
This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published
document:

Catlin-Groves, Christina L, Kirkhope, Claire L, Goodenough, 
Anne E ORCID: 0000-0002-7662-6670 and Stafford, Richard 
(2009) Use of confidence radii to visualise significant 
differences in principal components analysis: Application to 
mammal assemblages at locations with different disturbance 
levels. Ecological Informatics, 4 (3). pp. 147-151. 
doi:10.1016/j.ecoinf.2009.06.001 

Official URL: http://dx.doi.org/10.1016/j.ecoinf.2009.06.001
DOI: http://dx.doi.org/10.1016/j.ecoinf.2009.06.001
EPrint URI: https://eprints.glos.ac.uk/id/eprint/3329

Disclaimer 

The University of Gloucestershire has obtained warranties from all depositors as to their title in 
the material deposited and as to their right to deposit such material.  

The University of Gloucestershire makes no representation or warranties of commercial utility, 
title, or fitness for a particular purpose or any other warranty, express or implied in respect of 
any material deposited.  

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.  

The University of Gloucestershire accepts no liability for any infringement of intellectual 
property rights in any material deposited but will remove such material from public view 
pending investigation in the event of an allegation of any such infringement. 

PLEASE SCROLL DOWN FOR TEXT.



 

 

This is a peer-reviewed, post-print (final draft post-refereeing) version of the following 

published document: 

Catlin-Groves, Christina L and Kirkhope, Claire 

L and Goodenough, Anne E and Stafford, Richard 

(2009). Use of confidence radii to visualise 

significant differences in principal components 

analysis: Application to mammal assemblages at 

locations with different disturbance 

levels. Ecological Informatics, 4 (3), 147-151. ISSN 

15749541 

Published in Ecological Informatics, and available online at: 

http://www.sciencedirect.com/science/article/pii/S1574954109000314 

We recommend you cite the published (post-print) version. 

The URL for the published version is http://dx.doi.org/10.1016/j.ecoinf.2009.06.001 

 

Disclaimer 

The University of Gloucestershire has obtained warranties from all depositors as to their title 

in the material deposited and as to their right to deposit such material. 

The University of Gloucestershire makes no representation or warranties of commercial 

utility, title, or fitness for a particular purpose or any other warranty, express or implied in 

respect of any material deposited. 

The University of Gloucestershire makes no representation that the use of the materials will 

not infringe any patent, copyright, trademark or other property or proprietary rights. 

The University of Gloucestershire accepts no liability for any infringement of intellectual 

property rights in any material deposited but will remove such material from public view 

pending investigation in the event of an allegation of any such infringement. 

 

PLEASE SCROLL DOWN FOR TEXT. 

http://dx.doi.org/10.1016/j.ecoinf.2009.06.001


Use of confidence radii to visualise significant differences in 

principal components analysis: application to mammal 

assemblages at locations with different disturbance levels 

 

Christina L. Catlin-Groves, Claire L. Kirkhope, Anne E. 

Goodenough and Richard Stafford* 

 

Department of Natural and Social Sciences, University of Gloucestershire, Swindon 

Road, Cheltenham. GL50 4AZ. United Kingdom 

 

*Corresponding author 

Tel: +44 (0)1242 714681 

email: rstafford@glos.ac.uk 

 



Abstract 

Multivariate statistical analysis is a powerful method of examining complex datasets, 

such as species assemblages, that does not suffer from the oversimplification 

prevalent in many univariate analyses. However, identifying whether datapoints on a 

multivariate plot are clustered is subjective, as there is no determination of significant 

differences between the points and no indication of the level of certainty of those 

points. The validity of drawing such conclusions may therefore be considered suspect. 

This paper describes a method of bootstrapping calculated principal components to 

estimate a confidence radius, similar to confidence intervals in univariate techniques. 

Plotting 3D scatterplots of the principal components, with the size of the spherical 

point representative of the level of confidence of the estimate, gives a clear and visual 

indication of significant difference between the points – where spheres overlap there 

is no significant difference. We apply the technique to mammal assemblages at sites 

in Epping Forest (Essex, UK) that differ in the level of disturbance present and find 

that differences between some sites that appear large using traditional principal 

components analysis are actually not significantly different at the 95% confidence 

level, while other sites do differ significantly.  
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Introduction 

Anthropogenic disturbance, for example through recreation activities, can influence 

the distribution and diversity of species, particularly for sensitive species such as 

some mammals (Cole and Landres, 1995; Gill et al., 1996). Use of univariate 

techniques such as measures of diversity and species richness to analyse changes in 

species assemblage is prone to species substitution (Rosenzweig, 1995; Gaston and 

Spicer, 1998). For example, if ‘pest’ or introduced species such as rats or mink 

displace native biota, including rare species such as water voles (Barreto et al., 1998), 

the results of univariate techniques may report the same level of diversity without 

reflecting important changes in the structure of the assemblage.  

 Multivariate techniques such as Principal Components Analysis (PCA) 

consider changes over an entire community assemblage, such that species 

substitutions show up as changes to the assemblage structure (McGarigal et al., 2000). 

PCA is a well-developed method for such analyses (e.g. Stemberger and Lazorchak, 

1994), however, it is generally advised that the number of cases (e.g. sites at which 

samples were taken) is higher than the number of explanatory variables (e.g. the 

number of mammal species surveyed), normally at a ratio of 3:1 (Tabachnick and 

Fidell, 1989). Also, to ensure accuracy, the sample sizes should be relatively high: in 

most cases > 300 samples are needed for accurate results (Comrey and Lee, 1992). In 

much ecological research – particularly with respect to research on mammals where 

data are time consuming to collect – small sample sizes and high numbers of 

explanatory variables relative to data points are common (i.e. lots of species 

investigated at relatively few sites). While many statistical analysis programs allow 

calculations of PCA when these assumptions are violated (e.g. the ‘prcomp’ method 

in R), the results will not necessarily be reliable.  



 The purpose of this study is to develop a visual method of establishing 

whether clusters of data points are significantly different from one another, using the 

example of species assemblages at different study sites. The technique is analogous to 

the calculation of sample means and their respective confidence intervals in univariate 

analysis: if appropriate confidence limits of the different sample means overlap, no 

significant difference in mean values occurs (Schenker and Gentleman, 2001; Payton 

et al., 2003). In this case, confidence limits of the first three principal components are 

calculated by a bootstrapping exercise (similar to Yu et al., 1998). However, in our 

study, the assemblages at the study locations are plotted in three dimensions using the 

first three principal components as x, y and z coordinates, but the points are plotted as 

spheres, the size of the sphere based on the calculation of a confidence radius. This 

allows a clear visual interpretation of significant differences, rather than just 

investigating the precision of the estimate as demonstrated in previous studies (e.g. 

Yu et al., 1998). If spheres overlap, significant differences between the assemblages 

at the study locations are unlikely. If spheres do not overlap, then the assemblages at 

the respective sites can be considered significantly different. In this way, determining 

whether clusters constitute significant differences becomes less subjective than it is 

currently (Gabriel, 1971) and PCA becomes more analogous to an inferential 

statistical technique. Although this method would be useful in many situations, it is 

particularly relevant when the assumptions of PCA are not fully met and/or for small 

datasets. 

 

 

Methods  

Study site 



The study was carried out at four different locations in Epping Forest, London during 

June 2008 (Table 1). These sites were similar in terms of habitat: mature semi-natural 

broadleaved woodland dominated by beech trees (verified using Phase 1 habitat 

surveying, which placed all 4 sites in the same habitat grouping: A.1.1.1). 

 

Measuring Disturbance 

Belt transects (160x100 m) were located at each site. Disturbances were recorded by 

surveying number of people to pass through the area and type of activities performed 

(jogging, cycling, dog walking, walking, picnicking and game playing – e.g. football). 

Relative values were given to the disturbance activities on a scale of 1-10 according 

to their perceived disturbance effects (see indications of disturbances of these 

activities in Cole and Landres, 1995; Gill et al., 1996; Delaney et al., 1999; Papouchis 

et al., 2001; Frid and Dill, 2002). Each site was given a disturbance value based on 

the number of individuals/groups multiplied by their corresponding activities.  

 

Assessing mammal assemblages 

A complete systematic sweep survey of each site (as defined by the belt transect) was 

performed to establish mammal assemblages on the basis of direct counts and indirect 

evidence (Sutherland, 1996).  Timed point counts were used to survey larger 

mammals, while baited Longworth traps were used to assess small mammal 

communities (Barnett and Dutton, 1995). Indirect evidence was studied in the field 

where possible, although samples (e.g. scats and hair) were taken to aid further 

identification when required. Track-beds (3 per site) were set with builder’s sand and 

placed along animal tracks and around burrows, dens and setts to determine active 

status and occupying species (Fletcher et al., 1990). Track-beds were moistened 



(using a general fine mist garden sprayer) and reset at dawn, mid-afternoon 

(approximately 4pm) and dusk. The number of direct sightings and the amount of 

indirect evidence was used to provide an estimate of abundance. Caution was applied 

to these measures of abundance to ensure that individuals were not double-counted 

(Ross and Reeve, 2003).  

 

Calculating principal components for the sites 

Fourteen different mammal species were identified across the four sites, giving a 

cases:variable ratio of 2:7, rather than the normally required 3:1. Principal 

components were therefore calculated using the ‘prcomp’ function in R (R Core 

Development Team, 2007), using the method described by Crawley (2007), since the 

cases:variable ratio precluded the use of the ‘princomp’ function. Variability between 

sites was large and so data were centred and scaled (as per the guidelines of Varmuza 

and Filzmoser, 2009) using the options in the ‘prcomp’ function. 

 

Bootstrapping the principal components 

For each site, a frequency distribution was set up whereby each individual of each 

species was set as a distinct data entry (as an example, species 1 (fox) where three 

individuals were identified, would be represented by 1, 1, 1 – see examples of actual 

data in supplementary material). From these data, 15 samples were taken with 

replacement, to obtain a sample of the mammal assemblage present at the site (i.e. the 

probability of obtaining a given species in a sample does not change for each sample, 

regardless of the number of each species already found). Thus, the probability of a 

given mammal species occurring in the sample at a given site was proportional to the 

abundance of the species directly observed or observed through indirect evidence 



(tracks, scats etc.) at the site. The first three principal components of each sampling 

exercise were stored for each site, and the process repeated 10,000 times.  

For each replicate run of the bootstrapped principal components (where n 

always equalled 15; see above), the full dataset for all four sites was also analysed, 

essentially creating eight points or sites in each replicate run. By calculating a vector 

to transform each point from the full dataset back to its corresponding point when 

calculated without the additional bootstrap points (equation 1), and then applying the 

same vector to the bootstrap points (equation 2), the variability in the bootstrapped 

points is restricted to variation between differences in the placement of points on the 

initial principal component axes, and not variation between both the placement of 

points and alignment of principal component axes. Accordingly, only the variability 

inherent in the actual data is included; variability is not increased as a facet of the 

bootstrapping analysis. 

 

v[x,y,z] =  I[x,y,z] - i[x,y,z]         [1] 

 

Bmod[x,y,z] = Bcalc[x,y,z] + v[x,y,z]          [2] 

 

where v is the vector, I is the initial full data point calculated without the addition of 

the bootstrap points, i is the full data point calculated along with the bootstrap points, 

Bmod is the bootstrapped point modified by the vector and Bcalc is the bootstrap point 

calculated directly by PCA. 

Essentially this process is the same as rotating the axis from each replicate run 

so that the principal component axes align with those of the original data (i.e. the 

original data in the absence of bootstrap data). Applying this vector also accounted for 



the arbitrary sign applied to the magnitude of the principal component (during 

replicates on identical datasets, the value of a point on a principal component axis 

could be assigned as 1 or -1). The vector transformation eliminated this problem 

unless the sign (+ or -) of the full dataset differed from the sign of the bootstrapped 

dataset for the same point. If this was the case, the magnitude of the vector in this 

dimension was ~ 2 x that of the magnitude of the value of the full dataset point. To 

account for this problem, if the magnitude of the vector exceeded 1.2 x that of the 

magnitude of the value of the full dataset point, the magnitude of the vector in this 

dimension was calculated by adding the two points (equation 3) and then subtracting 

the calculated bootstrap value from the vector (equation 4). 

 

v[x,y,z] =  I[x,y,z] + i[x,y,z]         [3] 

Bmod[x,y,z] = v[x,y,z] - Bcalc[x,y,z]        [4] 

  

The value of 1.2 x the magnitude as the demarcation between equations 1 and 3 being 

applied was essentially arbitrary, but needed to be << 2 to ensure appropriate 

detection of occasions where different signs had been applied arbitrarily to the 

principal components. Results were robust to changes in this value between 1.0 and 

1.5 using the current dataset. 

The mean of each replicate of the vector-transformed principal component 

was calculated and 95% confidence limits were calculated by excluding the highest 

and lowest 2.5 % of the values (Crawley, 2005). Upper and lower confidence 

intervals for all three of the stored principal components were averaged to give a 

confidence radius. The mean values of the principal components for each site were 

plotted in 3 dimensions and the confidence radius indicated the size of the sphere. 



Plots were made using the RGL library and rgl.sphere function for R (Adler and 

Murdoch, 2008). Both the R code and the data files are included as electronic 

supplementary material. 

 

Results 

Assessing mammal assemblages and disturbance 

The number of mammal species found in each site varied between 6 and 12 (Table 1), 

with a maximum of 57 individuals (site 4) and a minimum of 14 individuals (site 2) 

(Table 2). The estimated value of disturbance for each site varied by a magnitude of 

27, clearly suggesting far more disturbance present at some sites using the index 

devised using a priori knowledge (Table 1). Accordingly, separating the sites on the 

basis of anthropogenic disturbance was justified.  

 

Principal components for the sites 

The traditional biplot for the four sites, plotted using the first two principal 

components (accounting for 90.1 % of the variance, the first three principal 

components accounting for 100 %) shows the apparent clustering of sites 2 and 3, 

while sites 1 and 4 appear separate from both sites 2 and 3 and from each other 

(Figure 1). The species in the mammal assemblages that most account for the 

differences between sites are also indicated (Figure 1). Differences between the 

principal components and the bootstrapped values (below) can be seen in Table 3.  

 

Bootstrapping the principal components 

The mean values of the first three principal components for each study site, along 

with the upper and lower confidence limits and confidence radius, are given in Table 



3. Plotting each site by its first three principal components, and associated confidence 

radius, demonstrates overlap between many sites (Figure 2a). Comparisons between 

the most disturbed and least disturbed sites (sites 3 and 4) demonstrate no significant 

differences in mammal assemblage, in fact these are the most similar sites with site 3 

and its confidence radius is entirely subsumed by the confidence radius of site 4. 

While no sites are significantly different from site 4, significant differences do occur 

between all other possible comparisons (Figure 2 b-d) at the 95% confidence level. 

These results differ from a conventional interpretation of the initial PCA (Figure 1), 

which suggested most sites were distinct from each other, and if groupings were 

likely to occur, they would be between sites 2 and 3.  

 

Discussion 

Disturbance may affect community structure in several ways. For example, urban 

adapters and exploiters such as foxes, hedgehogs, squirrels and rats are likely to be 

attracted to disturbed areas due to litter, which may thereby increase the local 

population (McKinney, 2002). There may also be a concurrent decease in sensitive 

mammals such as badgers, which are not particularly adapted to urbanised areas 

(Harris, 1984). In the areas of higher disturbance at Epping Forest there was a greater 

number of scavengers and urbanized species, such as rats (Rattus spp.) and hedgehogs 

(Erinaceus europaeus), which did not appear to be present at less disturbed sites, as 

well as squirrels (Sciurus carolinensis) that occurred at a higher abundance at the 

more disturbed sites compared to the less disturbed sites. In contrast to this, and true 

to expectation, there was no evidence of badgers (Meles meles) at the disturbed sites, 

while the undisturbed sites showed recognisable secondary signs of badgers.  



Whilst the results of this study did not differentiate between assemblages at 

sites with the biggest differences in disturbance, there are a number of limitations that 

should be considered. Only a few small mammal species were included in the study 

due to lack of sufficient captures in the field; evidence of small mammals is also 

difficult to identify using techniques such as track beds. This limitation can also 

influence the bootstrapping technique used in this study. If species were not identified 

in the field, then they could not be found in the bootstrapped sample. Missing a 

number of small mammal species, that may have been present, from some sites, but 

not from others, would be likely to result in false significant differences being found 

between sites. That these type II errors did not occur in the study indicates that the 

technique is relatively robust to these potential problems of small sample size. 

In many cases, in ecological research, the assumptions of statistical analysis 

techniques are not met (Underwood, 1996). In particular, multivariate techniques such 

as PCA may not be accurate if assumptions are violated, and there is little way of 

telling if distinct clusters are really significantly different from each other without 

separate secondary inferential statistical analysis (Shaw, 2003). This study 

demonstrates that in the case of small samples, especially with many explanatory 

variables, conventional PCA can be misleading and in fact significant differences 

between sites that may initially seem distinct may not differ significantly, and equally, 

those sites that appear clustered may in fact show significant differences. This study, 

therefore, provides the basis of a new statistical technique to visually investigate 

multivariate results in a manner that deals with the realities of ecological data. 

Essentially the technique provides an element of quantification to what is normally 

solely a descriptive process. These techniques could provide important information in 

the fields of population, community and conservation biology by providing a simple 



method of detecting differences (or similarities) in species assemblages. This method 

could also be applied more widely, being of potential use wherever determining 

whether or not data points produced by  PCA are significantly clustered is important, 

including where data are limited. 
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Table 1. The location of each study site, with its respective mammal species richness 

and calculated disturbance value. 

 

 

Site Latitude Longitude Number of species Disturbance 

1. North Long Hills 0:01:53E  51:38:52N  8  19 

2. Rangers Road 0:01:25E  51:38:07N  6  8 

3. Wellington Hill 0:02:11E  51:39:54N  6  4 

4. Pillow Mounds 0:02:21E  51:39:59N  12  109 

 



 

Table 2. Abundance of each species found at the four sites. 

 

 Site 1 Site 2 Site 3 Site 4 

Fox 4 7 6   7 

Rabbit 6 2 1 22 

Hare 1 0 0   2 

Stoat 2 0 0   1 

Weasel 0 0 0   2 

Rat 0 0 0   1 

Squirrel 6 1 7   9 

Fallow deer 5 0 2   2 

Chinese water 

deer 

0 0 3   5 

Muntjack deer 4 0 0   3 

Roe deer 1 1 0   0 

Hedgehog 0 0 0   2 

Bank vole 0 0 0   1 

Badger 0 3 2   0 



Table 3. The first three principal components from the full dataset and the mean values and upper and lower confidence intervals of the 

bootstrapped principal components. Confidence radii for the bootstrapped values are also given. 

 SITE 1      SITE 2      SITE 3      SITE 4 

 PC1 PC2 PC3      PC1 PC2 PC3      PC1 PC2 PC3      PC1 PC2 PC3 

Full data 

 

-0.36 3.12  0.11 -2.55 -1.35  1.67     -1.19 -0.93 -1.57  4.11 -0.84 0.28 

Bootstrapped 

(mean) 

 0.77 2.00  0.20     -2.57 -1.50  1.17     -1.44 -0.50 -1.71 -2.07 0.32 -0.85 

Upper CL 

 

1.55 3.69  3.34 -1.92 -0.59  2.56     -0.95 0.63  0.18 -0.35 2.17 4.26 

Lower CL 

 

-1.02 0.07 -3.16 -3.21 -2.42 -0.54 -2.05 -1.46 -3.04 -3.26 -2.04 -3.48 

Confidence  

radius 

                    2.11                   1.03                    1.00 2.48 



 

 

Figure 1. Biplot of the first two principal components created using mammal 

assemblages at the study sites. Sites 2 and 3 appear to form a cluster, where as 1 and 4 

appear to form distinct points. The mammal species indicated by the arrows indicate 

the main differences between the sites (i.e. site 2 and 3 largely separated from the 

other sites by the presence of badgers, site 1 separated by the presence of fallow deer, 

and site 4 showing a number of small mammal species present). The length of the 

arrows indicate the eignvector loadings, in this case all approximately equal at xxx. 

 

 

Figure 2. Three dimensional principal component plots with 95% confidence radii. 

Numbers on spheres indicate the sites they represent (a) all of the sites – indicating 

overlap between sites 1 and 4, sites 2 and 4 and sites 3 and 4 (note site 3 and its 

confidence radius is subsumed by the confidence radius of site 4). (b - d) significant 

differences occur between sites when there is no overlap of the respective confidence 

radii.  

 


