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In a global assessment, canonical correspondence analysis (CCA) and partial CCA were used to ordinate Lake Huron
phytoplankton abundances from June and August 1991 and environmental variables. June taxa were associated
with NOs and chloride, while August taxa were associated with SiO, and temperature, and to some degree, with
TSP and NHs. Dominant taxa were Asterionella formosa, Fragilaria capucina, Fragilaria crotonensis, Tabellaria
fenestrata, and Urosolenia eriensis in June, and Achnanthidium minutissimum, Cyclotella #6, Cyclotella comensis,
Cyclotella michiganiana, and Cyclotella pseudostelligera in August reflecting seasonal change. From local analysis
using results from CCA and partial CCA in fuzzy relational analysis, A. minutissimum and C. comensis were
influential in June, while F. crotonensis was influential in August. From linguistic translation and trophic status
assignment, F. capucina and T. fenestrata indicated eutrophy, A. formosa indicated mesotrophy, C. pseudostelligera
indicated mesotrophy-eutrophy, F. crotonensis and U. eriensis indicated oligotrophy—-eutrophy, Cyclotella #6
indicated oligotrophy-mesotrophy, and C. michiganiana indicated oligotrophy. A linguistic solution with respect
to trophic status is useful for policy makers and others interested in understanding water quality and ways to
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develop decisions about remediation.
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1. Introduction

Phytoplankton are a major part of the aquatic food web and are
important for relational and predictive schema for ecological assessment
of the Great Lakes. Phytoplankton assemblages have been used for some
time as water quality bioindicators in the Great Lakes (Stoermer, 1978). Of
the phytoplankton, diatoms are recognized as bioindicators by govern-
mental agencies and used in water quality assessment in North America
(e.g., USEPA Environmental Monitoring and Assessment Program; USGS
National Water-Quality Assessment Program; Great Lakes Environmental
Indicators Project; Great Lakes Water Quality (Canada)) and Europe (e.g.,
Water Framework Directive; Biological Diatom Index). Their importance
as such is evident in many studies on topics including eutrophication (e.g.,
Hall and Smol, 1999), lake acidification (e.g., Battarbee et al., 1999),
hydrologic and climatic change in lakes (e.g., Fritz et al,, 1999), and in
oceans (e.g., Sancetta, 1999). Diatoms are widely distributed (Harwood
and Nikolaev, 1995) and account for a significant portion of the total
worldwide primary production (van den Hoek et al,, 1995; Mann, 1994,
1999). They are found in seawater, freshwater, brackish water, and soil
(Round et al., 1990). Not only are they found in the plankton, but also on a
variety of substrates, including rocks, sand, plants, and animals (Round
et al,, 1990). Individual species are adapted to a wide range of environ-
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mental conditions, including 83 °C geyser pools and — 2 °C polar sea ice in
Iceland (Harwood and Nikolaev, 1995), hot springs in Iceland (Villeneuve
and Pienitz, 1998), the Arctic (Hamilton et al., 1994), and in the Antarctic
(Spaulding and McKnight, 2000).

In ecological studies, temporal variability, spatial scaling, qualitative,
and quantitative measures are characteristic of data used in assessment.
Because of their siliceous frustules, diatoms are preserved in the
sediments (e.g., Wolin et al., 1988), and along with availability in water,
provide a long temporal record in aquatic systems such as the Great Lakes.
Diatoms occur nearshore and offshore, at the surface and throughout the
water column, so they also provide a spatial record.

To model complexities of ecosystems, multivariate statistics have been
used. These methods are widely accepted and proven ways to transform
raw data into a biplot picture of variation (Gower and Hand, 1996). For
example, the variation may be a gradient (ter Braak, 1986) or separation of
groups as a result of using canonical correspondence analysis (CCA) (ter
Braak, 1988a; Jongman et al.,, 1995). If the raw data do not produce an
interpretable picture, data transformation or standardization may be used
(Noy-Meir, 1973; Noy-Meir et al.,, 1975). The picture that emerges from
using these techniques is relational in interpretation, but geometric as a
result of actual numerical analysis. The exploratory or explanatory results
reflect the complexity of ecological data, but these results have limited use
in ecosystem modeling over temporal and spatial scales, especially for
predictive purposes.

In general, there are at least three matters that are relevant for
consideration in ecological assessment research. First, there is a great
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need to integrate ecological data across temporal and spatial scales.
Existing data gleaned from disparate sources might represent brief,
short events during a single time period or at a particular stratum in a
lake. Using such data to develop a realistic picture of the complexities
of an ecosystem is a challenge. Second, there is a need to combine qua-
litative and quantitative data to make the best use of all the available
information. Theoretical models determine the kind of data that are
informative, while the data collected provide the constraints to
construct a model. There is a challenge in combining numerical and
non-numerical measures that mesh within a realistic model. Finally,
in using data and models, stochasticity and observational limitations
manifested as uncertainty are separate but important determinants in
devising a realistic picture of an ecosystem. Moreover, randomness is
not necessarily representative of all the various types of uncertainties
inherent in an ecosystem. This point is important in devising math-
ematical procedures for use in assessment models that clarify which
underlying biological principles are at work in an ecosystem, and to
what degree non-random uncertainty is not accounted for by such a
model.

Sometimes, data sets used in ecological analysis are deficient in one
way or another. For example, abundance data may not have a sufficient
level of specificity of taxon names or identifications. Chemical data may
contain some but not all concentrations for nutrients or trace elements
or organics. These deficiencies are a kind of inherent uncertainty. Even
relatively complete data sets may contain uncertainties.

Over the years, much data has been collected with regard to the
ecological status of the Great Lakes. Theoretical models can be devised to
model non-random uncertainty using fuzzy set theory (Zadeh, 1965). In
ecology, the methods used to analyze data are second only to the data
themselves. Despite uncertainty inherent in data, many methods do not
reflect this. Conceptualizing ecological data as relational, using fuzzy set
theory (Roberts, 1986, 1987, 1989) or fuzzy coding (Pappas and Stoermer,
1995), has been increasingly recognized for its potential in modeling the
inherent uncertainty in such data.

By using results from multivariate analysis as an exploratory or
explanatory phase in assessing a region of the Great Lakes, fuzzy
relational analysis (e.g., Zimmermann, 2001), as an extension of fuzzy
set theory, can be used to make water quality assessments based on
groups of taxa and the effects of individual inputs into the ecosystem
as well as the degree of effects with respect to interaction among taxa.
Linguistic translation of results would make such results accessible to
policy makers.

We are interested in applying fuzzy set theory and fuzzy relational
analysis to assess the status of one area of the Great Lakes, including
modeling the uncertainty that is inherent in analyzing such data. Fuzzy set
theory and fuzzy relational analysis provide a way to model the
complexities of ecosystems and make assessments in both a quantitative
and linguistic fashion. This is important not only in making a realistic
scientific assessment, but also in making scientific results understandable
to policy makers and the public. Developing quantitative methods for use
in ecological studies of complex problems is useful in advancing the
understanding of ecosystems, and translating quantitative results into
understandable language promotes the possibility of enacting effective
remediation.

Our study involves developing a comparative fuzzy relational and
pictorial presentation of seasonal changes between phytoplankton
assemblages in Lake Huron and determines which taxa are environ-
mental indicators (or bioindicators) of trophic status at different
times of the year. Moreover, we aggregate the results from each
month to be used as a basis for linguistic translation with respect to
degree of truth in the results. Linguistic solution of numerical results
facilitates usage of results by any individual interested in under-
standing environmental conditions of Lake Huron, including the
public and policy makers. In addition, we provide an environmental
assessment of changes over a period of years by comparing our results
to previous studies.

2. Methods
2.1. Data collection and statistical analysis

Phytoplankton were collected from surface samples in Lake Huron
near Port Huron, MI in June and August 1991, and data from this
collection was used as the basis for study. (Although the data used in this
study are seemingly dated, when available, more recent data may be
used with the methods herein described. That is, the methods given are
applicable, regardless of the content of the data used.) In the field,
temperature was measured at the time of sample collection. For che-
mical analyses, a 750 ml subsample was measured colorimetrically
using a Technicon Autoanalyzer in the laboratory (Schelske et al., 1974).
Chemical constituents measured were silica (SiO,), total soluble
phosphorus (TSP), nitrate (NO3), ammonia (NH3), and chloride (CI7).
From the phytoplankton assemblages, 50ml subsamples were fixed
with glutaraldehyde and filtered (Stoermer et al., 1978). Identification
and enumeration of phytoplankton were accomplished using a Leitz
Ortholux microscope furnished with oil immersion objective with
numerical aperture of 1.3 with a magnification of 1250x. From our
study, 121 taxa were identified and enumerated. For more on the me-
thods of slide preparation and species enumeration, see Stoermer et al.
(1978). For taxa not identifiable to species level, the numbering system
used is that of Stoermer and Yang (1969).

Multivariate statistical data analysis was accomplished using
canonical correspondence analysis (CCA) and partial CCA (ter Braak,
1988b, 1990) to recover global information about the taxa and their
environment. Using CCA, phytoplankton relative abundances con-
strained by environmental variables were converted to approximate
weighted averages per canonical vector (ter Braak, 1988ab). Each
canonical vector may be defined as the relative importance of each
taxon, since each canonical vector is a composite gradient of those
environmental variables that have the most influence. Intraset correla-
tion coefficients represent relative importance of environmental vari-
ables per canonical axis. Both weighted averages and intraset correlation
coefficients per canonical axis form the basis of importance matrices for
use in local analysis.

For such an analysis on a local scale, fuzzy set theory and fuzzy
relations (Zimmermann, 2001) were used to analyze dominant taxa
whose influence is largest in terms of environmental variables with
respect to the assemblage as a whole. Taxon weighted averages and
environmental intraset correlation coefficients per canonical axis were
fuzzified as

_ ( fw—inf(y)
109 = (= nico) )

where s (x) is a fuzzy membership function of fuzzy set A, uz (x):
X—[0, 1], V x€X for fuzzy weighted averages or fuzzy intraset
correlation coefficients, f (x), per canonical axis, inf is the infimum or
greatest lower bound, and sup is the supremum or least upper bound.

From fuzzification, a comparison is made between June and
August taxa. Degree of influence of environmental variables on taxa
as well as the degree to which taxa was indicative of environmental
conditions was examined using fuzzy relational analysis. These
results were translated into ordinary language for use by individuals
such as policy makers and depicted in diagrammatic or graphical
form.

2.2. Fuzzy set theory and fuzzy relational analysis

In fuzzy set theory, let X be a non-empty set that is defined as the

universe of discourse where the e~lements of X are xq, X2, ..., Xp. A
subset of X is defined as fuzzy set, A, where
A = {xp00) 1xex}, )
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and let universe of discourse Y with elements y, y>, ..., ¥, be a non-
empty set with a subset of Y defined as a second fuzzy set, B, where

B = {010 yev}. 3)

The fuzzy set is a grade of membership on the interval [0, 1], or u:
A—10,1] and u: B— [0, 1] are mappings where each element x or y is
assigned a degree of membership 0<uj (x)<1 or 0<pu (y)<1,
respectively. For aggregation purposes, fuzzy set-theoretic operators
max is used as the union and min is used as the intersection (e.g.,
Dubois and Prade, 1980). They are defined as

VXEX, Wi 5(x) = min(u(x), (%)) (4)
and

VXX, Uy p(X) = max(y(x), ua(x)) 3)
(Dubois and Prade, 1980; Zimmermann, 2001).

Similarly, fuzzy relations can be defined and are fuzzy sets in
product or Cartesian spaces (Zimmermann, 2001). Let a fuzzy relation
for X and Y be defined as

R = {[(¢.9). b (x.3)] | (x,)EX x Y}, (6)

where the fuzzy relation, R, is in the Cartesian product space X x Y. The
fuzzy relation is a grade of membership of ordered pairs on the
interval [0, 1], or pg: XxY— [0, 1] is a mapping where elements x and
y are assigned a degree of membership 0 <p(x,y) <1. For n-ary fuzzy
relations,

Ri(x,¥), (x,y)EX x YandR,(y,z), (¥,2)EY x Z. (7)

Fuzzy relations in different product spaces can be combined using
the composition of relations. The max-min composition is defined as

ReR, = {[(x,Z),myf:v({min{u,a1 (*.¥). K w21 xex.yey. 22z}, (8)
Aggregation operations are defined as

M = = S
RY = {(x. maxpzey) | (x =X x v} ©)
for the first projection,
R? = {(y, maxyz(x.y))| (x.y)=X x v} (10)

for the second projection, and

(T _
R = maxmax {u(x.y) | (x.y)=X x Y} (11)

for the total projection. The cylindrical extension of the projection
relation is the largest fuzzy relation (Zimmermann, 2001).

To depict fuzzy relations, fuzzy diagrams will be constructed. These
diagrams will be useful in showing the degree of influence with respect to
environmental variables. Moreover, from fuzzy relational operations and
diagrams of the results, the degree to which taxa are useful as
environmental indicators is determined. Using results from fuzzy
relational analysis, seasonal succession from June to August may be
given numerically and depicted in graphical form. From fuzzy relational
analysis, normalized results may be used in linguistic translation.

2.3. Linguistic translation and fuzzy decision-making

Linguistic solutions (Zadeh, 1975; Tong and Bonissone, 1984; Pappas,
2006) reflecting degree of truth (Bellman and Zadeh, 1977; Baldwin,
1979) is used to make results accessible to the public and policy makers.
From fuzzy relational results, a linguistic solution is devised using the
second projection (Eq. (10)) of degree of environmental influence from
fuzzy relational analysis. The second projection is used since this rep-
resents the degree of influence that environmental variables have with
respect to change in community structure. Moreover, the second pro-
jection is a summary value of the degree to which each taxon is an
indicator of environmental conditions, and these values may form the
basis for linguistic translation.

Linguistic modifiers (or hedges) are used with regard to the conditions
associated with water quality. Typically, trophic status is an important
determinant in decision-making in terms of environmental remediation.
The second projection (Eq. (10)) from fuzzy relational analysis is
normalized and evaluated with reference to what is known about trophic
indicator species from the scientific literature.

A fuzzy trophy set is devised and meaningful labels are determined by
linguistic approximation using a semantic equivalence (Zadeh, 1975,
1978). The equivalent set, L, is inclusively L (Trophy) = {mostly eutrophic,
more eutrophic than oligotrophic (=mesotrophic), more oligotrophic than
eutrophic, mostly oligotrophic} and is defined as

Mostly eutrophic = {0.75 < x<1}

Moreeutrophic than oligotrophic (or mesotrophic) = {0.50 < x<0.75}

Moreoligotrophic than eutrophic = {0.25 < x<0.50}
Mostly oligotrophic = {0 < x<0.25}

where x is the normalized second projection value of a taxon. For x=1,
total eutrophy is defined, and for x=0, totally pristine conditions exist.
With published information on the environmental tolerances of each
taxon to trophic level, assignment of trophic indicator status to each taxon
is accomplished via the max function of aggregation.

For fuzzy decision-making, the max function (Zimmermann, 2001) is
used to aggregate normalized second projection values and represent
linguistic truth-values for each taxon as an indicator of trophic conditions.
From the fuzzy trophy set, each taxon is assigned a label, and these labels
are then evaluated with respect to published information on trophic status
for each taxon. Evaluation is accomplished via construction of a fuzzy truth
table where Tis “true”, Fis “false”, and T+ Fis “undecided” (Zimmermann,
2001). That is, each taxon is identified to the degree to which it is a true
indicator of environmental conditions.

3. Results
3.1. Canonical correspondence analysis

CCA was used to explore the relation between abundance and en-
vironmental variables. In CCA, a biplot of species scores, site scores, and
environmental variables was devised and depicted as an ordination
(Fig. 1). Species scores are approximate weighted averages that indicate
optimal response to environmental variables, and intraset correlation
coefficients indicate the strength of environmental influences (ter Braak,
1986; Jongman et al,, 1995). Partial CCAs were conducted to determine
particular environmental influences by partialling out the effects of all but
those environmental variables that are highly correlated with each
canonical axis.

From CCA, the first four eigenvalues were 0.57,0.18,0.16, and 0.09, and
89% of the species variation was explained. A Monte Carlo permutation
test of the null model using 99 permutations produced a F-ratio of 1.04
with a P-value of 0.04 for the first canonical axis and a F-ratio of 1.96 and a
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Fig. 1. CCA ordination of June and August, 1991 Lake Huron assemblages. Site scores for
June are j1,j2, and j3, and for August are a1, a2, and a3. Environmental variables are also
indicated. See text for description of environmental variables.

P-value of 0.08 for the trace. Intraset correlation coefficients showed that
SiO, and temperature were highly negatively correlated (—0.83
and —0.98, respectively), while NO3 and ClI~ were highly positively
correlated (0.99 and 0.97, respectively) with the first constrained
eigenvector. On that same eigenvector, June and August samples were
separated in constrained environmental space (Fig. 1).

From the first partial CCA that tested for the effects of NOs and Cl—, the
eigenvalues were 0.176 and 0.129 for the first and second canonical axes.
Intraset correlation coefficients for the first constrained eigenvector
were — 0.958 for NOs and — 0.932 for CI ™. The eigenvalues for the first and
second canonical axes for the second partial CCA that tested for the effects
of Si0, and temperature were 0.180 and 0.107, respectively. On the first
constrained axis, SiO, and temperature had intraset correlation coeffi-
cients of —0.966 and — 0.553, respectively.

Based on abundances and results from CCA and partial CCA, the do-
minant taxa that represent phytoplankton assemblages for June were
Asterionella formosa, Fragilaria capucina, Fragilaria crotonensis, Urosolenia
eriensis, and Tabellaria fenestrata. For August, the dominant taxa were
Achnanthidium minutissimum, Cyclotella #6, Cyclotella comensis, Cyclotella
michiganiana, and Cyclotella pseudostelligera. These taxa formed the basis
of fuzzy relational analysis.

3.2. Fuzzy relational analysis

Using taxon weighted averages means representing taxa that are
influenced by environmental variables to varying degrees. That is,
taxa weighted averages represent optimal abundances constrained by
the presence of particular environmental influences (ter Braak, 1996).
Intraset correlation coefficients indicate degree of strength of
environmental influence. To determine particular effects that partic-
ular environmental variables have on each taxon, fuzzy set theory and
fuzzy relations were used to analyze a subsample of the ten dominant
taxa previously mentioned—five from June and five from August.
Fuzzification of species scores or intraset correlation coefficients was
accomplished via normalization per canonical axis and produced
fuzzy importance matrices (Table 1).

June taxon abundances are more highly influenced by NOs; and Cl—,
and August taxon abundances are more highly influenced by SiO, and
temperature (Table 2). This result is more succinctly indicated in the first
projection (Table 3). The second projection indicates that NO3 and CI™
influenced taxa to a higher degree than other environmental variables
(Table 3).

Results from max-min composition of fuzzified CCA weighted averages
and fuzzified partial CCA weighted averages for NOs and Cl ™~ are presented

Table 1

Fuzzy importance matrices from CCA results.

Species axis 1 Species axis 2 Species axis3 Species axis 4

Temperature 0.00 0.43 0.48 0.17

Si0, 0.08 0.00 1.00 0.27

TSP 0.33 1.00 0.00 1.00

NH; 0.33 1.00 0.00 1.00

cl- 0.99 0.59 0.97 0.00

NO3 1.00 0.51 0.60 0.13

Achnanthidium 0.31 0.56 0.50 0.40
minutissimum

Asterionella formosa 0.89 0.46 0.31 0.40

Cyclotella #6 0.07 0.49 0.31 0.31

Cyclotella comensis  0.16 0.50 0.40 041

Cyclotella 0.12 0.51 0.29 0.41
michiganiana

Cyclotella 0.03 0.52 0.29 0.51
pseudostelligera

Fragilaria capucina  0.84 0.63 0.55 043

Fragilaria 0.96 0.25 0.08 0.40
crotonensis

Tabellaria fenestrata 0.84 0.55 0.44 0.41

Urosolenia eriensis  0.88 0.50 0.37 0.42

Table 2

Max-min composition of fuzzy relations between fuzzified taxon weighted averages by
fuzzified intraset correlation coefficients for all environmental variables, June and

August 1991 data.

Taxon Temperature SiO, TSP NH; ClI™ NO3
Achnanthidium minutissimum  0.48 050 056 056 0.56 0.51
Asterionella formosa 043 031 046 046 0.89 0.89
Cyclotella #6 0.43 031 049 049 049 049
Cyclotella comensis 0.43 040 050 050 0.50 0.50
Cyclotella michiganiana 043 029 051 051 051 051
Cyclotella pseudostelligera 043 029 052 052 052 051
Fragilaria capucina 0.48 055 063 063 0.84 0.84
Fragilaria crotonensis 0.25 027 040 040 0.96 0.96
Tabellaria fenestrata 0.44 044 055 055 084 0.84
Urosolenia eriensis 0.43 037 050 050 0.88 0.88

in Table 4 and also represented by a fuzzy graph (Fig. 2). In Table 4, reading
down columns gives the degree of influence of taxa as proxies for NOs and
Cl7, and reading across rows gives the degree of influence for all
environmental variables. The first projection reflects taxon proxies for all
environmental variables, while the second projection reflects June and
August taxon proxies for NO; and Cl™ influence.

For SiO, and temperature, results of max-min composition of fuzzified
CCA weighted averages and fuzzified partial CCA weighted averages are
presented in Table 5. The results are also presented in a fuzzy graph
(Fig. 3). Degree of influence of taxa as proxies for SiO, and temperature is
found in columns, and degree of influence for al environmental variables

Table 3
From Table 1 results, projections of effects of all environmental variables across rows.

Taxon 1st projection Environmental variable 2nd projection

Achnanthidium 0.56 Temperature 0.48
minutissimum

Asterionella formosa 0.89 Si0, 0.55

Cyclotella #6 0.49 TSP 0.63

Cyclotella comensis 0.50 NHs3 0.63

Cyclotella michiganiana 0.51 Ccl- 0.96

Cyclotella 0.52 NO3 0.96
pseudostelligera

Fragilaria capucina 0.84

Fragilaria crotonensis 0.96

Urosolenia eriensis 0.88

Tabellaria fenestrata 0.84

First projection—the higher the value, the more influence the environmental variable
has on the taxon. Second projection indicates degree of influence by the environmental

variable.
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Table 4
Max-min composition of fuzzy relations of taxon fuzzified weighted averages of all environmental variables (rows) by NOs and CI~ influence (columns), June and August 1991 data.
Achnanthidium  Asterionella  Cyclotella #6 Cyclotella  Cyclotella Cyclotella Fragilaria  Fragilaria Tabellaria  Urosolenia
minutissimum  formosa comensis  michiganiana pseudostelligera capucina  crotonensis fenestrata  eriensis
Achnanthidium minutissimum  0.36 0.49 0.38 0.37 0.40 0.38 0.56 0.19 0.56 0.45
Asterionella formosa 0.53 0.46 0.40 0.46 0.40 0.41 0.55 0.19 0.46 0.45
Cyclotella #6 0.36 0.49 0.38 0.37 0.40 0.38 0.49 0.19 0.49 0.45
Cyclotella comensis 0.36 0.49 0.38 0.37 0.40 0.38 0.50 0.19 0.50 0.45
Cyclotella michiganiana 0.36 0.49 0.38 0.37 0.40 0.38 0.51 0.19 0.51 0.45
Cyclotella pseudostelligera 0.36 0.49 0.38 0.37 0.40 0.38 0.52 0.19 0.52 0.45
Fragilaria capucina 0.53 0.49 0.40 0.46 0.40 0.41 0.60 0.19 0.57 0.45
Fragilaria crotonensis 0.53 0.32 0.40 0.46 0.40 0.41 0.55 0.19 0.44 037
Tabellaria fenestrata 0.53 0.49 0.40 0.46 0.40 0.41 0.55 0.19 0.50 0.45
Urosolenia eriensis 0.53 0.49 0.40 0.46 0.40 0.41 0.55 0.19 0.55 0.45

are given in rows. The first projection is taxon proxies for all en-
vironmental variables, and the second projection is SiO, and temperature
influence of June and August taxon proxies.

For June and August taxa as proxies for NOs and CI™ as well as SiO, and
temperature, respectively, the second projection (Eq. (10)) is given in
numerical form in Table 6 with the degree of difference listed, and is
depicted in fuzzy graphical form (Fig. 4). For the fuzzy graph, the darker
the block, the more influence the taxon has on other individual taxa. For
example, at the 0.5 or greater level, Achnanthidium minutissimum, F. ca-
pucina and T. fenestrata had greater influence with respect to all other taxa
in June, and Cyclotella #6, C. michiganiana, F. capucina, and T. fenestrata
had greater influence with respect to all other taxa in August (Fig. 4).
Using Fig. 4, taxa are ranked with respect to how well they represent
environmental conditions during either June or August. In June, the order
of taxa from least influential to most influential are F. crotonensis, Cyclo-
tella #6, C. michiganiana, C. pseudostelligera, U. eriensis, C. comensis, Aster-
ionella formosa, Achnanthidium minutissimum, T. fenestrata, and F.
capucina. In August, the least to most influential taxa are Achnanthidium
minutissimum, C. comensis, C. pseudostelligera, U. eriensis, F. crotonensis,
Asterionella formosa, C. michiganiana, C. #6, T. fenestrata, and F. capucina.

From the same figure (Fig. 4), taxa are identified as an indicator of
environmental conditions to a degree for a particular month. Depending

Achnanthidium minutissimum
Asterionella formosa
Cyclotella #6
Cyclotella comensis
Cyclotella michiganiana
Cyclotella pseudostelligera
Fragilaria capucina
Fragilaria crotonensis
Tabellaria fenestrata

Urosolenia eriensis

on the degree of darkness of the block (or higher maximum value), taxa
that were better indicators of conditions in June were Achnanthidium
minutissimum and C. comensis. In August, F. crotonensis was a better
indicator of conditions as was Cyclotella #6, C. michiganiana, and C
pseudostelligera, albeit to a much lesser degree. Asterionella formosa, F.
capucina, U. eriensis, and T. fenestrata had the same value for June and
August, indicating that they were equally suited as environmental
indicators for each month.

3.3. Linguistic translation and fuzzy decision-making

From the normalized second projections for June and August (Table 6),
linguistic translation was devised for each dominant taxa with respect to
indicator status for each month and in the aggregate via the max function
(Table 7). For June, the taxa that were the most representative of
the presence of NO3 and CI™ were Achnanthidium minutissimum, F. capu-
cina, and T. fenestrata. For August with respect to SiO, and temperature,
the most representative taxa were Cyclotella #6, F. capucina, and T. fenes-
trata (Table 7).

Many taxa were more truly representative of NO; and Cl™ conditions
than not. For June, these taxa were Asterionella formosa, Cyclotella #6, C.
comensis C. michiganiana, C. pseudostelligera, and U. eriensis. For August,

Fig. 2. Fuzzy graph of taxon-taxon influences with respect to NOs and Cl~ as given in Table 4.
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Table 5
Max-min composition of fuzzy relations of taxon fuzzified weighted averages of all environmental variables (rows) by SiO3 and temperature influence (columns), June and August
1991 data.
Achnanthidium  Asterionella ~ Cyclotella  Cyclotella  Cyclotella Cyclotella Fragilaria  Fragilaria Tabellaria  Urosolenia
minutissimum  formosa #6 comensis  michiganiana  pseudostelligera  capucina  crotonensis  fenestrata  eriensis
Achnanthidium minutissimum  0.35 049 0.38 0.37 0.40 0.38 0.56 0.19 0.56 0.45
Asterionella formosa 0.40 0.46 0.55 043 0.50 0.43 0.46 0.48 0.46 0.45
Cyclotella #6 0.35 0.49 0.38 0.37 0.40 0.38 0.49 0.19 0.49 0.45
Cyclotella comensis 0.35 0.49 0.38 0.37 0.40 038 0.50 0.19 0.50 0.45
Cyclotella michiganiana 0.35 0.49 0.38 0.37 0.40 0.38 0.51 0.19 0.51 0.45
Cyclotella pseudostelligera 0.35 0.49 0.38 0.37 0.40 0.38 0.52 0.19 0.52 0.45
Fragilaria capucina 0.40 049 0.55 043 0.50 043 0.60 0.48 0.57 045
Fragilaria crotonensis 0.40 0.44 0.55 0.43 0.50 0.43 0.36 0.48 0.41 0.41
Tabellaria fenestrata 0.40 0.49 0.55 043 0.50 0.43 0.50 0.48 0.50 0.45
Urosolenia eriensis 0.40 0.49 0.55 0.43 0.50 0.43 0.55 0.48 0.55 0.45

only C. michiganiana was more truly representative than not of conditions
with respect to SiO, and temperature. By contrast, in June, only F. croto-
nensis was not representative of NO3 and CI™ conditions, while many taxa
were either mostly unrepresentative or not at all representative of August
environmental conditions with respect to SiO, and temperature. The most
unrepresentative taxa were Asterionella formosa, F. crotonensis, U. eriensis,
C. comensis, and C. pseudostelligera with Achnanthidium minutissimum
being completely unrepresentative (Table 7).

From the fuzzy trophy set and published information on indicator
status for each taxon, linguistic truth-values were determined according
to a fuzzy truth table (Table 8) (Zimmermann, 2001). For Asterionella
formosa, Cyclotella #6, C. michiganiana, C. pseudostelligera, F. capucina, F.
crotonensis, T. fenestrata, and U. eriensis, linguistic truth-value was “true”
(Table 9). For Achnanthidium minutissimum and C. comensis, linguistic
truth-value was “undecided” (Table 9). Linguistic truth-values form the
basis of fuzzy decision-making (Zimmermann et al., 1984).

Achnanthidium minutissimum
Asterionella formosa
Cyclotella #6

Cyclotella comensis
Cyclotella michiganiana
Cyclotella pseudostelligera
Fragilaria capucina
Fragilaria crotonensis

Tabellaria fenestrata

Urosolenia eriensis

4. Discussion
4.1. Global and local analyses

In our study, global and local analyses were achieved to determine the
status of the environment and seasonal succession of phytoplankton. In
global analysis, CCA was used to show the change in dominant taxa from
June and August (Fig. 1). June dominant taxa included those diatom
species normally found in spring assemblages in the Great Lakes (e.g.,
Stoermer and Yang, 1969). Dominant diatom taxa for August mostly
consisted of Cyclotella spp. and Achnanthidium minutissimum. With the
exception of C. comensis, the other taxa are not necessarily known as
summer dominant taxa in the Great Lakes (e.g., Stoermer and Yang, 1969).
Taxon abundances are evaluated with regard to their “ability” to be an
indicator of the environmental conditions in which they were found. As a
result, global analysis did not provide a complete picture of seasonal

Fig. 3. Fuzzy graph of taxon-taxon influences with respect to SiO, and temperature as given in Table 5.



J.L. Pappas / Ecological Informatics 5 (2010) 79-88 85

Table 6
Second projections (Eq. (10)) of taxa for June and August, 1991.

Taxon June August Degree of change
Achnanthidium minutissimum 0.53 0.40 Decrease
Asterionella formosa 0.49 0.49 No change
Cyclotella #6 0.40 0.55 Increase
Cyclotella comensis 0.46 043 Slight decrease
Cyclotella michiganiana 0.40 0.50 Increase
Cyclotella pseudostelligera 0.41 0.43 Slight increase
Fragilaria capucina 0.60 0.60 No change
Fragilaria crotonensis 0.19 0.48 Increase
Tabellaria fenestrata 0.57 0.57 No change
Urosolenia eriensis 0.45 0.45 No change

Degree of change from June to August is also reported.

succession, at least insofar as matching change in dominant taxa to
particular environmental variables governing the state of Lake Huron near
Port Huron, Michigan in 1991.

From local analysis using fuzzy relations, the degree of influence
that environmental conditions had on the dominant taxa from June
and August and the degree to which the dominant taxa are
environmental indicators of trophic status were determined, and
these results show that specific taxon abundances are not the whole
picture with respect to defining the environment. In spite of being a
June dominant taxon, F. crotonensis had less influence than it did in
August. All other June dominant taxa had the same influence in June
and August. This indicated that although a different environmental
regime was present in August, June dominant taxa persisted. Degree
of influence remained approximately the same (C. comensis) or
increased in August for those identified as dominant taxa. The
exception is Achnanthidium minutissimum, which decreased in degree
of influence in August despite being a dominant taxon.

For F. crotonensis and Achnanthidium minutissimum, each taxon
was a better indicator of environmental conditions for the season
rather than being indicators based only on abundance. F. crotonensis is
an indicator of complete biodegradation of organic compounds and
weak NHs pollution being present (Lowe, 1974). Achnanthidium mi-
nutissimum is an indicator of pollution in the form of nitrogenous
compounds (Lowe, 1974). In global analysis, NH; was indicated
secondarily as influential in environmental conditions in August, and

Achnanthidium minutissimum
Asterionella formosa
Cyclotella #6

Cyclotella comensis
Cyclotella michiganiana
Cyclotella pseudostelligera
Fragilaria capucina

Fragilaria crotonensis

Tabellaria fenestrata

Urosolenia eriensis

Fig. 4. Second projections (Eq. (10)) for June and August taxa as a fuzzy graph.

Table 7
Normalized second projections for taxon indicators and max function for logical “OR”.
Taxa June August Max function
(NO3 and CI™) (SiO, and temperature) Vv
Achnanthidium 0.83 0 0.83
minutissimum
Asterionella formosa 0.73 0.45 0.73
Cyclotella #6 0.51 0.75 0.75
Cyclotella comensis 0.66 0.15 0.66
Cyclotella michiganiana 0.51 0.50 0.51
Cyclotella 0.54 0.15 0.54
pseudostelligera
Fragilaria capucina 1 1 1
Fragilaria crotonensis 0 0.40 0.40
Tabellaria fenestrata 0.93 0.85 0.93
Urosolenia eriensis 0.63 0.25 0.63

Information about taxon representation of trophic status and other properties is given.

locally F. crotonensis and A. minutissimum were found to corroborate
this.

From global and local analyses, degree of each taxon's “ability” to
indicate the environmental conditions present was shown to be a
useful tool in determining the environment's trophic status from
season to season (Table 7). In June, the overall condition of the
environment was eutrophy, given the presence of dominant taxa
usually found in such conditions (e.g., Stoermer and Yang, 1969). In
particular, F. capucina is highly correlated with CI~ (Stoermer and
Kreis, 1980), and is an indicator of eutrophy (Lowe, 1974). T. fenes-
trata is indicative of eutrophic conditions (Lowe, 1974). U. eriensis has
been found to be present in eutrophic conditions as well (Edlund and
Stoermer, 1993). Asterionella formosa and F. crotonensis are found in
mesotrophic to eutrophic conditions (Lowe, 1974). The total
projection for June taxa indicated eutrophy to degree 0.60.

In August, dominant taxa of Cyclotella species indicated oligotro-
phy (Lowe, 1974). In August, conditions did not improve greatly from
June since the total projection indicated eutrophy to degree 0.60.

In global analysis, one taxon that was found to be dominant in
August, but not in June was C. comensis. This taxon is an indicator of
nitrogenous pollution and has been increasing in abundance later in
the season (Stoermer and Kreis, 1980; Stoermer et al., 1983; Pappas
and Stoermer, 1995). However, in local analysis, C. comensis was
approximately equally influential in June and August, not indicating
much change between seasons.

4.2. Linguistic translation and fuzzy decision-making

Using linguistic approximation and fuzzy decision-making by
evaluating degree of truth with respect to trophic status, our results
provide a more detailed picture of the contribution each dominant
taxon made toward assessing the environment. For June with regard
to NOs, Achnanthidium minutissimum (Lowe, 1974), C. comensis
(e.g., Pappas and Stoermer, 1995), and to some degree, U. eriensis
(Edlund and Stoermer, 1993) are indicators of nitrogenous pollution.
This type of pollution is considered to be secondarily an indicator of
eutrophy, in contrast to pollution from phosphate inputs (e.g.,
Stoermer et al., 1978; Pappas and Stoermer, 1995). Our results on
trophic status of A. minutissimum and C. comensis are interpreted to

Table 8
Fuzzy truth tables for logical “OR”, where Vv is the max function, “T” is “true”, “F" is
“false”, and “T+ F" is “undecided” (Zimmermann, 2001).

\% T F T+F
T T T T

F T F T+F
T+F T T+F T+F
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Table 9
Fuzzy decision-making using linguistic translation of max function values and fuzzy
truth table labels with respect to trophic indicator status.

Taxa Max function Fuzzy Environmental Linguistic
\% decision tolerance identifier truth-value

Achnanthidium 0.83 Eutrophy Oligotrophy; T+F
minutissimum tolerates NO5*

Asterionella 0.73 Mesotrophy Mesotrophy® to T
formosa Eutrophy©®®

Cyclotella #6 0.75 Mesotrophy Oligotrophy®’ T

Cyclotella 0.66 Mesotrophy Oligotrophy; e SE
comensis tolerates NO;S4ef

Cyclotella 0.51 More Oligotrophy®®f T
michiganiana oligotrophy

Cyclotella 0.54 Mesotrophy Eutrophy<®f T
pseudostelligera

Fragilaria 1 Eutrophy Eutrophy; tolerates T
capucina high ClI—¢

Fragilaria 0.40 More Mesotrophy' to T
crotonensis oligotrophy  Eutrophy<®€

Tabellaria 0.93 Eutrophy Eutrophy<%¢ T
fenestrata

Urosolenia 0.63 Mesotrophy Oligotrophy to T
eriensis eutrophy; tolerates

N03a,e

Lowe (1974).

Edlund and Stoermer (1993).
Pappas and Stoermer (1995).
Stoermer and Kreis (1980).
Stoermer et al. (1983).
Stoermer and Yang (1969).

- 0 an T 8

reflect this since they were found to have the linguistic truth-value of
“undecided” (Table 9).

From our results, some taxa are interpreted to be indicative of a
broader spectrum of trophic conditions since Cyclotella #6, C.
pseudostelligera, F. crotonensis, and U. eriensis covered multiple
categories of trophic status with linguistic truth-values of “true”
(Table 9). Those taxa that were found to be indicative of a particular
category of trophy were Asterionella formosa for mesotrophy, C.
michiganiana for oligotrophy, and both F. capucina and T. fenestrata
for eutrophy. A taxon such as A. formosa occurred under mesotrophic

conditions (e.g., Stoermer and Yang, 1969; Pappas and Stoermer,
1995). C. michiganiana as an indicator of oligotrophy, has been
substantiated to be so according to published accounts (Stoermer and
Yang, 1969; Stoermer et al., 1983). In June with regard to Cl, F. ca-
pucina was found to be an indicator of eutrophy, and this taxon has
been found to tolerate slight increases in salt concentration (Stoermer
and Kreis, 1980). T. fenestrata has also been documented to be
tolerant of eutrophy (Stoermer and Kreis, 1980; Stoermer et al., 1983;
Pappas and Stoermer, 1995).

Linguistic translation of the results was particularly useful in am-
algamating fuzzy relational results and what is known about taxon
indicators from the scientific literature. More specifically, trophic
status of the environment on a taxon-by-taxon basis was made and
translated into ordinary language to make results of this environ-
mental study accessible to anyone with an interest in the results,
including policy makers and members of the public.

4.3. Seasonal succession

To examine seasonal succession, results from second projections
(Eq. (10)) of June and August taxa are plotted in a single diagram
(Fig. 5). Dominant taxa in June and August gave an overall indication
of environmental conditions that was somewhat different from the
second projections for these months. This shows that only looking at
dominant taxa may not give an entire picture of change in
environmental conditions. In general, eutrophy was present in June
and oligotrophy in August based on dominant taxa only. However,
two taxa that were August dominants were important indicators of an
increase in nitrogenous compounds in June, namely, Achnanthidium
minutissimum and C. comensis. F. crotonensis, a June dominant, was
an important indicator of at least mesotrophic conditions emerging
(Table 9). All other taxa exhibited the same value for June and August,
indicating persistence in the environment, regardless of the condi-
tions. With global and local analyses, a combination diagram is made
to represent a timeline of changes in the environment (Fig. 5).

4.4. Seasonal changes from year to year

The shift in taxon dominants among the seasons from year to year
is examined (Table 10). In a comparison of data from 1974, 1980, and

June(NOg and CI) August (SiO, and temperature)

Urosolenia eriensis

Tabellaria fenestrata

Fragilaria crotonensis

Fragilaria capucina

Cyclotella pseudostelligera

Cyclotella michiganiana

Cyclotella comensis

Cyclotella #6

Asterionella formosa

Achnanthidium minutissimum

Fig. 5. Timeline of succession from June to August, 1991 for dominant taxa determined globally and particular outcomes for taxa from local analysis.
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Yearly and seasonal succession of dominant Lake Huron taxa common to and reported
in Stoermer and Kreis (1980) for 1974, Stoermer et al. (1983) for 1980, Pappas and
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Stoermer (1995) for 1991, and results from the current study.*

1974

1980

1991

Fragilaria capucina
Fragilaria crotonensis
Cyclotella comensis

Spring

Fragilaria crotonensis
Cyclotella comensis

Spring

Fragilaria capucina
Cyclotella comensis
Tabellaria fenestrata

Spring

Fragilaria capucina
Fragilaria crotonensis

Fragilaria capucina

Fragilaria capucina*
Fragilaria crotonensis*

Tabellaria fenestrata Tabellaria fenestrata*
Summer Summer Summer
Cyclotella comensis Cyclotella comensis*
Fragilaria crotonensis
Fall Fall

Fragilaria capucina
Cyclotella comensis

Fragilaria capucina
Cyclotella comensis

1991, C. comensis was found to be a dominant taxon. In 1974, it was a
dominant in the fall, while in 1980 it was a dominant in the summer
and fall. Our local analysis indicated that C. comensis is a dominant in
the fall, but is influential in the spring to late summer as well. F. capucina
was a dominant in the spring and fall in 1974, 1980, and spring of 1991,
while F. crotonensis was a dominant in spring, 1974 and summer, 1980.
We found F. capucina to be a dominant taxon in spring as well as a
persistent taxon into the summer. With F. crotonensis, our finding of
dominance in spring is the same as that for 1974, but in particular, we
found that the taxon is influential in summer as well.

4.5. Additional analyses for fuzzy decision-making

Our analyses showed that there are different facets to determining the
status of environmental conditions in Lake Huron near Port Huron,
Michigan. To make comparisons to the latest status of Lake Huron near
Port Huron, Michigan, additional analyses using the methods described
herein could be conducted when more recent data become available. The
details of the results lend themselves to other means of amalgamating the
information into a usable format, such as linguistic translation. Further,
decision-making may be added to our analysis by devising fuzzy rules and
including expert opinion (e.g., Marsili-Libelli, 2004; Tzionas et al.,, 2004;
Uricchio et al.,, 2004; Pappas, 2006). Fuzzy rules are based on baseline or
“ideal” conditions for comparison to actual data. For example, weighting
(Dubois and Prade, 1984) of particular taxa or physical and chemical
parameters in terms of importance in trophic (or other ecological
identifier) status could be incorporated into baseline schema for
comparison to actual conditions to produce a more refined version of
linguistic translation. Fuzzy decision-making on the status of Lake Huron
near Port Huron could be instituted based on a weighted schema and
include information from experts as well as other kinds of information in
order to develop environmental policy. Additionally, fuzzy regression
(e.g., Savic and Pedrycz, 1991) may be used to develop predictive models
of uncertainties in outcomes of environmental analysis when the
uncertainty is not due to randomness.

Another kind of decision-making instrument involves using fuzzy
evaluation by classification (Celmins, 2000). Degree of truth that the rules
are adhered to produces numerical results that are sorted in a fuzzy
classification level. The outcome at each level determines the degree of
water quality remediation to be implemented. Fuzzy classification can be
used for temporal changes using fuzzy clustering (e.g., Equihua, 1990;
Salski, 2007) or spatial distributions of taxa using fuzzy kriging (e.g., Salski,
1999; Hengl et al., 2002). Knowledge-based modeling has been used as
well (e.g., Salski, 1992). Algal bloom prediction in a lagoon was the basis
for a study implementing fuzzy rules of daily patterns of chemical and

physical parameters (Marsili-Libelli, 2004). Fuzzy logic modeling was
used to predict algal biomass concentrations in a lake that was already
deemed to be eutrophic (Chen and Mynett, 2003).

Tran et al. (2002) used fuzzy decision analysis to integrate ecological
indicators. Fuzzy ranking of ecosystems with respect to environmental
conditions was determined, and this was used to suggest cumulative
impacts over a wide region, the mid-Atlantic part of the United States.
loannidou et al. (2003) used fuzzy inference and expert judgment to
determine impact and interactions of various kinds of pollutants and
water level changes in a lake in Greece. Fuzzy decision analysis (e.g.,
Zimmermann, 1987) can be used as a basis for environmental policy
assessment.

Natural resource inventories based on methods such as geographic
information systems (GIS) (USEPA (GLNPO)) were used in multiple fuzzy
membership maps that were devised based on pixel and color mixture
methods to classify inventories that are continuous or have fuzzy
boundaries (Hengl et al., 2002). Pixel and color mixture maps used with
GIS were found to be useful in visualization of uncertainty in spatial
prediction (Hengl et al., 2002).

Ecosystem assessment and remediation recommendations in deci-
sion-making were accomplished using a fuzzy cognitive map approach to
model Lake Erie (Hobbs et al., 2002). This integrated model used mul-
tivariate statistics and fuzzy cognitive maps not only to characterize the
ecological status of Lake Erie, but also to promote interaction among
experts to facilitate successful management of the lake (Hobbs et al,
2002). More generally, Tan and Ozesmi (2006) used fuzzy cognitive maps
with application to all shallow lake systems.

In an automated case-based reasoning system using a Takagi-Sugeno-
Kang fuzzy model, a biological forecasting system was devised (Fernan-
dez-Riverola and Diaz, 2004; Ferndndez-Riverola et al., 2007). In this
system, diatoms were counted but not identified. Rather, the predictive
value was viewed to be concentration of numbers of diatoms with respect
to nutrients. In this case, the amount of diatom cells was used as a global
bioindicator of the general assessment of a water mass.

These and other ways of using fuzzy decision-making will enhance the
realistic outcome of environmental assessment. Modeling uncertainty in
ecological systems and evaluation of environmental conditions can only
improve with the usage of fuzzy analytical tools.

5. Conclusions

From fuzzy relational analysis, F. capucina and T. fenestrata are in-
dicators of eutrophy, Asterionella formosa is an indicator of mesotrophy, C.
pseudostelligera is an indicator of mesotropy to eutrophy, F. crotonensis
and U. eriensis are indicators of oligotrophy to mesotrophy, and C
michiganiana is an indicator of oligotrophy.

From a season-to-season comparison, fuzzy relational analysis in-
dicates that most of the dominant taxa persisted from June to August,
regardless of trophic conditions. The exceptions to this were Achnanthi-
dium minutissimum and C. comensis, which are indicators of an increase in
nitrogenous compounds, and were influential in August. Since dominant
taxa in August were indicators of oligotrophic conditions, fuzzy relational
analysis revealed that potentially, a nitrogenous pollution problem may
actually be present.

From year to year, there was an overall shift in dominant taxa. In
1991, F. crotonensis was no longer considered to be a dominant taxon
as it was in 1974 and 1980. Instead, T. fenestrata was the dominant
taxon in 1991.
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