentioned arguments, it is necessary to assesstiuedtatistical models and algorithms in terms of their
performance on and suitability for a given ecological penio] which to our knowledge, has not been done yet.
Although there are extensive studies aiming to comparisstatl models for artificial data sets (e.g. STATLOG
project; Mitchie et al. 1994), it is obvious that the ecotraiidata differs considerably than artificial data setsesinc
former data is considerably more prone to observationgbamleasurement noise, and the ecological interactions
are inherently more complex and nonlinear. In addition|evall the variables and factors leading to system
dynamics in artificial systems can be known and/or conttipBeich is not true for the ecological systems. As such, a
comparative study to asses the performance and at the sameditability of statistical modeling techniques is
required for the ecological modeling studies to avoid blpglications and ill allocation of time and effort.

Our aim is here to provide an overview for nature of the widegeof the data sets and predictive variables and their
use in predictive ecological models by comparing diffestatistical modeling approaches. To that end, we studied 6
different data sets from both aquatic and terrestrial exstesys using 6 different type of statistical models. The
models included traditional methods (k-nearest neighk®N, and linear and quadratic discriminant analysis: LDA
and QDA), connectionist neural network-type models (gelwezd linear models: GLM, feedforward multilayer
backpropagation networks) and pseudo-supervised ARTIN8ARe of these data sets used in this paper were
modeled before using one or more of the particular algostand discussed extensively in several publications
(Ozesmi, 1996; Ozesmi and Ozesmi, 1999; Ozesmi et al., 200Bar, 2003; Kurt, 2004; Tan and Beklioglu,
2005a,b) and as such, only a broad summary of these datasgoaided among with the relevant citations.



2 Data Sets

2.1 Data Set 1: Lakes Eymir and Mogan

Lake Eymir is a small shallow lake located in Central Anaolihe upstream Lake Mogan empties into Lake Eymir
at the southwest corner, forming the main inflow (Beklioglale 2003).

Data used in the model for Lake Eymir and Lake Mogan were cdtbbetween 1997 and 2002 (Beklioglu et al.,
2003; Tan, 2002). A total of 91 data points from Lake Eymirevaesed for fitting the models and the a total of 43
data points from the upstream Lake Mogan were used as anéndept test set after fitting the models, to determine
ability of the models to generalize.

Concentrations of total phosphorus (T#@)~!), suspended solids (SS, mg'), and chlorophyll-a (chl-aygl—!),

Secchi disk transparency (Secchi, cm) and water levels (Wdter above sea level) were used as predictive
(independent) variables. Dependent variable was a bindexiof submerged plant occurrence. It was suggested that
the impacts of submerged plants become apparent on ecdiehakow lakes when both the plant volume infested
(PVI%, Canfield et al., 1984 and the coverage exceeded 30%@éBgaard and Moss, 1997). The formulation of the
dichotomous dependent variable was thus

2.1)

v { 1 ifCp > 03andVp > 0.3 }
0 otherwise

whereY is the binary index to show presence/absence of submergetat®on; (0: absent; 1: present);

Cp € [0.0,1.0] is the plant cover antlp € [0.0,1.0] is the PVI. Detailed description of the study sites, data

collection as well as a through discussion of the ecologitzk of these lakes are given elsewhere (Tan, 2002;

Beklioglu et al., 2003, 2004; Tan and Beklioglu, 2005a).

2.2 Data Set 2: Central Anatolian Shallow Lakes

Data comes from five lakes (Lakes Beysehir, Isikll, Mammdogan and Uluabat), which vary in size and depth and
are located from southern to northern Anatolia, Turkey.sEhakes were selected to model the impacts of fish
biomass, hydrology and morphology on submerged plant dpuant.

Data used to fit (equivalently to train) and test the modedsmiseveral years, ranging from 19 years as in the case of
Beysehir to only two years as in the case of Lake Mogan. A tdta41 data points for all the lakes were obtained

from the literature and pooled together for fitting the msd®ooled data were further randomly split to two sets of
440 and 101 data points which constitute our final trainind st data, respectively. The validation test set was not
included in the training, and was reserved for assessmeheagfiodel performance on an independent data set
(referred hereafter as validation data for set 2). In addjtihe data gathered from Lake Mogan, consisting of 24 data
points, was not included either in the training data or inuhkdation data sets, and was reserved for a second test set
to asses the generalizability of the fitted models. This setsponds to a system spatially and temporally distinct



from the data used to train the model (referred hereafterdepiendent data for set 2).

Models consisted of 5 predictive variables, which incluttegiratio of carp Cyprinus carpig biomass to total fish
biomass (carp ratio), amplitude of the intra-annual wateel fluctuation defined as the difference between yearly
maximum and minimum water depth, morphology index, cateddor each lake as the monthly rat,ca./Zmax
averaged over whole period spanned by the data, whigtg,, is the mean depth and,, .. is the maximum depth.
Last two predictive variables were the z-score of waterlJermd period index, which was simply a sine
transformation of the Julian date of the corresponding dabat. Occurrence of submerged plants, assessed by
equation [2.1] was used as dependent variable. In someaaes cwhere there were no available quantitative data
about the submerged plant coverage and/or volume in ths,laké qualitative information is provided, we used the
latter to designate the dichotomous dependent variable.

For a detailed description of the predictive and dependamdbles, readers are referred to Tan and Beklioglu
(2005b). A detailed description of the study sites, datéectibn as well as a through discussion of the ecological
states of these lakes are given elsewhere (Tan, 2002; Bkl al., 2004; Tan and Beklioglu, 2005b).

2.3 Data Sets 3 and 4: Nest Occurrence and Breeding Successlari Red-Winged
Blackbird

Data are collected from two marshes in 1995 and 1996 , in S&ydday on Lake Erie, Ohio, USA and collected in
1969 and 1970 from other two located in Connecticut, in théheastern USA. The Lake Erie marshes were Stubble
Patch and Darr. Data from these marshes included habitables and nest occurrence of red-winged blackbird
(Agelaius phoeniced$Ozesmi, 1996). A detailed description of the study sites @ata can be found in Ozesmi
(1996). Two marshes in Connecticut were Clarkes Pond an8aiiits Marsh. The data from these marshes included
habitat information and breeding success of the same sp@ibertson, 1972). A detailed description of the sites
and data collection can be found in Robertson (1972).

We built two separate sets of models using different depeingeiables: nest occurrence and breeding success
models. The nest occurrence model was fit using 1995 datatfretnake Erie wetlands Stubble Patch and Darr (data
set 3). The predictive variables were vegetation durgtiitsed on an ordinate scale between 0 and 100

(Ozesmi and Mitsch, 1997), stem density (number of stem¥)nstem height (cm above water), distance to open
water (m), distance to edge (m), and water depth (cm). Therddmt variable was a binary index of nest occurrence.

In the breeding success model, the predictive variables wegetation durability based on an ordinate scale between
0 and 100 (Ozesmi and Mitsch, 1997), nest height (cm), distémopen water (m), distance to edge (m) and water
depth (cm). A binary index of whether or not any nestling fledlgvas the dependent variable.

Data from Clarkes Pond collected in 1969 - 1970 is used famditthe breeding success models (data set 4). In total
294 data points were available to fit the models. The final hwees tested using the data from All Saints Marsh
from 1969 (. = 101) and from 1970+ = 130) as independent tests to assess the generalizabilitpeanodels
were also tested on the Lake Erie wetlands data from Darr auztb® Patch in 1995 and 1996. Similarly, nest
occurrence models, trained on the Lake Erie data, weredtest¢he Connecticut wetlands data from Clarkes Pond



and All Saints in 1969 and 1970. Because one set of the moagtsaeveloped to predict breeding success and the
other nest occurrence, for this research we assumed thgh @tobability of nest occurrence corresponds to a high
probability of breeding success and vice versa. In addisorce the Connecticut wetland variables did not include
stem density, the average value of stem density from the Eaikewetlands was used when testing Connecticut
wetlands data on the Lake Erie model. Note also that neshheigs available for the Connecticut wetlands while
stem height was available for the Lake Erie wetlands, anskthariables were used interchangeably. Stem heights
were about 50 cm higher than nest heights on average. Theptsn was made that stem height and nest height
were correlated. Thus when the models were tested, neditheigre used as predictive variable instead of stem
heights in the nest occurrence model and vice versa for #ediotg success model. In addition to the nest occurrence
data from Darr and Stubble Patch, the information on bregsliccess from Darr and Stubble Patch in 1996 together
with the habitat variables of vegetation durability, nesigit, distance to open water, distance to edge, and water
depth under the nest was used as test data for the ClarkesdbRemruing success model.

2.4 Data Set 5: Breeding Presence of Three Bird Species

Data set 5 collected in spring 2001 and spring 2002 in sostBaaTurkey to predict the presence or absence of
breeding bird species depending on the environmentalblagaThe data gathered included three bird species:
woodchat shrikel(anius senatorlLinnaeus, 1758), short-toed lark#@landrella brachydactylal eisler, 1814), and
olivaceous warblerHippolais pallida; Ehrenberg, 1833). Data sets were consistingypf= 548, N¢ = 490 and
Ny = 598 data points foL. senatoy C. brachydactylaandH. pallida, respectively.

There were 12 predictive variables. 6 of them were satéthiige data from LANDSAT corresponding to the bands
TM1-TM5 and TM7. Each of these bands are generally impliataigeflecting a different attribute of the vegetation
cover and land geography (Kurt, 2004). Remaining predictariables included annual mean temperatt@,(
annual mean humidity (%), distance to nearest road (mpmtstto nearest water source (m), the height of the
sampling point from sea level, and a vegetation index, whiak a dimensionless categorical variable indicating the
type of the vegetation with respect to its height, ranginveen 1 - 9, 1 being the shortest vegetation type (Kurt,
2004). The dependent variable was binary indicating theding) presence or absence of bird species in question.

We split the data set for each species into two by randoméctial half of the data corresponding to each output
category for each species and sparing those selected datt asts (independent tests), while using the other half fo
training the models. Hence, three sets of each model caesidie this study were built separately and fit on half of
the data set for each species and then tested on the othef tHefdata, which were not used during training, for that
particular species. Detailed description of the studyssited data collection among with a through discussion of the
biology of the bird species can be found in Kurt (2004).

2.5 Data Set 6: Habitat Selection of Bird Species in Central Aatolia

This particular data set concerned the habitat preferesfc®bird species in Central Anatolia, namely great reed
warbler(Acrocephalus arundinacel$nnaeus, 1978), skylark®auda arvensisinnaeus, 1758), short-toed lark
(Calandrella brachydactylaeisler, 1814), lesser short-toed lakdlandrella rufescen¥ieillot, 1820), marsh



harrier Circus aeruginosukinnaeus, 1758), calandra larki€lanocorypha calandrainnaeus, 1766), corn bunting
(Milaria calandraLinnaeus, 1758), yellow wagtaiMotacilla flavaLinnaeus, 1758) and isabellina wheatear
(Oenanthe isabellindsabellina Temminck, 1829). The data has been collected 8altan marshes and Tuzla Lake
in Central Anatolia during 2002.

In field studies, the presence (1) or absence (0) of each pacies on a particular spot were recorded along with the
environmental variables, and were used as dependent leafigimodels. There were 12 predictive variables. These
were vegetation index, which was a categorical variablh @& categories (Per, 2003), percent vegetation cover (%),
stem height (cm), water depth (cm), grazing, which was a séimeariable with 4 categories ranging from 0 (none)

to 3 (extensive), and 6 satellite imagery bands. The imaged were obtained from LANDSAT satellite, and the
bands used as independent variables were TM1-5 and TM7.18a&imp for each species is given in Table 5.

Detailed description of the satellite images, and the ptagzeof the bands used here, as well a a description of the
study sites and the biology of the bird species consideredbedound in Per (2003).

For this data set 9 separate sets of models have been buahid¢brspecies. Five of them (sets 1 - 5) were fit to the
data collected in Sultan marshes for each species and tstex ten the data collected in Lake Tuzla for that species
(independent tests). Remaining 4 set of models (sets 6 - @) fit¢o the half of the data randomly split from data
collected in Lake Tuzla for each species separately, anceta@ckre then tested on the remaining half (validation).

3 Statistical Methods

In this section, an overview of the pattern recognition aladsification models used for this study are reviewed. It is
not meant to be exhaustive, and interested readers areaebferthe authoritative references in relevant sections. A
short description of the specific implementation detaitgli@ current study is provided at the end of the section.

3.1 Preprocessing

Often, predictive variables in a given model are of diffénamits which are not compatible with each other. For
instance a model may include both a distance measure givartirs as well as the concentration of a particular
nutrient given inugl—! (e.g. data sets 1 and 2; sections 2.1 and 2.2) as a prediatiable. Or it may include a
dimensionless variable among several others with comlpatitits (e.g. section 2.3). Similarly, some predictive
variables could be given in compatible, or even same unitsgmanning different ranges of values. For example the
data set from lakes Eymir and Mogan (data set 1; section @clyde chlorophyll-a concentration as well as total
phosphorus concentration, both givernigi—t. But while the former spans a value range betwgess], the latter
variable spans a value range[d4, 532]. Such incompatibilities are known to reduce the stability performance of
statistical models as the initial randomization of modebpaeters, or the weights, will not be effective if the
predictive variables are on different scales (Bishop, 18&&stie et al., 2001). In such cases, to ensure the stability
and convergence of the model to a solution, it is necessatatwardize the input variables to a consistent
dimensionless interval.



One commonly employed standardization scheme is to lipgathsform the independent variables to mean of zero
and units of standard deviation, also known as z-scoreftremation (Fisher, 1970), such that tith value of thekth
predictive variable is transformed as:

ik = Pk — Zik (3.1)

wherepu, andoy, are the mean and standard deviation of#trevariable.

If standard deviations differ substantially among varaias is usually the case if binary or categorical varicdnles
included in the input space), it is preferable to linearansform the values of all predictive variables to lie in the
range of+0.5 (Bishop, 1995; Goodman, 1996b). Note that in this case, tis@rwill not be zero unless the mean of
the raw predictor was centered between its minimum and maxinvalues.

One other approach to standardize the input space is to psedube transformation such that after transforming,
input variables lie in a spac®” € [0, 1]” whereP is the number of input variables:

T

(3.2)

c _ _ Tik— min(z; k)
ik max(z; k) — min(z; )

Wherexﬁk € [0,1)% is the transformed data point ;. In addition to standardization, hypercube transfornmediiso
provides a strictly bounded input space, and thus it is adtéical importance for classification, and in general
statistical modeling techniques, especially for ART fanaif models (section 3.2.3). A review of these theoretical
considerations is beyond the scope of this paper, and stezteeaders are referred to Grossberg (1988),
Carpenter et al. (1991c) and Kosko (1992). In all cases, fiieg the model, the variables can then be inversely
transformed for predictive purposes.

All data used in this study were z-score transformed befeedinhg into the models except for ARTMAP, for which
the input data were hypercube transformed.

3.2 Model Fitting
3.2.1 Traditional Classification Models

For comparative purposes, we used k-nearest neighbor (kiMBar and quadratic discriminant (LDA and QDA)
methods to classify our data points according to the outipsses (dependent variables). k-NN method has been
considered as a benchmark classification method, if onadenssonly the training data. This method uses those
observations in the training sgtclosest in the input space ioto formY". More specifically,

Y:

ol

Sow (3.3)
I»LEN)C(I)
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whereNy () is the neighborhood of defined by the: closest points:; in the training sample. Itis clear that when
the neighborhood is considered to bk = 1, k-NN method potentially can reach to minimum classificagoror on
the training set. Note that in this case the error on tesss®tpected to be quite high. Thus, k-NN method with a
neighborhood sizé = 2 is employed in this study as a benchmark of training set perdace.

LDA and QDA techniques are models based on the class densftibe output categories. In other words, they
enable one to infer the posterior probabilities of the otigatiegories based on the data observed, using Bayes
theorem:

P(G = kX = o) = —JEOmE

= JEVR 3.4
Sty filz)m 54

wheref(z) is the class-conditional density &f in classG = k, andny, is the prior probability of class with
Zszl 7, = 1. LDA and QDA assume Gaussian distribution for class dessifrundamentally, for two category

cases (as in our case), and assuming that the covariapaafthe class densities are equal, linear discriminant
function is given as

1
S =x" S g — iunglﬂk + log 7y, (3.5)

where the parameters of the Gaussian distributions areastil from the data as

Ni

T = N (3.6)

e = ZN;:% @)
K 2 — ) (s — )T

S Zk:l Zgi—lzgvl_[l;;)( i — i) (3.8)

whereN;, is the number of clask-observations. An equivalent decision rule is giver:ds) = arg maxy, dx (). If
the equality assumption of class covarianEgsloes not hold, we obtain quadratic discriminant function

1 1
Ok(z) = . log |Zx| — 5(17 — ) TS (@ — k) + log T, (3.9)

with an equivalent decision boundary between each paire$es: and! described by a quadratic equation

{z: 0r(z) = di(x)}.

Both LDA and QDA are shown to perform astonishingly well orglaand diverse set of classification tasks, and both
techniques are widely used in various research areas (igthal., 1994). Thus, we included these two models as
potential benchmarks to compare the performances of othirads against, assuming that the data considered in
this study are distributed following a Gaussian distribatiNote that discriminant analyses, both linear and
guadratic, strictly require that the underlying data astritiuted as a Gaussian. A more in-depth discussion of these
two methods, among with k-NN method, can be found in Hasté.€P001)
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3.2.2 Generalized Linear Models and Feedforward Multilaye Backpropagation Networks

A general linear model is similar to classical multiple eggion analysis such that the explanatory variaiXes,
multiplied by weights3, obtained by statistical estimation, are summed togetitex §coreY:

Y=Y Bizj+ea=XB+e (3.10)
J

Setting

a general liner model is analogous to multiple regressiodetsowith the estimated values being transformed through
a nonlinear signal function (sigmoid, in our case) For sieriplear prediction with continuous (analog) dependent
variablesy might have intrinsic meaning. For binary outcome event# asir cases, however, a link function that
monotonically constrains the output prediction to lie begw O and 1 is required. An asymmetric logistic function,
ranging from 0 to 1, is a common choice, as it is analogousdgthbability that a given pattern is associated with a
particular output class:

evi

T 1ten

Y, =P (3.12)
For training and performance assessment purposes, a koesbaldP; is required to assign the predicted probability
to one of the output classes such that if the output prediécsi@bover; it is classified as 1 and to 0, < P;. An
obvious choice for binary outcome eventdis= 0.5.

As with the case of multiple regression, general linear no@&L M) are equivalent to connectionist neural networks
without any hidden layers. GLM are designed to emphasizérthar combination of predictive variables in
explaining the dependent variable(s), as they do not ircry processes for nonlinearly transforming the input
space. However, ecological, or more generally biologigalesns inherently include nonlinearities (May, 1977,
Scheffer et al., 1993), which may severely limit the perfance of linear models (Ozesmi et al., 2005a;

Tan and Beklioglu, 2005b). For that reason, artificial nenesworks, particularly feedforward multilayer
backpropagation networks, which are designed to capteredhlinear interactions in the input space, are favored in
recent years (Baran et al., 1996; Lek et al., 1996; Lek andy@uel999; Scardi, 1996, 2001; Ozesmi and Ozesmi,
1999). On the other hand, artificial neural networks are agatpnally expensive compared to linear models. In
some cases they offer only a little, if any, improvement @ereralized linear models (Bishop, 1995; Goodman,
1996b; Tan and Beklioglu, 2005a). GLMs have been succégsipplied to several data sets in ecology (e.g.

Meggs et al., 2004; Tan and Beklioglu, 2005a).

Connectionist neural networks are among the most applidavaii known class of supervised statistical models.
These networks are composed of an input layer, an arbittamber of hidden layers with arbitrary number of hidden
units in each layer, and an output layer. The network is comynut not necessarily) fully connected, meaning that

11



each node in a given layéy is connected to all of the nodes in the next lajjgr . These networks are also
feedforward, such that the 'information’ flows from inpuyéa to hidden layer(s) to output layer in only forward
direction. Feedforward neural networks are formally defiae follows:

Let A" be the set of all affine functions fro/R" to R, that is the set of all functions in the forA(z) = w -z + b. For
any measurable functiof( - ) mappingR to R andr € N, XII"(G) is the class of functions

q L

fiR =5 R:f(x)=)Y B [[GAun(x) p .2 € R.B € RAj € A" l;€Ng=12,.. (3.13)

where the product term disappears for networks withoutdmdeyer, and the equation reduces to that of generalized
linear model.

The functionG( - ) is the activation function, or link function, equivalentttaat of output units in general linear
model. Again, for binary outcome event, an asymmetric kigactivation function, ranging from 0 to 1, is suitable
for output unit. However, a symmetric logistic activatiam€tion, ranging betweet0.5, is generally suggested for
the hidden units since a symmetric function is shown to ecédme stability of the weights of hidden units during
backpropagation of errors (Rumelhart et al., 1986; Unbehaund Cichocki, 1996).

Multilayer feedforward backpropagation networks haverbaeccessfully applied to a diverse set of data ranging
from phytoplankton production (Scardi, 1996, 2001) to camity changes based on climatic inputs

(Tan and Smeins, 1996), and to relationships of differeatis to habitat variables (Baran et al., 1996; Reyjol et al.
2001; Ozesmi and Ozesmi, 1999; Tan and Beklioglu, 2005bye¥fitting procedure for feedforward neural
networks, as well as for general linear models are discussgetail in Rumelhart et al. (1986), Bishop (1995) and
Ripley (1996). Implementational details of GLM and backgagation models for the data sets used in this study are
given in Tan and Beklioglu (2005a), Tan and Beklioglu (200%&kzesmi and Ozesmi (1999), Kurt (2004), and Per
(2003).

3.2.3 ARTMAP

A schematic presentation of generic ARTMAP model is prodioteFigure 1. Briefly, ARTMAP models consist
basically of two so-called ART modules, which are fundaraiynself-organizing maps (Carpenter et al., 1991a), one
for input space and one for output spatearning occurs separately for each ART module indepehdartienever

an expected category matches to presented input patterrc(irrent combination of predictive variables), or a ove
input pattern is encountered. These modules are linked lagswciative learning network and an internal controller
that ensures autonomous system operation in real time., ARIEMAP models represent a "pseudo-supervised"
learning method (Carpenter et al., 1991a). The contradldesigned to create a minimal number of ART recognition
categories (committed nodes; that is, abstract represamgaf combinations of input vectors) for the input spaire,
"hidden units" analogous to backpropagation networksjee¢o meet an accuracy criteria, which is given by the
so-called "vigilance" parametpr(Carpenter et al., 1992). ARTMAP algorithm fundamentaltyrks by increasing

the vigilance parameter of the input ART module by the miniamaount needed to correct a predictive error at ART
module of the output classes.
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There are several variants of ART modules (Carpenter andsBerg, 1990; Carpenter et al., 1991b,c). Here, we
used fuzzy ART modules, which are developed for patterngeition models with continuous and/or categorical
input space (Carpenter et al., 1991c, 1992). Fuzzy ART arndyfARTMAP models use fuzzy logic operators
(Kosko, 1992) for category choices and match criteria, dsagdor learning in the model operation.

Shortly, each ART system contains an input fiéld a I field receiving bottom-up signals froiy and top-down
input from F5, the latter of which represents the active category reptaiens So-calledcomplement coding
(Carpenter et al., 1992) should be employed before feedm@qput vectors to fuzzy ART modules. Fundamentally
by complement coding, it is meant that &frdimensional input matrix is coded and fed to the model as an
2M-dimensional matriXa, a¢|, wherea$ = (1 — a;). Theoretical considerations for this requirement arewtised

in detail in Carpenter et al. (1992).

At eachF; category node, there is a weight associated with that nolie/wvare initially set to 1. Each weight;; is
monotonically increasing with time and hence its conveegdo a limit is guaranteed (Carpenter et al., 1991a, 1992).
Fuzzy ART dynamics depend on a choice parameter0, a learning raté € [0, 1], and a maximum vigilance
parametepnax € [0, 1]. For each given input pattern agith node ofF; layer, the choice functiof} is defined by

T (I)* |I/\Wj|
P A wy]

(3.14)
whereA is the fuzzy AND operator is equivalent to component-wise operator (Kosko, 1992); | is the

Euclidean norm, ane; = (w;1 - - - wjn ). The system makes a category choice when at mosfpmede can
become at a given time, and the category choice is givelyas max{T; : j = 1... N}. In a choice system, the
activity of a given node af layer is given ax = I if F; nodeis inactive anst = I A w; if Jth 5 node is selected.
So-called 'resonance’ occurs in the ART module if

|I/\WJ|
>
=7

(3.15)

and reset occurs otherwise (Carpenter et al., 1991c, 1§38%et occurs, the value of the choice functibnis set to
0, and a new inde¥ is chosen. The search process continues until the chbsatisfies the resonance criterion
(equation 3.15). Once search ends and resonance occungitite vectorw ; is updated by

As briefly mentioned above, fuzzy ARTMAP model consists af fwzzy ART modules, one for input and one for
target vectors linked by an associative learning netwotkaminternal controller (Figure 1). When a prediction by
ART, module, which receives the input vectors, is disconfirmedRit, module, receiving target, or output, vector,
inhibition of map field activation induces the match tragkprocess, which raises the ARVigilancep, to just
above thef so that the activation af§ matches the reset criterion (i.e., decreased just to méssttich criterion
given by equation 3.15). This triggers an AR3earch process which leads to activation of either an A¢8fegory
that correctly predick at match field, or to a new node which has not used before @heither an already formed
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category that predictsis selected, or a new category is created). Abstract categpresentations formed at the end
of a training session are termed as 'committed nodes’ andrat®gous to the units in the hidden layer in
connectionist (i.e., multilayer feedforward backpropawg networks.

A detailed review of the theory and operation of ARTMAP andzZy ARTMAP models is beyond the scope of this
study, and interested readers are referred to Carpentei(#981a), Carpenter et al. (1991b) and Carpenter et al.
(1992). Carpenter et al. (1991c) also provides a geomatecpretation for ART algorithm. Although new to
ecology, ART and ARTMAP theory has been developed sincg &ar$, and the reader is referred to

Cohen and Grossberg (1983) and Grossberg (1988) for thesdrednsiderations. A compact review of
implementational issues can be found in Carpenter (2003).

3.3 Model Assessment and Validation
3.3.1 Performance criteria

To asses the performance of statistical models, a scom)&remployed which is to be maximized (minimized).
For models with continuous-valued dependent variablespanmonly employed choice is the least squares error:

min LSE = min |D — Y| (3.17)

whereD andY are actual and predicted values of the dependent variasipectively. For binary or categorical
outcome events, however, a cross-entropy measure as anseaseire is preferred (Goodman, 1996b; Ripley, 1996;
Hastie et al., 2001):

C = djclogs(yse) + (1 - djc) logy(1 = yj.c) (3.18)
je

whered; . is the actual activation of output unit aggl. is the predicted activation. Cross-entropy, as calculbyed
equation 3.18, is approximately equal to the area undeivexeeperator curve (Goodman, 1996b; Ripley, 1996), and
it is also equivalent to log likelihood. Hence, maximizinguation 3.18 is equivalent to maximizing the likelihood of
the model estimate (Hastie et al., 2001). Note that by defindf ROC curve, c-index measures the ratio of 'hit’ rate
to 'false-alarm’ rate. Thus, if the number of samples aramedd with respect to each output category, c-index is
equivalent to the percentage of data points correctly ifledsy the algorithm (Ripley, 1996). However, the latter
measure is significantly biased for unbalanced data seds;-ardex should be preferred in such cases (Ripley, 1996).
For the current study, we used c-index to assess the penfieeaaf GLM and backpropagation networks and percent
of the samples correctly classified for k-NN, LDA, QDA, and MRAP models. In all of the data sets considered in
this study, whenever the number of data points correspgridirach output category were unbalanced, the data is
truncated by randomly discarding necessary number of sswpirresponding to the output category with excessive
number of samples. This ensures the compatibility of difféperformance indices (c-index and percent correctly
classified) in different models. Hence, the data used instiidy were perfectly balanced with respect to the output
categories.
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3.3.2 Overtraining, Cross-Validation and Importance of Independent Test

As briefly mentioned in the introduction, the error rate of\eeg model decreases monotonically toward zero on
training data set as the model is fitted to the training datatter words, the model loses its ability to generalize as it
is fitted to the training data more and more, a phenomenoretéas 'overfitting’, or 'overtraining’ in statistical

modeling literature (Bishop, 1995; Fielding, 1999; Hasti@l., 2001). To avoid overfitting of the data during

training, a cross-validation procedure may be employethduraining (Bishop, 1995; Ripley, 1996; Hastie et al.,
2001). For cross-validation, the training data set is sbdfiind a certain amount of data is used as a holdout subset at
each iteration. At each iteration, model is fit to the reshefdata and the predictive performance is validated on
holdout set, allowing the algorithm to stop training at arpaiptimal to avoid overfitting and be able to capture the
overall characteristics if the system and not the pectiksyi

Bootstrapping of the training data also enables to determiia maximum number of epochs to train the models, as
well as to assess the stability and variability of the modéheates (Bishop, 1995). To bootstrap the modéfraws
with replacement are performed from the training dataskéra/V is training set sample size, and this process was
repeateds times, to creatd( booted data sets, each of sixe The booted data sets are samples of the original data
set. Generally, original data set is regarded as a sampl&aajer universe of data to which we wish to generalize
(Hastie et al., 2001). Thus, this procedure allows to explbe behavior of a distribution of booted models and
permits to derive statistics and conclusions, which mayfdpied approximately to the behavior of the original
dataset relative to the larger universe of data. For eactellanodel, the number of epoch beyond which overfitting
occurs is then determined by standard methods (Bishop,, E88ie et al., 2001) and the final number of epochs to
train the model with the original data set is determined etiogly.

3.4 Implementation Details

All the models in our study have been trained using bootpirgpand cross-validation to optimize the predictive
power and generalizability of the models. LDA, and QDA maedeére implemented in R-language statistical
software (R, 1991). GLM and backpropagation models werddmpnted using NevProp3 software (Goodman,
1996a). k-NN and Fuzzy ARTMAP models are implemented in Btatlersion 7 (Mathworks Inc.). Implementation
details for GLM and backpropagation models can be founddta dets 1 - 6 in Tan and Beklioglu (2005a),

Tan and Beklioglu (2005b), Ozesmi and Ozesmi (1999), K00 and Per (2003), respectively.

4 Results

All the models were run with 10 different random seeds tossHee variability of the estimates with initial

conditions (Ozesmi et al., 2005a). Moreover, all the modese run using 100 bootstraps and 5-fold

cross-validation with 10% percent holdout to avoid overfitt The standard deviation of the performance assessment
criteria (percent correctly classified or c-index) were lmwd within+5% of the mean value, unless otherwise noted.
Independent tests were run using the random seed whichvadhiest performance on the training data sets after
cross-validation. Tables 1 - 5 summarizes the performanfdesNN, LDA, QDA, GLM, backpropagation and
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ARTMAP models on both training and test samples on diffedené sets considered in the study except for Data Set
4, for which the performances of the models are summarizédune 2.

The performances of different models on Lakes Eymir (tragréet) and Mogan (independent test set) (data set 1) are
summarized in Table 1. All models constructed in this stuelsfgrmed considerably well on this data set on training.

The performances of all models were above 0.9 with the eiamepf k-NN model, and was 1.00 with ARTMAP
model, indicating that ARTMAP classified all the data pointthe training set correctly with 3 committed nodes.

The backpropagation model was not trained for this padictdiéta set, since the high performance of GLM model
rendered the computational burden associated with bapkgaiion models in this case unnecessary (see
Discussion). However, despite their considerable suamesise training set, none of the models performed
considerably better than random (0.5) on test data, witmttieeable exception of GLM, which predicted 82% of
the test cases correctly (Table 1).

Table 2 summarizes the performances of different model&otral Anatolian shallow lakes (data set 2)

(Tan and Beklioglu, 2005b). As mentioned in section 2.2 garticular data set included data from 5 different
shallow lakes located in the same climatic zone as trairetgasid part of this data is randomly excluded from the
training set and spared as an validation test set. Data fiake Mogan is also used as a second test set, which is
spatially and temporally distinct from training data. Aflthe models performed noticeably good on this data set
during training, the performances being close to or abo®eowever, note that backpropagation model reaches a
performance of 0.99 with 5 hidden units, while it takes ARTRIAL committed nodes to reach to the same level of
performance (0.98; Table 2).

If the validation test set was taken into considerationpihe models but QDA still performed better than random
chance level (0.5) on data set 2, with obvious superiorithhefeural network based models (GLM, backpropagation
and ARTMAP). Among those, the difference in the validatiestiperformance was negligible. The difference,
however, became apparent on the performance on Lake Mogiasete at which, despite of its distinctiveness,
connectionist approaches, GLM and backpropagation, pegd significantly better than ARTMAP model. Both

GLM and backpropagation models classified all 24 of the tas¢s correctly. Considering the fact that ARTMAP
uses a higher number of abstract category representatiens¢mmitted nodes) compared to the backpropagation
model (number of hidden units), apparent poor performahé&dd MAP on independent test set is not surprising
(see discussion).

The performances of different models on nest occurrencedbfringed blackbird (data set 3) are summarized in
Table 3. On this particular data set, there is a clear doncmahk-NN, among with ARTMAP, in terms of training

set performance, over the traditional models, LDA and QD#l eonnectionist approaches, GLM and
backpropagation. k-NN and ARTMAP models’ performance w&sWhile other models’ were around 0.6 - 0.7

(Table 3). Considering the degrees of freedom of k-NN and MRP, which had higher performances in classifying
the training data, k-NN achieved a classification perforoeasf 0.8 with 2 degrees of freedom, while ARTMAP
required to use 14 degrees of freedom (number of committdds)a.e., abstract category representations) to achieve
the same performance. However, none of the models perfdoettet than random on test data sets, the performance
indices being around 0.5, with a slight improvement in GLM &ackpropagation models on two test sets. All 6 of
the methods failed to classify the test sets which consitetlata collected from a spatially and/or temporally
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distinct system (All Saints, Clarkes, Stubble and Darr ines$ effectively.

The performances of different models on breeding preseh@zleninged black-bird (data set 4) (Robertson, 1972)
are summarized in Figure 2. Accordingly, on the trainingadsts, k-NN performed considerably better than the
other models, with a percent correctly classified ratio 8f tbllowed closely by ARTMAP. A clear exception is that
ARTMAP performed close to 0.9 on the training set, which éstesl of the data collected only in 1970. On all three
training sets, nevertheless, k-NN and ARTMAP appeared tfopa reasonably well on predicting the breeding
presence compared to other models. On the other hand, tispetthe performances of these two models, k-NN
and ARTMAP, on independent test data sets reveals that k+tligis the breeding success better than ARTMAP in
almost all cases. Note that the performance of k-NN modéig;tware trained on the data collected either in 1969 or
1970, on test sets degrades, if the models are tested oniAtsSkata collected during 1969 and/or 1970. On the
other hand, the performance is reasonably well on sampliextad from Stubble Patch and Darr marsh in 1995
and/or 1996. Nevertheless, when trained on the completesga{that is Clarkes marshes 1969 and 1970; train set
1), k-NN model successfully predicted the breeding suciteaht of the test cases without any exceptions (Figure 2).

Table 4 summarizes the performances of different modelsabitdt selection data fdr. senator C. brachydactyla
andH. pallida (data set 5; Kurt, 2004) on training and independent test #dtmodels were built for each species by
splitting the data into training and testing sets. When #rqumances on training sets are considered, discriminant
analyses, both linear and quadratic, performed consitlenadrse than other models. The performances of k-NN and
GLM models are similar in terms of training sets, while thefpemances of backpropagation and ARTMAP are
noteworthy, by classifying all of the training sets corhgatith the exception of backpropagation model on the
training set oM. pallida. However, note that in contrast with the same models’ paréorce on central Anatolian
shallow lakes (data set 2), ARTMAP achieved a performandeQff with considerably less number of abstract
category representations (2-4 committed nodes) than bagipation models (5-8 hidden units), and thus ARTMAP
in this case was expected to be more generalizable than togEgmation models. Not surprisingly, the performances
of ARTMAP models independent test sets are noteworthygoeimse to 1 for each case, while backpropagation
models suffer from being close to random chance level onpeddent test sets, with few exceptions.

Table 5 summarizes the performances of different modelsabitdt selection data for bird species in the central
Anatolia (data set 6; Per, 2003) on training and test setsthioparticular data, 9 sets of models have been built, 5 of
which are trained using the data of a particular speciegc@t in Sultan marshes and tested on the data of the same
species collected in Lake Tuzla (Sets 1-5 in Table 5; inddpetitests); and remaining 4 sets consisted of the models
trained on the half of the data collected for a given speciéske Tuzla, and tested in the other half (Sets 6-9 in
Table 5; validation). In general, ARTMAP and k-NN modelsrade have a superior predictive performance on
training data, followed by GLM and backpropagation mod€IBA models could not have been applied in 6 out of 9
cases for this data set due to numerical instabilities afididecies in the data. Linear and quadratic (where
applicable) discriminant analyses appear to have a piegljoerformance not better than random chance level.
Comparison of predictive performances on validations adépendent tests indicates that k-NN has a better
predictive performance compared to that of ARTMAP, sudtdlgpredicting the test data sets above chance level
with the only exception of Set 5.
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5 Discussion

Seoane et al. (2005) argued about the redundancy of indepttests in predictive models in ecology, claiming that
there is no particular interest in estimating the predectibility of a model in a universe different from which it was
built. However, the importance of the ability of a given mhdeterms of its performance on an independent test data
set, is emphasized in several studies (Ozesmi and Ozesa8; Gzesmi et al., 2005a; Tan and Beklioglu, 2005a,b).
Intuitively, observations from a given system correspamatgo a universe of events, but rather to finite-size samples
from a larger universe of events. Hence, an ideal statisticalel should be able to predict not only the outcome of
events (samples) on which it was built, but also to predietdates of the system in the face of events which has not
been encountered in the finite size samples. Hence, a givdrlsloould minimize the error rate on training set (that
is, samples used to fit the model) at the same time maximih@gérformance on an independent data set which has
not been encountered before, if the model is to be robush@is1995; Ripley, 1996; Hastie et al., 2001). Thus, its
performance on independent test data, shows its abilitgteiglize, and indicates the robustness of the model for a
given system, rather than its performance on training deitmsimply indicates its ability to fit to the sample at hand.

The ability of a given model to avoid overfitting and to gerigeadepends on how closely a model maps the input
space to output space, that is on the number of abstractorgtexpresentations corresponding to combinations of
predictive vectors, in the case of 'global’ models such a8/Ghackpropagation (Bishop, 1995) and ARTMAP
(Carpenter et al., 1992). In the case of traditional classifin models, it depends on the number of neighborhoods
for K-NN model, and on the number of output classes and piiredicariables for LDA and QDA (Hastie et al.,
2001). Thus, the "flexibility’ of k-NN, LDA and QDA is fixed, agal tok = 2 for k-NN, and is proportional to the
number of predictive variables for LDA, QDA and GLM, in oursea For backpropagation, it is represented by the
number of hidden units determinagoriori, and for ARTMAP by the number of committed nodes after tragni

In the extreme case, the 'flexibility’ of a model could be eduranore than the number of observations (i.e., training
points), and in that case, the model would 'memorize’ thiming data, fitting perfectly, while any observation
different in the test samples from the training points wazddse a random prediction, hence rendering the ability to
generalize impossible. This corresponds to so called fitiieg’ of a model (Bishop, 1995; Fielding, 1999;
Goodman, 1996b). Thus, the ability of a given model to gdireran independent test data would be evident from a
trade-off between its performance on training set and thxébiley of the model achieving that performance. The
importance of the flexibility of a model for fitting the traimg data and of the independent test to assess the actual
performance of a given model is evident in our study as well.

5.1 Data Sets 1 an 2: Lakes Eymir and Mogan, and Central Anateghn Shallow Lakes

In the case of data set 1, although ARTMAP performs better tither models, independent test performance of
GLM, which is considerably better than ARTMAP, renders GLdvbe applicable in that case. Even a more drastic
case took place in data setdh which backpropagation model with 5 hidden units and ARTRVAodel with 11
committed nodes predicted almost the same fraction of #ieitig sample. Their predictive performances on
validation data set, which consisted of the fraction of daitéally split from the original data, are also appear toibe
close proximity. However, if the same models were testedoin@dependent test, which consisted of data collected
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from a spatially and temporally distinct system, prediefperformance of ARTMAP model dropped drastically to
0.67, whereas backpropagation model retained its robssti@onsidering the fact that ARTMAP used a higher
number of abstract category representations (i.e., camanitodes) compared to the backpropagation model (number
of hidden units), apparent poor performance of ARTMAP orejpehdent test set is not surprising. One can argue,
however, that the system constituting to the independshstample might be governed be completely different
dynamics and as such it cannot be predicted by a model traimedparate systems. However, all 5 lakes constituting
to training and test data sets are located in the same ctimaiie, and all these 5 lakes are ecologically governed by
more or less similar mechanisms, as far as the predictivahlas concerned (Beklioglu et al., 2004; Tan, 2002;

Tan and Beklioglu, 2005b). Furthermore, the fact that bem@gation model indeed predicted all the cases in the
test set correctly renders such an argument unlikely.

5.2 Data Set 3: Nest Occurrence of Red-Winged Blackbird

In the case of data set 3, k-NN and ARTMAP models appear to haveater predictive power on the training set
compared to other models, the performance criteria beiograt 0.8. However, none of the models performed better
than random on test data sets, the performance indices dmngd 0.5, with a slight improvementin GLM and
backpropagation models on two test sets. This might be Iseaafithe small sample sizes used as training set (230)
though this sample size is considerably larger than thdtefiata set 1/¥ = 91). Moreover, as mentioned in section
2.3, because one set of the models were developed to predéibg success and the other nest occurrence, the
assumption has been maagriori that a high probability of nest occurrence corresponds figla fprobability of
breeding success and vice versa. In addition, since the&ttinnt wetland variables did not include stem density,
the average value of stem density from the Lake Erie wetlarsdsused when testing Connecticut wetlands data on
the Lake Erie model. Note also that a secarmtiori assumption, namely that stem height and nest height were
correlated, was made for using these two sets of data aséndept tests for each other. For that reason, it is quite
likely that thesea priori assumptions have been violated by the data, and furthecdiégtion, or further
characterization of habitat variables, might be requiredrder to ensure the compatibility of these two sets with
each other and to improve the predictive performances ahibdels on both training and test sets.

Regardless of the underlying reason, however, this podoprance of all the models on test sets emphasizes the
importance of independent test for assessing the actudiktive performance of a given model. If, for example,
ARTMAP model trained in the data collected in 1995 were aggbfor predicting the nest occurrence in the same
area in 1996, based purely on its relatively high performneaorctraining data set, it would produce misleading
results. This is indicated by the fact that its performantéest data collected in the same area in 1996 is not better
than random chance level. In this case, it is apparent teanttdel should be improved by, for example, obtaining
more samples, or changing the model structure and/or typeleMmprovement is beyond the scope of the current
study. Nevertheless, there are several techniques badetbanation theoretical approaches for improving the
predictive performance of models, readily available inlitezature (e.g., Hastie et al., 2001), and particular exias
for predicting habitat selection and distribution of bigksies are provided in the literature for the case of general
additive models (GAMSs), which are marginally related to G& fBustamante and Seoane, 2004; Seoane et al.,
20044a,b).
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5.3 Data Set 4: Breeding Success of Red-Winged Blackbird

For data set 4, a general pattern emerged for all three sdtk-tiN and ARTMAP models are again superior to other
techniques on the training set performance. Inspectioheirtdependent test results, however, revealed that, k-NN
has a broader ability to generalize over the new data setses$pecially intriguing that the performance of k-NN
models, which are trained on the data collected either i 88970, on test sets degrades when the models were
tested on All Saints data collected during the same peribdevhe performance is reasonably well on samples
collected in Stubble and Darr marshes collected in 1995 886.1Nevertheless, as apparent from Table Figure 2,
when trained on the complete data set (train set 1), k-NN ihmabeessfully predicts the breeding success in all of
the test cases without any exceptions. This might probadlsha result of the fact that the data in this case covers a
relatively broad temporal domain (2 years instead of 1 yédw}e also that in the case of Robertson data,
performance on the independent tests are boosted forlsget8athat is, the models are in general more generalizable
on temporal domain but as such is not true for spatial dontfaigmight in turn indicate the importance of training
data set.

5.4 Data Set 5: Breeding Presence of Three Bird Species

For data set 5, there was a clear dominance of ARTMAP modetsrims of the predictive power on both training
and test sets, Note that in contrast to the same models'rpeaface on central Anatolian shallow lakes (data set 2),
ARTMAP achieved a performance of 1.00 with considerablg lmsmber of abstract category representations than
backpropagation models. Thus ARTMAP is expected to be memnemglizable than backpropagation models. For
this case, when the performances on training sets are @edidliscriminant analyses, both linear and quadratic,
performed considerably worse than other models. Surpgplisithe performances of ARTMAP models on
independent test sets is noteworthy, being close to 1 fdr ease, while backpropagation models suffer from being
close to random chance level on validation and independsnséts, with few exceptions.

5.5 Data Set 6: Habitat Selection of Bird Species in Central Aatolia

When considering data set 6, it was apparent that again, kiNNARTMAP models are superior to other models, in
terms of their predictive performance on training data. déevertheless, comparison of predictive performances on
validation and independent tests indicated that k-NN hagt#ebpredictive performance compared to that of
ARTMAP. k-NN successfully predicted the test data sets almtvance level with the only exception of Set 5. Note
that in the case of these data , sets 1-5 include test sangllested from a spatially distinct region than the samples
for training data. This , in turn, indicates that k-NN modétsthis case are particularly robust in terms of their apili
to generalize over new data sets.
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5.6 General Discussion

On all data sets, traditional discriminant analyses, limeal quadratic, had a poor predictive performance on both
training and independent test data sets. Note, howeven,$extion 3.2.1 that discriminant analyses strictly regjuir
that the underlying data to be sampled from a Gaussianhilisivh. Several studies in the literature appear to employ
discriminant analysis to infer species distribution oruatence, and attain reasonably good predictive perforemanc
(Joy and Death, 2003; Maron and Lill, 2004), in contrast tostudy. Despite their considerable success, however,
we do not recommend traditional discriminant analysis fediction purposes, unless one makes sure that the
underlying data is distributed appropriately, or filterbtbugh a suitable transformation in preprocessing stage to
satisfy the required parametric distribution.

Statistical learning models associate a probability wibhealternative state given the simultaneous observatiath o
variables at a given time step (or the whole set of past obtens in the case of unsupervised methods) (Kosko,
1992). Once the model is trained, resulting probabilitysitses associated with each state are used to predict and
forecast the state the system will occupy based on the neanadifons. For predictive modeling of ecosystems
which are known to exhibit multiple stable states and cedasic regime changes (May, 1977; Scheffer et al., 1993),
this probabilistic design can also be exploited as (at Jeagtialitative measure of the distance to threshold for
regime changes, in addition to identifying bifurcationsl aegime shifts in ecosystem dynamics, by combining
probabilities associated with the points in input spacé Wit sensitivity analyses, which systematically scan the
input space (Recknagel et al., 1997; Scardi, 2001; Tan aktidgki, 2005a). Presentation and elaboration of
sensitivity analyses are beyond the scope of this studyehexysensitivity analyses of GLM and/or connectionist
neural network models for our data sets can be found elsefRer, 2003; Kurt, 2004; Tan and Beklioglu, 2005a,b;
Ozesmi et al., 2005a), and a through discussion of theiruskentifying regime shifts and thresholds associated
with these shifts for data sets 1 and 2 (Lakes Eymir and Mogyagh central Anatolian shallow lakes) can be found in
Tan and Beklioglu (2005a) and Tan and Beklioglu (2005bpeetvely.

Note that two main types of ecological data have been coreside this study: one type of data (data sets 1 and 2)
consisted of time-dependent data, meaning that the dysagoierning these systems depend on the passage of time,
including small- to large-scale periodicities. Howevhg second type (data sets 3-6) was time-independent, or
strictly stationary, in the sense that possible perioditagiyics and trends governing these systems are expected to be
well beyond the time-scale of the data collection. Statidttlassification methods are, however, known to be
insensitive to the time correlations or interactions ofiidlial variables over a time series, i.e they can not captur
temporal system dynamics, unless an explicit independeiahe reflecting the time-dependence and periodicities
within the series is included priori, as such is also true for connectionist neural network models

5.6.1 Time-Dependency of the Data and Selection of Suitabldodel

Note that on the first type of data (data sets 1 and 2), coramastineural network models (GLM and multilayered
feedforward backpropagation) achieved a fairly good mtad performance, both on training and test data sets.
These models apparently captured the nonlinear interechietween the variables as well as inherent
non-stationarity of the data. However, note that for onédnebe data (data set 1), we included the z-score
transformation of the water level, which inherently refiettte periodic changes due to the seasonal periodicities of
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the system. In the other data set (2), we included an expdipiesentation of the time series (period index) as well as
water level data which, again, was expected to reflect thegieities inherent in the system. Meggs et al. (2004)
used a generalized linear modeling approach to predictabercence of a lucanid beetle species based on habitat
variables, but their model attained to a relatively modepaiedictive performance on predicting species abundance
and occurrence. We suggest that the moderate discrimynalbdity of their model is, at least partly, mediated by the
lack of account to periodic dynamics. Similarly, Dunk et(@004) employed a generalized additive model, which is
analogous to generalized linear models, to predict theroereoe of mollusk species, and showed that the inclusion
of climatic variables contributed significantly to the pietive ability of their model. This is presumably because
climatic variables reflect at least seasonal periodic dyesof the system, considering that climatic forces are
among the most important driving forces for a given ecosysts connectionist neural network model are closely
related to generalized linear models (section 3.2.2), dngesreasoning is applicable to these models as well. Thus,
we suggest that for data sets over time-scales which ardesrttedn the seasonal and other possible periodic
dynamics of the system, an explicit predictive variableudtide included in the model that potentially reflects these
periodic dynamics, either directly (as period index), aliiactly (as water level z-score), at least for the case d¥iGL
or connectionist neural network models.

Existing literature of predictive modeling in ecology enaglzes the advantages and predictive power of
connectionist neural network approaches owing to theseetalddherent ability to capture complex nonlinear
interactions between the predictive variables (Lek etl®96; Lek and Guegan, 1999; Scardi, 1996, 2001). However,
this celebrated predictive performance also brings aboinaeased complexity and thus an increased
computational costs resulted from this complexity. The potational cost of these models could be overwhelming
especially with larger data sets. However, as the model tmsd 1 shows, GLMs could attain a significant

predictive performance, at the same time avoiding the aisteural network models. Thus, we suggest that one
should fit a GLM to the data set before considering a neuralortapproach, a high predictive power of which
would render the computational cost associated with neataiorks unnecessary.

For the time-independent data sets (data sets 3-6), outsebow that neighborhood-based methods, k-NN and
ARTMAP, are superior in terms of their predictive performas compared to other techniques, both on training and
test data sets. Test performance of k-NN and ARTMAP modetata set 3 appears to be an exception to this, and
possible reason for this exception is discussed above dBaseur results, nevertheless, we suggest that k-NN and
ARTMAP models are more suitable for spatial data, such agdtaielection and species distribution instead of more
dynamic alternatives such as GLM and connectionist ne@talark models, at least if the time-scale considered is
assured to be relatively insignificant compared to the titapendent periodicities governing ecosystem dynamics.

ARTMAP, although considered as a neural network architecta implicitly a neighborhood-based classification
technique. A geometric interpretation of the operation BTMAP (Carpenter et al., 1991c, 1992) suggests that its
operation is analogous to k-NN neighbor method. An impdrdifference is that while the size of the neighborhood
is fixed for k-NN, it is adaptive in ARTMAP, adjusted on-thg-flepending on the performance of the model on
current data point (and previous ones). Thus, analogolneteetation between GLM and connectionist neural
network models, we consider k-NN to be a relatively primgticomputationally less expensive alternative to
ARTMAP. On our spatial data sets, k-NN performed considigraétter than ARTMAP on 2 of the 3 cases (data sets
4 and 6) on independent test sets. Hence, we suggest thatdadINd be considered for predictive spatial modeling
before considering a more advanced but complex model suBRaMAP.
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6 Conclusions

Our study suggests that different methods for statisticadligtive modeling of ecosystems are suitable, depending o
the data sets and ecosystem dynamics that are to be modetatiefeases involving data sets whose underlying
distribution is unknown, or presumed to be irregular, tiiadal statistical models such as discriminant analysgs ha
poor predictive performances and thus could lead to migigaahd invalid predictions. For the data sets involving
time-dependent dynamics and periodicities whose frequarecpossibly less than the time scale of the data
considered, GLM and connectionist neural network modelsh sis multilayer feedforward backpropagation models,
appear to be most suitable, in terms of their performanceotimtibaining and test sets, provided that a predictive
variable reflecting these time-dependent dynamics, eithglicitly or explicitly in included in the model. For spati
data, which does not include any time-dependence compgai@tie time scale covered by the data, on the other
hand, neighborhood based methods such as k-NN and ARTMARg@to be more robust than other methods
considered in this study. However, for predictive modeligposes, one should consider applying first a suitable,
computationally inexpensive method to the data at handpd geedictive performance of which would render the
computational cost and efforts associated with completamés unnecessary. Further characterization of the data
included in this study using different and/or variants @& thethods considered here, as well as application of the
models considered here to new data sets would, neverthedgeal further characterizations and suggestions for
suitability and applicability of statistical predictiveadeling techniques in ecology.
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Tables

Table 1: Models trained on Lake Eymir, tested on Lake Mogan data (TanBeklioglu, 2005a).
N: number of data point®: number of independent variables. k-NN, LDA QDA and ARTMAP
results are given as percent correctly classified, backanopGLM as c-index (corrected c-index
for training set). Integers indicated before the perforoeavalues of the training sets for ARTMAP
model indicate the number of committed nodes.

Set ‘ N P kNN LDA QDA GLM BackProp ARTMAP
Training 91 5 .846 939 969 .963 — 3;.1.000
IndependentTest 43 5 .429 524 476  .815 — .643
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Table 2: Models trained on Anatolian Lakes, tested on validatiohdet which consisted of data
randomly split from training set and did not included in mbfiing phase (see text) and Lake
Mogan data (Tan and Beklioglu, 2005b) as independent tdstaumber of data points?: num-

ber of independent variables k-NN, LDA QDA and ARTMAP resudte given as percent correctly
classified, backprop and GLM as c-index (corrected c-indexrkining set). Integers indicated be-
fore the performance values of the training sets for bagkmpgation and ARTMAP models indicate

the number of hidden units and number of committed nodepgentisely, of backpropagation and
ARTMAP models.

Set N P k-NN LDA QDA GLM BackProp ARTMAP
Training 440 5 998 814 773 943 5;.986 11;.977
Validation 101 5 816 .802 .255 .962 .998 .956
IndependentTest 24 5 750 1.00 .833 1.00 1.00 .667
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Table 3: Models trained on Lake Erie, tested on Lake Erie, All Saimd €larkes marshes data
(Robertson, 1972; Ozesmi, 1996; Ozesmi and Mitsch, 1997humber of data point®: number

of independent variables. k-NN, LDA QDA and ARTMAP resulte given as percent correctly
classified, backprop and GLM as c-index (corrected c-indexrhining set). Integers indicated be-
fore the performance values of the training sets for bagkagation and ARTMAP models indicate
the number of hidden units and number of committed nodepentisely, of backpropagation and

ARTMAP models.

Set N P kNN LDA QDA GLM BackProp ARTMAP
Training (s95d95) 230 6 .822 .648 644 716 6;.730 14;.826
Independent Test-1 (s96) 98 6 541 592 591 681 .670 .459
Independent Test-2 (d96) 84 6 560 524 536 .578 .550 .440
Independent Test-3 (AllSaints69) 68 6 .500 .501 .500 .380 430 .382
Independent Test-4 (AllSaints70)110 6 .501 .500 .501  .470 .520 .518
Independent Test-5 (Clarks69) | 124 6 .516 .540 .589  .660 .660 .540
Independent Test-6 (Clarks70) | 108 6 .472 .444 435  .480 470 454
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Table 4: Models trained and tested on bird habitat selection datd(R004; Welch, 2004).N:
number of data point®: number of independent variables. k-NN, LDA QDA and ARTMAd?2 r
sults are given as percent correctly classified, backprdp&iM as c-index (corrected c-index for
training set). Integers indicated before the performaratees of the training sets for backpropa-
gation and ARTMAP models indicate the number of hidden uanitd number of committed nodes,
respectively, of backpropagation and ARTMAP models.

Training-1 (. senato} 274 12 828 .781 .799 .859 8;1.00 2;1.00
Independent Test-1.( senatoj 273 12 .678 .780 .798 .781 .831 971
Training-2 H. pallida) 246 12 .866 .488 .496 .759 3;.874 4;1.00
Independent Test-2H pallida) 245 12 669 .486 .502 .703 .657 .980
Training-3 C. brachydactyla 294 12 847 .646 .701 .855 10;1.00 3;1.00
Independent Test-I brachydactyla | 293 12 .765 .648 .703 .769 .809 .962
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Table 5: Models trained and tested on bird habitat selection datg g@®3). N: number of data
points; P: number of independent variables. k-NN, LDA QDA and ARTMAd3ults are given as
percent correctly classified, backprop and GLM as c-indexrrécted c-index for training set). Inte-
gers indicated before the performance values of the trgiséts for backpropagation and ARTMAP
models indicate the number of hidden units and number of dtiesimodes, respectively, of back-
propagation and ARTMAP models. k-NN model outperforms pthedels on both training and
test performance, with the exception of independent tébighlighted). Although ARTMAP seem
to have a high performance on training data, its perform@ntmver than GLM and Backprop on
independent tests, being at random chance level for fouredindependent tests (highlighted).

Set N P kNN LDA QDA GLM BackProp ARTMAP
Training-1 (ss-acraru) 74 12 973  .905 — .959 — 4;.946
Independent Test-1 (tuzla-acrarup06 12 .968  .945 — .936 — .986
Training-2 (ss-alaarv) 74 12 986 .824 .851  .807 — 11;960
Independent Test-2 (tuzla-alaary)s05 12 .798 .430 .551 .705 — 412
Training-3 (ss-calruf) 118 12 992 .788 — .822 12;.925 5;.924
Independent Test-3 (tuzla-calruf) 506 12 .773  .530 — .875 .909 714
Training-4 (ss-ciraer) 48 12 917 .833 .896 .757 12;.905 8;.930
Independent Test-4 (tuzla-ciraef) 506 12 .915 .785 .332 .760 .829 .453
Training-5 (ss-motfla) 50 12 920 .760 .960 .696 12;.584 9;.960
Independent Test-5 (tuzla-motfla)505 12 535 570 .941  .508 .683 521
Training-6 (tuzla-calbra) 50 12 940 .780 — .745 12;.900 4;.920
Validation-1 (tuzla-calbra) 516 12 .880 .629 — 778 b.641 .800
Training-7 (tuzla-melcal) 118 12 .983 .729 — .651 12;.902 6;.831
Validation-2 (tuzla-melcal) 515 12 937 .604 — .608 .657 .555
Training-8 (tuzla-milcal) 56 12 982 .768 — .698 2;.708 8;.946
Validation-3 (tuzla-milcal) 516 12 .856 .613 — .676 .850 .785
Training-4 (tuzla-oenisa) 102 12 990 .745 — .858 2;.719 7,.892
Validation-4 (tuzla-oenisa) 505 12 .954 .529 — .818 .835 745
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Figure Captions

Figure 1: Schematic representation of fuzzy ARTMAP architecturpulrvectors are processed in ARMmodule
while target categories are processed in ARIodule. Semi-disks represent adaptive weights. For detak
text (modified from Carpenter et al. (1992)).

Figure 2: Predictive performance of models on breeding success fegd-avinged black-bird (data set 4). k-NN:
k-nearest neighbor; LDA: linear discriminant analysis; RQQuadratic discriminant analysis; GLM:
generalized linear model; backprop: multilayer feedfadhaackpropagation neural network. Each panel
shows the training and test performances of the modelstiain Clarkes data. Upper panel: models trained
on Clarkes 1960-1970 data; Middle panel: models trainedlark€s 1969 data; Lower panel: models trained
on Clarkes 1970 data. trn: training performance; tst: tediopmance (see text).
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