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Abstract

The complexity of ecosystems is staggering, with hundreds or thousands of
species interacting in a number of ways from competition and predation to
facilitation and mutualism. Understanding the networks that form the sys-
tems is of growing importance, e.g. to understand how species will respond to
climate change, or to predict potential knock-on effects of a biological control
agent. In recent years, a variety of summary statistics for characterising the
global and local properties of such networks have been derived, which provide
a measure for gauging the accuracy of a mathematical model for network for-
mation processes. However, the critical underlying assumption is that the true
network is known. This is not a straightforward task to accomplish, and typi-
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cally requires minute observations and detailed field work. More importantly,
knowledge about species interactions is restricted to specific kinds of interac-
tions. For instance, while the interactions between pollinators and their host
plants are amenable to direct observation, other types of species interactions,
like those mentioned above, are not, and might not even be clearly defined
from the outset. To discover information about complex ecological systems
efficiently, new tools for inferring the structure of networks from field data
are needed. In the present study, we investigate the viability of various sta-
tistical and machine learning methods recently applied in molecular systems
biology: graphical Gaussian models, L1-regularised regression with least ab-
solute shrinkage and selection operator (LASSO), sparse Bayesian regression
and Bayesian networks. We have assessed the performance of these methods
on data simulated from food webs of known structure, where we combined
a niche model with a stochastic population model in a 2-dimensional lattice.
We assessed the network reconstruction accuracy in terms of the area under
the receiver operator characteristics (ROC) curve, which was typically in the
range between 0.75 and 0.9, corresponding to the recovery of about 60% of the
true species interactions at a false prediction rate of 5%. We also applied the
models to presence/absence data for 39 European warblers, and found that
the inferred species interactions showed a weak yet significant correlation with
phylogenetic similarity scores, which tended to weakly increase when including
bio-climate covariates and allowing for spatial autocorrelation. Our findings
demonstrate that relevant patterns in ecological networks can be identified
from large-scale spatial data sets with machine learning methods, and that
these methods have the potential to contribute novel important tools for gain-
ing deeper insight into the structure and stability of ecosystems.

Key words: network reconstruction, warbler interactions, spatial
autocorrelation, bio-climate variables

1. Introduction

Darwin’s description of a tangled bank describes the everyday complexity of
ecology that we overlook at our peril. Tampering with the population of one
species can cause surprising and dramatic changes in the populations of others
(Cohen et al., 1994; Henneman and Memmott, 2001). Altering pressures to
which ecosystems are exposed can drive them to alternative states (Beisner
et al., 2003) or catastrophic failure (Sinclair and Byrom, 2006). Understanding
and predicting how ecosystems will respond to change requires untangling the
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tangled bank and is of enormous importance during a period of rapid global
change. Yet such a task can seem impossible given the enormous complexity
of ecological systems and the excruciating fieldwork needed to quantify even
the simplest of foodwebs (Memmott et al., 2000; Ings et al., 2009).

Currently, most work on ecological networks has focused on quantifying food
webs and pollination networks by direct observation of interactions among in-
dividuals. This approach has provided important insight into the structure and
stability of some types of ecological networks, and has also had some limited
success in predicting the consequences of anthropogenic changes in managed
ecosystems. However, the predictive ability of these types of networks is lim-
ited by their assumption that other types of interaction, such as competition or
mutuality relationships are unimportant when these have recently been identi-
fied as perhaps overwhelming (Werner and Peacor, 2003; Schmitz et al., 2004).
Recognising this importance, some recent attempts have been made to include
such non-trophic interactions within food web models (e.g. van Veen et al.,
2009) but traditional field observations are unable to quantify the strength of
these interactions and new methods are required to allow ecological interaction
networks to expand beyond the current food web paradigm.

There has recently been a surge of interest in elucidating and modelling the
structure of biological networks. A variety of summary statistics for charac-
terising the global properties of networks have been derived, like the degree
distribution (Albert and Barabási, 2002), clustering coefficient (Watts and
Strogatz, 1998) and average path length (Valiente, 2002). This has been aug-
mented by local characterisations in terms of overrepresented network motifs
(Milo et al., 2002), and measures of specialisation based on information theory
(Blüthgen et al., 2006). The formation and evolution of a network can then be
simulated from a mathematical model, like the simple preferential attachment
model of Barabási et al. (1999) , or more realistic models of basic biologi-
cal processes (de Silva and Stumpf, 2005) . The summary statistics obtained
from the ensemble of simulated networks can then be compared with those
obtained from the real networks, and the discrepancy provides a measure of
how accurately the mathematical model captures the true network formation
processes.

A critical assumption of the approach delineated above is that the true net-
work is known. In molecular systems biology, the structure of protein interac-
tion networks is commonly obtained from yeast two-hybrid assays. It is well
known that these experiments are noisy, that they are susceptible to large
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proportions of both false positives and false negatives, and that the networks
extracted from different assays can differ substantially (e.g. Tong et al. 2002).
In ecology, establishing the structure of a species interaction network typically
requires minute observations and detailed field work. For instance, the infor-
mation theoretic summary statistics proposed in Blüthgen et al. (2006) were
applied to the plant-pollinator interaction networks obtained in the studies of
Memmott (1999) and Vázquez and Simberloff (2002). These studies entailed
detailed observations of how often a particular plant was visited by a particular
pollinator, for all pollinators and plants in turn. This process is laborious and
error-prone. More importantly, it is restricted to specific kinds of interactions.
The interactions between pollinators and their host plants are amenable to
direct observation. However, other types of species interactions, like compe-
tition for resources, are not, and might not even be clearly defined from the
outset. Our work therefore aims to adapt a novel type of methodology that
has recently been explored in molecular systems biology: to infer the network
structure directly from the data. To reword this: rather than taking an “ex-
isting” network structure and analysing it in terms of summary statistics, we
assume that the interaction network is unknown, and we aim to reconstruct it
in silico from the species abundance counts.

Information about ecological interactions should be evident in a range of eco-
logical data that are currently available. For example, time-series of the pop-
ulations of multiple species present in a study site should allow identification
of important interactions, and similarly the spatial patterns of coincidence of
species should contain information about the interactions among these species,
potentially at a range of scales. What is needed is a statistical tool capable
of recovering networks structure from these types of data sets. Recently, the
challenge of identifying regulation networks and signalling pathways from post-
genomic data has resulted in the development of a number of statistical and
machine learning methods for the recovery of network structure. Examples are
the reconstruction of transcriptional regulatory networks from gene expression
data (Friedman et al., 2000), the inference of signal transduction pathways
from protein concentrations (Sachs et al., 2005), and the identification of neu-
ral information flow operating in the brains of songbirds (Smith et al., 2006).
This development has potentially given ecologists a new set of tools for network
recovery, if the methods can be applied to typical ecological data sets.

Our aim is to compare different models for recovering ecological interaction
networks, similarly to the approach of Tirelli et al. (2009) for modelling pres-
ence/absence data of Salmo marmoratus. Here, we introduce and seek to test
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the suitability of four statistical / machine learning methods for the identi-
fication of network structure on ecological data: Graphical Gaussian models
(GGMs), L1-regularised linear regression with the least absolute shrinkage and
selection operator (LASSO), sparse Bayesian regression (SBR), and Bayesian
networks. We extend these methods by including explanatory variables to
model the effect of spatial autocorrelation and the impact of bio-climate vari-
ables. We first test the success of these methods for recovering the structure
of simulated food webs, where the true structure is known precisely. We then
use the methods to identify the large-scale interactions among 39 species of
European warblers (families Phylloscopidae, Cettiidae, Acrocephalidae and
Sylviidae), a subset of the European breeding bird data set Hagemeijer and
Blair (1997) (Hagemeijer, 1997) covering Europe west of 30◦E and including
all probable and confirmed breeding records. These data have been augmented
by two bio-climate covariates, related to temperature and water availability.
Our work has been motivated by preliminary explorations described in the
first two authors’ MSc dissertations (Faisal, 2008; Dondelinger, 2008). How-
ever, for the present paper, the methodology has been considerably expanded,
new methodological concepts have been included, different ways of result and
network integration have been explored, and all simulations have been rerun.

2. Material and Methods

2.1. Simulation study

In order to have an objective measure of network recovery, we first tested the
ability of the models to recover the true network structure from test data gen-
erated by an ecological simulation model. This model combines a niche model
(Williams and Martinez, 2000) with a stochastic population model (Lande
et al., 2003, chap. 8) in a 2-dimensional lattice. The niche model defines the
structure of the network and has two parameters (the number of species and
the connectance (or network density) defined as L/S2 where L is the number
of links and S the number of species in the network).

More precisely, to generate a food web consisting of N species, we start off
by assigning to each species i a niche value ni, drawn uniformly from [0, 1].
This gives us an ordering of the species by niche value, where higher niche
values mean that species are higher up in the food chain. For each species we
then draw a niche range ri from a beta distribution with expected value 2C
(where C is the desired connectance) to determine the size of the niche that
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that species preys upon. Then we uniformly draw a centre ci for the niche
from [ ri

2
, ni]. This generates networks that share many characteristics with

real food webs, such as the fraction of species with no prey, no predators or
both prey and predators, and the amount of cannibalism and looping in the
network.

The population model is defined by a stochastic differential equation where
the dynamics of the log abundance Xi of species i can be expressed as:

dXi

dt
= ri +

σd√
Ni

dAi(t)

dt
+ σe

dBi(t)

dt
− γXi − Ω(X) + σE

dE(t)

dt
(1)

where ri is the growth rate of species i, σd is the standard deviation of the
demographic effect, Ni is the abundance of species i (e

Xi), Ai(t) is the species-
specific demographic effect, σe is the standard deviation of the species-specific
environmental effect, Bi(t) is the species-specific environmental effect, γ is the
intra-specific density dependence, Ω is the effect of competition for common
resources, σE is the standard deviation of the general environmental effect
and E(t) is the general community environment. In order to incorporate the
niche model, the simulation modifies the term omega to include predator-prey
interactions in the Lotka-Volterra form.

In order to extend this model to a 2D arena, the simulation incorporates an
exponential dispersal model, where the probability of a species moving from
location A to location B is determined by the euclidean distance between A
and B. Locations are arranged on a rectangular grid. Each location has its
own growth rates. The spatial pattern of growth rates for a single species is
generated by noise with spectral density fβ (with β < 0, and f the frequency
at which the noise is measured), and a normal error distribution.

We simulated the dynamics of this model for 3000 steps (until the system
had reached equilibrium), with 10 different network structures to generate 10
independent data sets. The final ’gold-standard’ network against which the
recovered networks were assessed was the structure of the niche model linking
among species present in the data set (as some species went extinct during the
initial runs to equilibrium). We recovered networks from these data using all
methods first without consideration of spatial autocorrelation, then with the
inclusion of spatial autocorrelation for methods where this was possible.
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2.2. Application to the European bird atlas data

Until relatively recently, climate was considered to be the main factor affect-
ing large-scale (continental) distribution patterns and global climate change is
already having measurable effects on the distribution of many species (Gas-
ton, 2003). Lately, however, theoretical models have suggested that biotic
interactions may also be important in shaping range limits (Holt and Barfield,
2009a), and recent empirical research has suggested that the distribution of
many European bird species may not be as strongly related to climate as pre-
viously thought (Beale et al., 2008a). This weaker than expected association
with abiotic climate variables may be explained if biotic interactions are more
important than previously thought. If biotic interactions play an important
role in large-scale species distributions, developing a method to identify and
predict their influence must be considered a priority. If successful, therefore,
application of network recovery methods to mapped data used in ecological
analysis would be valuable.

To test the utility of the available methods for network recovery in this large
context, we use a subset of the European breeding bird data set (Hagemeijer
and Blair, 1997) covering Europe west of 30◦E and including all probable and
confirmed breeding records. From this data set we extracted the distributions
of all 39 old world warbler species breeding in this area (families Phylloscop-
idae, Cettiidae, Acrocephalidae and Sylviidae). These species are all small
insectivores occupying a range of habitat types from boreal forest to Mediter-
ranean reedbeds, several of which are likely to interact at a range of spatial
scales (e.g. Murray Jr, 1988). As covariates we include the mean temperature of
the coldest month and the water availability for plant growth, two climate vari-
ables that had strongest influence on avian distribution (Beale et al., 2008a).
Climate data were available at 0.5◦ (data set CRU CL 1.0, New et al., 1999),
and because soil types differ in their ability to retain moisture (e.g. sandy
soils drain very quickly, whilst clay retains water longer) were combined with
soil data (data set WISE.AWC, Batjes 1996) using a bucket model (following
Prentice et al. 1992) and interpolated to 50km resolution. These or similar
variables are typically used in distribution modelling exercises (e.g. Thomas
et al. 2004; Thuiller et al. 2005; Araujo et al. 2005; Beale et al. 2008b; Huntley
et al. 2008) not because they are always expected to directly impact bird dis-
tributions, but they are perceived to have strong indirect effects on birds and
other taxa through effects on food availability or habitat type (Araujo et al.,
2005; Beale et al., 2008b; Huntley et al., 2008). Other biologically relevant cli-
mate variables could also be used but are usually strongly correlated with one
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or other of these and have little affect on the strength of associations realised
(Beale et al., 2008b). As these are real valued variables, we discretise them by
maximising the mutual information. For this pre-processing step, we perform
a standard quantile discretisation into 20 levels and then use the information
bottleneck algorithm, proposed by Hartemink (2001), to get a binary variable
minimising the expected information loss.

As the simulation studies suggested that sparse Bayesian regression (SBR)
consistently underperformed the other methods (see Section 4.1), and as the
Gaussian assumption underlying graphical Gaussian models (GGMs) is vio-
lated by the binary nature of the data, we only applied L1-regularised regres-
sion (LASSO) and Bayesian networks to recover network structures from the
real data sets. We used three different data sets that increased in complexity
from the simple warbler dataset alone, through inclusion of spatial autocor-
relation, to inclusion of the bio-climate covariates. We generated consensus
networks for each data set, which should represent successively better models
of true network structure. We also attempted to build a latent variable model
(supplementary Section S2.1) but the Markov chain Monte Carlo (MCMC)
chains did not converge and we do not consider this further here.

In the absence of complete ecological knowledge of the true network of inter-
actions among these species, success of the modelling methods can only be
assessed against known or likely relationships. To validate our methods on
these real datasets we therefore determined four tests: firstly, for each pair-
wise interaction we sought to give an a priori interaction score, identifying any
published studies and, when these were unavailable, using expert judgement
to categorise interactions into likely, unknown or unlikely (we provide this
network and relevant literature in supplementary Section S5.1). We tested
similarity between the recovered network and the a priori network using the
area under the receiver operator characteristic (ROC) curve and the true pos-
itive rate at 5% false positives (TPFP5).

Secondly, as ecological niches are often conserved in evolutionary time (Losos,
2008) we expected there to be a relationship between phylogenetic distance
and inferred interaction score (details of the phylogeny used are provided in
supplementary Section S5.2). Thirdly, we expected that ecologically simi-
lar species were most likely to interact, so for each species we identified the
preferred habitat, migrant status (resident, short or long-distance migrant),
wing length, body mass and body length and clutch size (all data from
http://www.bto.org/birdfacts/ or Snow and Perrins (1998)) and summarised
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these variables to generate a measure of ecological distance (see supplementary
Section S5.3 for details). Significance of both these tests with phylogenetic and
ecological distance was assessed by correlation. Finally, as well as expecting
these measures to be related to the final networks identified, we predicted that
the simpler (and less biologically plausible) network models lacking spatial au-
tocorrelation and bio-climate covariates would show weaker associations with
the ecological datasets than the full models, and the number of significant
interactions among bird species in the network would decline as complexity
increases (and spurious interactions are accounted for by the additional com-
plexity of the model).

To characterise the networks recovered using these methods and put them in
the context of other ecological networks, we counted the non-zero links with
each species in turn, and measured the frequency distribution of these (i.e. we
measured the degree distribution: Proulx et al., 2005). We also measured the
mean shortest path between all species in the network (Dunne et al., 2002)
and a measure of how clustered the network is (related to the proportion of
species linked to the neighbours of a focal species are themselves linked to the
focal species. We measured the clustering coefficient: Luce and Perry, 1949).
As our recovered networks are not binary but identify continuous probabilities
of linkage between two species, we calculated all three values across a range
of threshold levels and identified network characteristics that are consistent
across all thresholds.

2.3. Units

Table ?? gives an overview of the units for different quantities in our paper,
along with the equations where these quantities were used.

3. Theory

3.1. Statistical and Machine Learning Methods for Network Reconstruction

In the most general case, our aim in describing an ecological network is to
model all the interactions between and among species and their environment.
It is convenient to think of this network as a ’graph’ (e.g. Fig. 2), describing
species as the ’nodes’ within the graph, and interactions as the links or ’edges’
that join the nodes. To identify and infer these graphs we selected four widely
used methods for network recovery in postgenomic data analysis: Graphical
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Symbol/Quantity Equation Unit
xr, xi, Xi 2, 16, 19, 20 Discrete presence/absence

value of species over 50 km2

area
ŷg, yg 2, 4, 7, 20 Discrete presence/absence

value of species over 50 km2

area
ŵg, wg, w, v 2, 4, 4, 5, 6,

7, 8, 9, 10, 11,
12, 13, 14, 15,
19, 20

Dimensionless weight pa-
rameters

a 19, 20 Spatial Autocorrelation:
Discrete presence/absence
value of species from av-
eraging over 4 50 km2

areas
Temperature Covariate None Discrete warm/cold value

over 50 km2 area
Water Covariate None Discrete presence/absence

value over 50 km2 area

Table 1: Units for the different quantities in the paper, along with the equa-
tions where they are used (if any). Note that we have only given units for
the discrete bird atlas data (see section 2.2). When applied to the continuous
simulation data, presence/absence values are replaced by population densities,
and the area of each location is assumed to be the same and to have no impact
on the population densities.
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Gaussian Models (Schäfer and Strimmer, 2005a,b), LASSO regression (Tib-
shirani, 1996; van Someren et al., 2006), sparse Bayesian regression (Tipping
and Faul, 2003; Rogers and Girolami, 2005) and Bayesian Networks (Friedman
et al., 2000; Werhli and Husmeier, 2007). All four methods have previously
been used to recover gene regulation network structures and there is no a priori
assumption that any method will perform best on ecological data where other
statistical issues such as spatial autocorrelation (Lennon, 2000), small sam-
ple sizes, or the influence of other, unmeasured covariates may be important.
Each method differs in the mechanism it uses to recover networks from data
and as most methods will be unfamiliar to many ecologists we provide a de-
scription of the important features of the methods we trial, along with the full
details of the mathematical implementation. All methods were implemented
in MATLAB c© (The MathWorks, Inc.) or R (http://www.R-project.org)
(see supplementary Section S2.3).

3.1.1. Graphical Gaussian models (GGMs)

Graphical Gaussian models (GGMs) are undirected probabilistic graphical
models that allow the identification of conditional independence relations
among the nodes under the assumption of a multivariate Gaussian distribu-
tion of the data. The inference of GGMs is based on a (stable) estimation of
the covariance matrix of this distribution. The element Cik of the covariance
matrix C is proportional to the correlation coefficient between nodes Xi and
Xk. A high correlation coefficient between two nodes may indicate a direct in-
teraction, an indirect interaction, or a joint regulation by a common (possibly
unknown) factor.

However, only the direct interactions are of interest to the construction of a
species interaction network. The strengths of these direct interactions are mea-
sured by the partial correlation coefficient ρik, which describes the correlation
between nodes Xi and Xk conditional on all the other nodes in the network.
From the theory of normal distributions it is known that the matrix of partial
correlation coefficients ρik is related to the inverse of the covariance matrix C,
C−1 (with elements C−1

ik ) (Edwards, 2000):

ρik = − C−1
ik

√

C−1
ii C−1

kk

(2)

To infer a GGM, one typically employs the following procedure. From the given
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data, the empirical covariance matrix is computed, inverted, and the partial
correlations ρik are computed from (2). The distribution of |ρik| is inspected,
and edges (i, k) corresponding to significantly small values of |ρik| are removed
from the graph. The critical step in the application of this procedure is the
stable estimation of the covariance matrix and its inverse. Note that the
covariance matrix is only non-singular if the number of observations exceeds
the number of nodes in the network. This condition might not always be
satisfied in a survey study. In order to learn a GGM from a data set in
such a scenario, Schäfer and Strimmer (2005b) explored various stabilisation
methods, based on the Moore-Penrose pseudo inverse and bagging.

In the present work, we apply an alternative regularisation approach based
on shrinkage, which Schäfer and Strimmer (2005b) found to be superior to
their earlier schemes. The idea is to add a weighted non-singular regularisa-
tion matrix, e.g. the unity matrix, to the covariance matrix so as to guarantee
its non-singularity. The optimal weight parameter is estimated based on the
Ledoit Wolf lemma from statistical decision theory so as to minimise the ex-
pected deviation of the regularised covariance matrix from the (unknown) true
covariance matrix. The method of GGMs, which are undirected graphs, can
be extended to infer putative directions of causal interactions, as proposed in
Opgen-Rhein and Strimmer (2007). This scheme is based on the computation
of the standardised partial variance, which is the proportion of the variance
that remains if the influence of all other variables is taken into account. All
significant edges in the GGM network are directed in such a fashion that the
direction of the arrow points from the node with the larger standardised partial
variance (the more exogenous node) to the node with the smaller standard-
ised partial variance (the more endogenous node), provided the ratio of the
two partial variances is significantly different from 1. For further details, see
Opgen-Rhein and Strimmer (2007).

3.1.2. Linear Regression and the LASSO

The approach discussed in the previous subsection aims to predict interactions
between species based on the partial correlations between their abundance
profiles. In the present subsection, we review an alternative paradigm, which
pursues a regression approach: given the species abundance profile yg of some
target species g, we aim to find a set of regulators {r} (i.e. other species or
exogenous variables related e.g. to the habitat, climate etc.), whose abundance
profiles {xr} are good predictors of abundance profile yg:
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x1 x2 xm
...

y x1 x2 xm

y

...

Figure 1: Schematic of the approach of partial correlation (left) and sparse regression
(right). Left: Conditional on y, the species abundance profiles x1, x2, . . . , xm are indepen-
dent, and the partial correlation coefficients will be small. Right: The approach of sparse
regression aims to find a minimal set of predictors x1, x2, . . . , xm to explain species abun-
dance profile y.

ŷg =
∑

r

wgrxr (3)

where ŷg is a predictor of yg, and the regression parameters wgr represent
interaction strengths between the target species g and the putative regulators
r.

The different concepts are illustrated in Figure 1. We denote the vector of
interaction strengths aswg, which has wgr as its rth component. The mismatch
between the predicted and measured expression profile of target species g is
typically measured by the L2 norm:

E(wg) = ||yg − ŷg(wg)||2 (4)

Obtaining the optimal interaction parameters ŵg by minimising E(wg) corre-
sponds to a maximum likelihood estimator under the assumption of isotropic
Gaussian noise. In practice, this approach is usually susceptible to over-fitting,
which calls for the application of some regularisation scheme. The standard
method of ridge regression is given by:

ŵg = argmin
wg

(

E(wg) + λ
∑

r

w2
gr

)

(5)

This can be interpreted in three different ways:

1. Maximising the penalised likelihood with an L2-norm penalty term and
regularisation parameter λ.
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2. Constrained maximisation of the likelihood under the L2-norm constraint
∑

r w
2
gr < C, where λ is a Lagrange parameter.

3. Bayesian maximum a posteriori estimate under a zero-mean Gaussian
prior on wg with diagonal isotropic covariance matrix λ−1I:
P (wg) = N (0, λ−1I).

A disadvantage of ridge regression is that the set of interaction parameters
{wgr} does usually not tend to be sparse. This is a consequence of the fact
that the derivative of the regularisation term with respect to wgr approaches
zero as wgr → 0. Consequently, there is no “force” pulling the parameters
to zero when they are small. According to our current knowledge, species
interaction networks are usually sparse, and a stronger regularisation term
is therefore desirable. This can be achieved with an L1-norm instead of the
L2-norm regularisation term:

ŵg = argmin
wg

(

E(wg) + λ
∑

r

|wgr|
)

(6)

which can be interpreted as a Bayesian maximum a posteriori estimate under a
Laplacian prior on wg, as first proposed by Williams (1995). The derivative of
the regularisation term with respect to the parameters is now constant, which
provides a stronger “force”driving small parameters to zero. The discontinuity
of the derivative at wgr → 0 can be exploited to implement an effective prun-
ing scheme for discarding interactions, as discussed in Williams (1995). The
L1-norm regularisation term was introduced to the statistics community by
Tibshirani (1996), where it was termed the LASSO (least absolute shrinkage
and selection operator). One of the first applications to the somewhat related
problem of reconstructing gene regulatory networks is reported in van Someren
et al. (2006). Grandvalet and Canu (1999) showed that the LASSO estimate
of the interaction strengths is equivalent to ridge regression with r-dependent
regularisation hyperparameters:

ŵg = argmin
wg

(

E(wg) +
∑

r

λrw
2
gr

)

(7)

subject to the constraint
∑R

r=1 1/λr = R/λ, for some predefined constant λ.
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The regulatory network between the target species g and the regulators {r}
is defined by the set of interactions with nonzero interaction strengths wgr.
The degree of sparsity is determined by the regularisation hyperparameter λ,
with larger values of λ resulting in sparser networks. The question, then, is
how to set λ. Williams (1995) suggested integrating λ out; this approach
has been subject to some controversy, though (MacKay, 1996). A standard
non-Bayesian approach is to estimate λ with k-fold cross-validation. This is
the approach that was implemented in the software we applied in the present
study, with k = 10. An alternative Bayesian approach would be to estimate λ
by maximising the evidence, as discussed in the next subsection.

Note that the generalisation of the sparse regression approach to more target
species g is straightforward: E(wg) in equation (4) just needs to be replaced
by:

E(W) =
∑

g

||yg − ŷg(wg)||2 (8)

where W is a matrix with column vectors wg. If there is no clear separation
between the set of target and regulatory species, the effect of species g needs
to be excluded when forming the predictor ŷg(wg). Again, this requirement
is straightforward to implement. To avoid notational opacity, we have not
described this approach in its full generality, though.

3.1.3. Sparse Bayesian Regression (SBR)

As mentioned in the previous subsection, the minimisation of E(wg) in equa-
tion (4) corresponds to maximising the likelihood P (D|wg) under the assump-
tion of isotropic Gaussian noise, where D = {yg, {xr}} is used to denote the
data. The estimates ŵg in equations (5) and (7) are equivalent to the maxi-
mum a posteriori estimates:

ŵg = argmax
wg

P (wg|D, λ) = argmax
wg

[

logP (D|wg) + logP (wg|λ)
]

(9)

under the assumption of an isotropic Gaussian or Laplacian prior P (wg|λ) on
the interaction strengths wg. If we now want to do this within the Bayesian
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framework, the hyperparameter λ is optimised by maximising the marginal
likelihood or evidence:

P (D|λ) =

∫

P (D|w, λ)P (w|λ)dλ (10)

as discussed in MacKay (1992). In the present study, we applied the “sparse
Bayesian regression” (SBR) approach of Rogers and Girolami (2005), which is
based on the work of Tipping and Faul (2003). Here, the prior on the interac-
tion parameters is chosen to be a product of zero-mean Gaussian distributions:

P (wg|λ) =
∏

r

N (wgr|0, λ−1
r ) (11)

with separate hyperparameters for species r. This scheme is similar to equa-
tion (7), except that the constraint:

∑R

r=1 1/λr = R/λ is missing. We can
think of this as ARD (Automatic Relevance determination) in the sense used
by MacKay (1992)

The hyperparameters λr are optimised with the evidence scheme described
above1. Tipping and Faul (2003) showed that the marginal likelihood can be
decomposed into separate contributions from the individual regulatory species
{r}. This leads to a fast, iterative maximisation algorithm not only for the hy-
perparameters λr, but also for the network structure: interactions between the
target species g and the putative regulatory species {r} are progressively added
and removed until a local maximum of the marginal likelihood is reached. Spe-
cific details of the algorithm can be found in Tipping and Faul (2003).

The reason for the sparsity of sparse Bayesian regression may not be imme-
diately apparent. In fact, as Tipping (2001) points out, it comes from the
hierarchical nature of the prior on weights in equation 11. Each hyperparam-
eter λr has a prior from the Gamma family of distributions. In the algorithm,
we assume an uninformative Gamma prior with the shape and inverse scale
parameters set to zero, which leads to an improper prior for the weights if we
integrate the hyperparameter out:

1In statistics this is called a type-II maximum likelihood estimation.
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P (wg) =

∫

P (wg|λ)P (λ)dλ (12)

Which for an individual weight gives:

P (wgr) ∝
1

wgr

(13)

This is clearly a sparse prior. In fact, we can make an analogy to LASSO here.
If one takes a Bayesian view of the LASSO, as in Park and Casella (2008),
then each weight in the LASSO estimate has an independent Laplace prior, so
that:

P (wgr) ∝ exp(−|wgr|) (14)

Both the LASSO and the SBR prior are sparse. However, they differ in the
amount of regularisation that they apply, as can be seen by taking the deriva-
tive of the negative log likelihood for both priors:

SBR:
d

dwgr

{−logP (wgr)} ∝ 1

wgr

(15)

LASSO:
d

dwgr

{−logP (wgr)} ∝ const (16)

The regularisation term for LASSO is constant, while the regularisation term
for SBR tends to infinity as the weight tends to zero.

3.1.4. Bayesian networks (BNs)

Bayesian networks (BNs) have received substantial attention from the compu-
tational biology community as models of regulatory and interaction networks
(Friedman et al., 2000; Hartemink et al., 2001; Needham et al., 2007). For-
mally, a BN is defined by a graphical structure H, a family of (conditional)
probability distributions F , and their parameters q, which together specify a
joint distribution over a set of random variables of interest. The structure H of
a BN consists of a set of nodes and a set of directed edges. The nodes represent
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random variables, e.g. species and their abundance values, while the edges in-
dicate conditional dependence relations. The structure H of a BN is a directed
acyclic graph (DAG), which defines a unique rule for expanding the joint prob-
ability in terms of simpler conditional probabilities. Let X1, X2, ..., Xn be a
set of random variables represented by the nodes i ∈ {1, ..., n} in the graph,
define pa[i] to be the set of nodes with a directed edge feeding into node i (the
“parents”), and let Xpa[i] represent the set of random variables associated with
pa[i]. Then

P (X1, ..., Xn) =

n
∏

i=1

P (Xi|Xpa[i]) (17)

The objective of learning is to find network structures with high posterior
probabilities, i.e. to sample network structures H from the posterior distribu-
tion

P (H|D) ∝ P (D|H)P (H) (18)

where D denotes the training data. This requires a marginalisation over the
parameters q:

P (D|H) =

∫

P (D|q,H)P (q|H)dq (19)

If certain regulatory conditions, discussed in Heckerman (1999), are satisfied
and the data are complete, then the integral in (19) is analytically tractable.
Two function families F that satisfy these conditions are the multinomial dis-
tribution with a Dirichlet prior (Heckerman et al., 1995) and the linear Gaus-
sian distribution with a normal-Wishart prior (Geiger and Heckerman, 1994).
The resulting scores P (D|H) are usually referred to as the BDe (discretised
data, multinomial distribution) or the BGe (continuous data, linear Gaussian
distribution) score. Direct sampling from the posterior distribution (18) is an-
alytically intractable and is therefore approximated with Markov Chain Monte
Carlo (MCMC) (Madigan and York, 1995; Friedman and Koller, 2003; Grze-
gorczyk and Husmeier, 2008). To restrict the size of the configuration space,
we restrict the fan-in to a node, i.e. we keep the number of incoming edges
from other nodes below a pre-specified threshold (3 in our study). This ap-
proach, which is commonly adopted in other studies, e.g. Friedman and Koller
(2003), incorporates our prior knowledge that interaction networks are usually
sparse.

The ultimate objective is to infer causal relations among the interacting nodes.
While such a causal network forms a valid Bayesian network, the inverse rela-
tion does not always hold. One reason for this discrepancy is the existence of
unobserved nodes. Even under the assumption of complete observation, the
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inference of causal interaction networks can be impeded by symmetries within
so-called equivalence classes, which consist of networks that define the same
conditional independence relations. Each Bayesian network corresponds to a
whole equivalence class, represented by a complete partially directed acyclic
graph (CPDAG); see Chickering (1995). Under the assumption of complete
observation, directed edges in a CPDAG can be taken as indications of putative
causal interactions (Friedman et al., 2000).

Several tutorials on Bayesian networks have been published; see for instance
Heckerman (1999), Husmeier et al. (2005) and Grzegorczyk et al. (2008b) for
further details.

3.2. Extension

3.2.1. Spatial autocorrelation

Spatial autocorrelation, the phenomenon that observations at nearby loca-
tions are more similar than observations at more distant locations, is nearly
ubiquitous in ecology and can have a strong impact on statistical inference
(Legendre, 1993; Lennon, 2000; Dale and Fortin, 2002). In our case, spatial
autocorrelation could lead to the identification of spurious interactions as a
mere consequence of two species co-occurring in similar geographical regions.
Where possible, we applied an autoregressive approach similar to that of Au-
gustin et al. (1996) to incorporate potential spatial autocorrelation into the
models. To this end, we computed the average population at neighbouring
cells, weighted inversely proportional to the distance of the neighbours, which
we will call the autocorrelation variable:

a =

∑N

i=1 ωixi
∑N

i=1 ωi

(20)

where N is the number of neighbours that we’re considering (usually N = 4),
xi is the population density at neighbour i, and ωi is the weight given to that
neighbour, which is inversely proportional to the Euclidean distance of the
neighbour. A slight subtlety when working with real world data that is not
distributed in a regular grid is to work out which neighbouring locations to
consider. In this work, we have opted for the closest neighbours by Euclidean
distance. The extension to the discrete case is straightforward; we simply
discretise the autocorrelation variable using a threshold.
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The regression then becomes:

ŷg =
∑

r

wgrxr + va (21)

where wgr denotes the weights associated with each species r, and v is the
additional weight assigned to the autocorrelation variable. The weight v will
catch the effects of the spatial autocorrelation, leaving the other weights to
determine the effects of other species on species g.

For Bayesian networks, we connect each node to a parent node whose value is
given by (20), i.e., a representation of the spatial neighbourhood. The incoming
edge from the parent node is enforced and excluded from the fan-in count. In
this way the observation status at a node is, in the first instance, predicted by
the spatial neighbourhood. Only if the explanatory power of the latter is not
sufficient will there by an incentive for the inference scheme to include further
edges related to species interactions.

Introducing spatial autocorrelations into GGMs is less straightforward. Since
we did not apply GGMs to the real data (owing to their binary nature), we
did not further pursue this issue in our work.

3.2.2. Bio-climate Covariates

We include the bio-climate covariates (discretised temperature and water avail-
ability) as extra variables, in the same way as we included the spatial auto-
correlation variable. In particular, in the Bayesian networks, we introduce
fixed connections between the bio-climate covariates and the other nodes. We
modify the fan-in limit so that it does not take these extra variables into ac-
count (i.e. if the fan-in limit is three, then that means that a species can have
up to six parent nodes: three other species, the covariates, and the spatial
autocorrelation node).

3.2.3. Consensus networks

As each of the network reconstruction methods has advantages and disad-
vantages, it may be useful to combine outputs of different methods into one
single recovered network. Such a network would capture the consensus be-
tween the various methods, whilst simultaneously allowing the strengths of
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the different methods to be combined (e.g. interaction size and sign inferred
with regression-based methods could inform the marginal posterior probabil-
ities obtained for Bayesian networks). Simulation experiments showed that
the expected accuracy of the consensus network is higher than the expected
average accuracy of the individual networks (supplementary Section S4.2). In
the present project, we generated consensus networks by normalising the esti-
mated interaction probabilities and absolute strengths (where available) from
each method to the range [0, 1], then taking the arithmetic mean across all
methods included within the consensus graph. (For a comparison with other
combination methods, e.g. based on the harmonic mean, see supplementary
Section S4.2.) This potentially confuses statistical significance (probabilities)
with biological significance (strengths). However, for methods where both sig-
nificance measures were available we found a very strong correlation between
the two (ρ = 0.92), as discussed in more detail in supplementary Section S3.

3.3. Performance evaluation

Each network reconstruction method infers a matrix of interaction strengths
among all species (nodes) in the network (graph). The nature of interac-
tion strengths varies among the methods (GGMs: partial correlation coeffi-
cients, LASSO and SBR: regularised regression coefficients, Bayesian networks:
marginal posterior probabilities). However, all three scores define a ranking of
the edges. If the true interaction network is known, this ranking defines a re-
ceiver operator characteristics (ROC) curve, where the relative number of real
interactions (i.e. the true positive or TP rate) is plotted against the relative
number of spurious interactions (the false positive or FP rate) for all possi-
ble thresholds on the rank. To assess the network reconstruction accuracy, we
follow the procedure outlined in Werhli et al. (2006) and apply two complemen-
tary performance measures. The first measure is the area under the receiver
operator characteristics curve (AUC), which is a widely used global measure
of reconstruction accuracy. The expectation value for a random predictor is
AUC=0.5, a perfect predictor gives AUC=1.0, and larger values indicate a
better reconstruction accuracy overall. As we are particularly interested in
the performance of the network recovery methods when setting the threshold
to a value that generates few false positives, we also identified the threshold
that leads to an FP rate of 5% and counted the proportion of true interactions
that were recovered at this threshold. We call this second measure the TP rate
at 5% FP rate (the TPFP5 score). A good network reconstruction method is
characterised by both a high AUC score and a high TPFP5 score.
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3.4. Implementations

Table 2 shows which software we used for the different network reconstruction
methods described in Section 3.1, as well as where to get the MATLAB code
for our own implementations of the extensions in Section 3.2.

Method Software Package Description

GGM R GeneNet The software implementing Graphical
Gaussian models is described in Schäfer
and Strimmer (2005b) and can be
found at: http://strimmerlab.org/

software/genenet/

LASSO
(Linear)

MATLAB Genelab For LASSO regression with continuous
data, we used software from the Genlab
package referenced in van Someren et al.
(2006).

LASSO
(Logistic)

C BBR For LASSO regression with discrete data,
we used the BBR package (for Bayesian
Binary Regression), which implements lo-
gistic LASSO regression. The package can
be found at: http://www.stat.rutgers.
edu/~madigan/BBR/

SBR MATLAB RegNets We used the sparse Bayesian regres-
sion software referenced in Rogers and
Girolami (2005) and available here:
http://www.dcs.gla.ac.uk/~srogers/

reg_nets.htm

Structure
MCMC

MATLAB None The implementations for Structure
MCMC and Structure MCMC with latent
variables were developed from code by
Marco Grzegorczyk and can be found at:
http://www.bioss.ac.uk/students/

frankd.html

Population
Simulation

MATLAB None The simulation code was developed by
Jonathan Yearsley and slightly mod-
ified for this project. It can be
found at: http://www.bioss.ac.uk/

students/frankd.html

Table 2: Network reconstruction software used
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4. Results

4.1. Simulation results

All four network recovery methods succeeded in recovering some of the true
network structure, even when spatial autocorrelation was not incorporated
(Fig. 2), though the methods varied in their performance (Fig. 3). Sparse
Bayesian regression recovered networks that were significantly worse than those
recovered by the other methods, having significantly lower AUC and TPFP5
scores (t9 > 3, p < 0.01) except for the comparison with BN using the AUC
score (t9 = 2.19, p = 0.06). All t statistics and p-values have been calculated
using a two-sided paired t-test, and the significance level was set at p = 0.05.
Supplementary tables S2-S4 give a full overview of all p-values. Analysis of
the inferred interaction strengths indicates that poor performance of SBR is
a consequence of recovering networks that have too few links (i.e. are too
sparse). This is the result of SBR being over-regularised (see Section 3.1.3 for
a discussion of this phenomenon).

For the three network recovery methods where this was applied (LASSO, BN,
SBR), incorporating spatial autocorrelation resulted in improved performance,
especially for those methods that performed less well in the simple model (Fig.
3). In particular, although incorporating spatial autocorrelation improved the
performance of SBR, it was still significantly worse than the other two methods
(t9 > 3, p < 0.01) except in the case of BN with the AUC score again (t9 =
0.68, p = 0.52).

Adding an observation process to discretise the simulation datasets (described
in supplementary Section S2.2) gave qualitatively similar results (beyond an
expected drop in AUC and TPFP5 scores). Consequently, we do not report
this analysis further here; full details are presented in supplementary Section
S4.1.

4.2. Application results

We recovered three consensus networks for the warbler data: for data sets
with birds only, with birds and spatial autocorrelation and with birds, spa-
tial autocorrelation and bio-climate covariates. The first two can be found in
the supplementary material (Supplementary Figs. S9 and S10); here we just
present the third (Fig. 4). Comparison of the recovered consensus networks
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(a) BN (b) GGM

(c) LASSO (d) SBR

Figure 2: An example of a network recovered by GGM, BN, LASSO and SBR.
Thick edges represent edges that were identified correctly (true positives), thin
edges represent edges that were not found (false negatives) and dashed edges
are spurious edges (false positives). The threshold was chosen so that the false
positive rate was constant at 5%, resulting in 7 false positive edges.
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Figure 3: AUC and TPFP5 performance measures for continuous simulation
data. Shaded boxes represent models which include spatial autocorrelation.
The expected random performance scores are AUC=0.5 and TPFP5=0.05.
See Section 3.1 for an explanation of the abbreviations BN, GGM, LASSO,
and SBR.

with the a priori network predicted from the literature and expert judge-
ment revealed small but statistically significant relationships (Fig. 5). We also
identified small but significant relationships between the interaction score for
the recovered consensus networks and both the phylogenetic and ecological
distances (Table 3). Increasing model complexity (i.e. sequentially adding
autocorrelation and bio-climate covariates) generally led to both stronger cor-
relations with the predicted network structure and sparser networks (Fig. 6).
Our predictions in Section 2.2 were therefore corroborated.

Network characterisation identified that the degree distribution of the con-
sensus networks was consistent across all threshold values, with all networks
showing an exponential distribution. Both the clustering coefficient and the
mean shortest path length varied greatly as the threshold level changed and
are therefore not considered a useful description of these networks. Further
details on the network characterisation can be found in supplementary Section
S5.7.

5. Discussion

As expected, we found that warblers in Europe form a well connected net-
work, with most well known interactions (e.g. several Acrocephalus warblers:
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Figure 4: An example consensus network for the warbler data, with spatial
autocorrelation and bio-climate covariates. The edges are pruned by placing
a threshold value of 0.5 on the original consensus network, which corresponds
to a p-value of 0.01. See supplementary Section S5.5 for a description of
how these p-values were calculated. The thickness of an edge represents the
strength of the interaction. The boxes on the right represent unconnected
species. Equivalent plots of consensus networks for the other datasets are also
available (Supplementary Figs. S9 and S10).
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Figure 5: Comparison of recovered consensus networks with the a priori inter-
action network: AUC scores on the left and TPFP5 scores on the right. White
bars show the birds only dataset, grey bars the birds and spatial autocorre-
lation, black bars the birds, spatial autocorrelation and bio-climate covariate
dataset. The top row shows the results for consensus networks, while the bot-
tom row shows the results for BN and LASSO individually. Note that the
AUC and TPFP5 scores tend to increase as the model complexity increases.
The vertical position of the horizontal axis indicates the expected performance
of a random predictor.
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Figure 6: Sparsity of the recovered networks. White bars show the birds only
dataset, grey bars the birds and spatial autocorrelation, black bars the birds,
spatial autocorrelation and bio-climate covariate dataset. The left figure shows
the results for consensus networks at two different thresholds, while the right
figure shows the results for BN and LASSO individually at a threshold with
p-value < 0.01.

Recovered Network A priori net Phylogenetic Dist. Ecological Dist.

Basic Dataset
-0.98 -0.11 -0.13

(0.32, -2.28) (-0.18, -0.04) (-0.20, -0.06)

Spatial Autocorrelation
-1.40 -0.12 -0.15

(-0.03, -3.16) (-0.19, -0.05) ( -0.22, -0.08)
Spatial Autocorrelation -1.60 -0.14 -0.14

and Bio-climate Covariates (-0.03, -3.16) (-0.21, -0.07) ( -0.22, -0.07)

Table 3: Results of comparison between recovered consensus networks with the
a priori interaction network, phylogenetic distance and ecological distance.
For comparisons with the a priori network (second column), we show the
regression coefficient of a logistic regression, other results (third and fourth
column) are Pearson’s correlation coefficients, all with 95% confidence intervals
shown in brackets. Confidence intervals that do not include zero indicate that
the correlation is significant.
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A. arundianceus/A. melanopogon /A. schoenobaenus/A. scirpaceus (Schäfer
et al., 2006; Rolando and Palestrini, 1991), and a triangle of interacting Sylvia
warblers: S. borin/S. atricapilla/S. communis (Elle, 2003; Garcia, 1983)) ac-
curately described by the better consensus network structures.

Given the general expectation that climate alone shapes distributions at large
scales, it might seem surprising that the chosen bioclimate variables were not
more strongly connected to species distributions. We believe there are two
primary reasons for the relatively low effect of climate variables: firstly, our
discretised climate data is likely to be too crude to capture all the meaningful
climate variation, reducing the association with these parameters. Secondly,
there is growing evidence to suggest that the importance of climate and abi-
otic variables has previously been overstated (e.g. Watts and Worner 2008)
largely because processes like the biotic interactions included in our models
have previously been neglected (Davis et al., 1998; Beale et al., 2008b; Holt
and Barfield, 2009b; La Sorte et al., 2009). It would clearly be valuable to
develop the methods further to include both continuous variables and binary
variables in the same analyses. Defining appropriate probability distributions
is rather straightforward. However, these distributions depend on parame-
ters, and integrating them out in the likelihood is analytically intractable.
To address this difficulty, one can either seek approximate solutions based on
variational calculus, or resort to an extended sampling scheme with MCMC.
A development of these ideas and a comparative evaluation study provides an
interesting and challenging project for future work.

To quantify the network reconstruction accuracy, we have applied various eval-
uation criteria (described in Section 2.2). We found that the correlations be-
tween the interaction scores obtained from the network reconstruction methods
and those used for evaluation – phylogenetic distances and ecological similari-
ties – were significant (Table 3). Likewise, the reconstruction assessment scores
obtained on the basis of an overall a priori network structure elicited from ex-
pert judgement – AUC and TPFP5 (Fig. 5) – were significantly better than
random. We note that the correlations are weak (Table 3) and the AUC and
TPFP5 scores (Fig. 5) are significantly below the score of a perfect reconstruc-
tion (AUC = TPFP5 = 1.0). This is over-pessimistic in that the scores are
based on evaluation criteria which themselves are noisy and distorted charac-
terisations of the unknown true species interaction network: Supplementary
tables S7 and S8 demonstrate that the correlation coefficients and network re-
construction scores for these criteria are also weak. This is a general problem
when trying to assess the network reconstruction on real data, for which the
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true interaction network is unknown. The fact that the reconstructed networks
show weak yet consistently significant agreement with the various evaluation
criteria indicates that the machine learning methods investigated in our study
have reconstructed genuine patterns of the (unknown) species interaction net-
work.

To compensate for the lack of gold standard for the warbler data, we have ex-
tended our study by applying the network reconstruction methods to simulated
data, for which the underlying network is known. Our results are consistent
with related studies in molecular systems biology (Werhli et al., 2006). The
global network reconstruction in terms of AUC scores typically lies in the
range between 0.75 and 0.9, which is considerably better than random (0.5),
but not perfect (1.0). In terms of TPFP5 scores, we can expect to reconstruct
about 60% of the true species interactions at a false prediction rate of 5%.
Aiming for a perfect reconstruction would be an unrealistic target, given the
noise in the data, the limited data set size, and the fact that all reconstruction
models investigated in our study are simplifications of the complex ecological
processes.

Our comparative evaluation of different network reconstruction methods has
found that SBR performed significantly worse than the other methods (Fig. 3)
and discovered a much smaller proportion of edges than the other methods
(illustrated e.g. in Fig. 2). We provide a mathematical explanation in Section
3.1.3. We have also shown that including including spatial autocorrelation
effects leads to a clear and significant improvement in the network reconstruc-
tion accuracy on simulated data (Fig. 3). The evaluation on the warbler data
was more difficult due to the lack of a gold standard. In general, more complex
models, which included spatial autocorrelations and bio-climate covariates, re-
sulted in stronger matches between the predicted species interactions and the
prior network derived from expert judgement (Fig. 5). We also found that
the absolute value of the correlations between predicted species interaction
strengths and both phylogenetic and ecological distance scores increased as
a consequence of including spatial autocorrelations and bio-climate covariates
(Table 3). This suggests that accounting for additional sources of variation
removed spurious interactions and led to a more plausible network structure.

The reconstructed warbler interaction networks have shown an exponential
rather than a power law degree distribution (Supplementary Figs. S12 and
S13). This finding is consistent with Dunne et al. (2002) and contributes to
the ongoing discussion about the global characteristics of species interaction
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networks. The networks inferred in our study suggest a number of novel strong
interactions that may exist among the warblers. This leads to the formula-
tion of new hypotheses: do S. currucca and S. nisoria interact, and is the
relationship between H. icterina and P. sibilatrix real? Investigation of the
mechanisms behind these interactions may prove valuable.

6. Conclusion

We have carried out one of the first studies to address the problem of recon-
structing species interaction networks from species abundance data. To this
end, we have applied and adapted four machine learning methods recently
developed in the field of computational molecular systems biology. We have
applied these models and their adaptations to a subset of the European bird
atlas data (warblers), and have discovered both interactions that are known
from the literature, and significant correlations with interaction scores based
on phylogenetic distances and ecological similarities.

We have complemented our study with an evaluation of the network recon-
struction on simulated data, for which a proper gold-standard is known. The
reconstruction performance was considerably better than random, but we note
that perfect reconstruction is unlikely given limited data and the complexity of
the ecological processes involved. The machine learning methods investigated
in our study therefore do not provide a mechanism for hypothesis validation.
However, our findings suggest that they do offer a useful tool for hypothesis
generation, which can enrich and complement traditional methods based on
fieldwork and experimental analysis.

The comparative evaluation of different network reconstruction methods has
deepened our insight into their relative performance. However, we have found
that for a successful application in ecology, the network reconstruction meth-
ods currently applied in molecular systems biology need to be modified and
improved. We have incorporated a mechanism for taking spatial autocorrela-
tions into account, and we have expanded the models so as to include exogenous
bio-climate variables.

Future model improvement should focus on the explicit inclusion of ecological
prior knowledge, along the lines of Werhli and Husmeier (2007), and the in-
clusion of latent variables to allow for unobserved effects (see supplementary
Sections S2.1 and S4.3 for a preliminary investigation). We have investigated
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the adaptation of the model proposed in Grzegorczyk et al. (2008a) to include
latent variables in Bayesian networks. While our preliminary results on the
simulated data were encouraging, as shown in supplementary Figure S6, the
application of this scheme to the warbler data suffered from convergence and
mixing problems of the MCMC simulations, which calls for further method-
ological improvements.

The true value of our study lies in demonstrating that even using large-scale
spatial datasets, relevant patterns in ecological networks can be identified using
the machine learning methods described here. This suggests that these meth-
ods have the potential to contribute novel important tools for gaining deeper
insight into the structure and stability of ecosystems, managing biodiversity,
and predicting the impact of climate change.
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1. Introduction

This document contains the supplementary material for the paper “Inferring
Species Interaction Networks from Species Abundance Data”. Please refer
to the main paper for a discussion of the background and motivation for the
work. We also present and discuss the main findings there. The supplementary
material contains extensions to the methods that we used, as well as some
additional findings that had to be omitted from the main paper due to space
constraints.

In Section 2.1, we describe an extension to the Bayesian network method (see
Section 2.1.4 in the main paper) that allows including unobserved factors in
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the network inference. Section 2.2 describes how we extended the simulation
model that was used to generate the synthetic data with an observation process
that discretises the data by deciding for each location whether the presence
of a species was observed or not. In Section 3 we investigate the difference
between edge strengths and confidence values for edges in regression. Section
4 presents some additional experiments on the synthetic data. Section 5 gives
additional information on how the networks inferred from the bird atlas data
were evaluated, and presents the recovered networks and their characteristics
in more detail.

2. Methods

2.1. Latent variable model allowing for unobserved factors

We want to extend the Bayesian network approach to allow for unobserved
factors in the environment, e.g. related to climate change or the availability of
natural resources. This can be achieved by including additional so-called latent
variables in the model. Inference can be carried out with the allocation sampler
described in Nobile and Fearnside (2007) and Grzegorczyk et al. (2008), which
is based on the following iterative procedure: Given the network structure,
new values for the latent variables are inferred (imputation step). Then, given
the complete data (real data, and imputed values for the latent variables), the
network structure is modified with a standard structure MCMC step (Madigan
and York, 1995). This procedure is iterated, and leads to a Markov chain which
(on convergence) samples both the network structure and the allocation of the
latent variables from the posterior distribution.

Ideally, the interactions between the latent variables and the species are treated
as flexible (Fig. 1 a). To reduce the computational complexity, we keep them
fixed, i.e. they were enforced to be connected to all species. It is easy to
prove that for discrete values, this is equivalent to a model with a single latent
variable and a flexible number of discretisation levels (Fig. 1 b); this is the
model described in Grzegorczyk et al. (2008).

While the application of this scheme to the simulated data led to encouraging
results (Section 4.3), the MCMC simulations did not properly converge for the
warbler data. The reason is that a straightforward adaptation of the method
proposed in Grzegorczyk et al. (2008) introduces a separate latent variable for
each spatial location, leading to a model that is significantly more complex

2



(a) General Latent Variable
Model

(b) Restricted Latent Variable
Model

Figure 1: (a) Unrestricted latent variable model, here with two latent variables and three
observed ones. (b) Alternative model with a single completely connected latent variable;
this is effectively a mixture model. Zs are latent variables, Xs are observed variables. Thin
edges are learnt, thick edges are fixed.

than explored in the original application. Our future work therefore aims to
simplify the model complexity and explore alternative inference schemes based
on variational learning.

2.2. Observation Process for Simulation Data

The simulation described in Section 3.1 of the main paper produces contin-
uous values for the population densities. In order to transform these into
presence/absence data similar to the Bird Atlas data, we implement an ob-
servation process. We assume that the probability P (xg) of missing (i.e. not
observing) a population of density xg is modelled by a Gaussian N(µ, σ2).
Then the probability of observing a species with density xg is P (X < xg), i.e.
the cumulative distribution function:

P (X < xg) =
1

2

(

1 + erf

(

x− µ

σ
√
2

))

(1)

We can then sample a discrete value for xg from a binomial distribution, using
P (X < xg) as the parameter. Mean and variance of the Gaussian distribution

3



are fitted so that the distribution of ones and zeros over all locations and
species is the same as in the real data set.

2.3. Implementations

Table 1 shows which software we used for the different network reconstruction
methods described in Section 2.1 in the main paper, as well as where to get
the MATLAB code for our own implementations of the extensions in Section
2.2 of the main paper.

4



Method Software Package Description

GGM R GeneNet The software implementing Graphical
Gaussian models is described in Schäfer
and Strimmer (2005) and can be found at:
http://strimmerlab.org/software/

genenet/

LASSO
(Linear)

MATLAB Genelab For LASSO regression with continuous
data, we used software from the Genlab
package referenced in van Someren et al.
(2006).

LASSO
(Logistic)

C BBR For LASSO regression with discrete data,
we used the BBR package (for Bayesian
Binary Regression), which implements lo-
gistic LASSO regression. The package can
be found at: http://www.stat.rutgers.
edu/~madigan/BBR/

SBR MATLAB RegNets We used the sparse Bayesian regres-
sion software referenced in Rogers and
Girolami (2005) and available here:
http://www.dcs.gla.ac.uk/~srogers/

reg_nets.htm

Structure
MCMC

MATLAB None The implementations for Structure
MCMC and Structure MCMC with latent
variables were developed from code by
Marco Grzegorczyk and can be found at:
http://www.bioss.ac.uk/students/

frankd.html

Population
Simulation

MATLAB None The simulation code was developed by
Jonathan Yearsley and slightly mod-
ified for this project. It can be
found at: http://www.bioss.ac.uk/

students/frankd.html

Table 1: Network reconstruction software used
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3. Investigation into LASSO Weights versus Confidence Values for

Edges

3.1. Motivation

When using LASSO linear regression to reconstruct an interaction network,
we have two options. One is to use the weights found during the regression
and interpret them as edge strengths between the target variable and the other
variables in the network (we will refer to this as “the weight method”). The
other is to obtain confidence values for the presence of an edge (“the confidence
value method”). Obtaining the weights is straightforward, and only requires
one regression per variable. However, it is potentially biased towards edges
that have a strong effect, and may ignore edges with a small (but consistent)
effect.

To obtain confidence values, we use a method that is essentially an approxi-
mation of a full Bayesian approach to regression. Rather than obtaining the
probability that an edge is zero from a posterior distribution of the weights, we
follow Friedman et al. (2000) and approximate this value by ’sampling’ data
from the original dataset1 using bootstrapping and subsampling. In bootstrap
sampling, we sample data points with replacement until the sample size is the
same as the size of the original dataset. In subsampling, we sample without
replacement until we have obtained a dataset that is half the size of the original
dataset.

For each dataset sampled in this way, we run a LASSO regression. Then
we record the non-zero weights. After we have done this for a large number
of samples, we average over the results. This gives the confidence value for
the occurrence of each edge, independent of the strength of that edge. The
drawback is that it requires many more runs of the regression algorithm than
just calculating the weights once.

We wanted to find out if the difference between using confidence values and
using the weights was substantial enough to warrant the extra computational
cost. For that reason, we used two synthetic datasets: A simple network model
without cycles (in other words, a DAG) from which we generated data using
a linear regression model, and a more complex ecological simulation based on
Lotka-Volterra interactions between species in a food web (see Section 3.1 of

1This should not be confused with sampling from a posterior distribution.
6



the main paper).

3.2. Simple Network Model

To simulate data from the simple network model based on linear regression,
we first sample a network from the niche model described in Section 3.1 of the
main paper. If the model is not a DAG, we remove edges until acyclicity has
been restored. For each remaining edge, we draw an interaction strength from
the Gaussian distribution N(0, 1).

Then we identify species without any parents in the network and draw their
population numbers from the Gaussian distribution N(0, 1)2. For each of the
remaining species, we do a standard regression:

ŷg =
∑

r

wgrxr +N(0, 0.1) (2)

where r ranges over all species xr that are parents of species yg, and wgr is
the weight of the edge linking xr and yg. The N(0, 0.1) factor adds a small
amount of observational noise. We repeat this process, drawing new population
numbers each time to generate different data points.

3.3. Results

Simple Network Model. We generated data from 10 random networks using the
simple linear regression model, and for each network we generated 100 boot-
strap/subset replica. Figure 2 shows the results. We started off by comput-
ing the confidence values straightforwardly: For each sampled dataset, every
weight that was not set to 0 by the LASSO regression was counted as detecting
an edge. The results of this basic approach are shown in the unshaded boxes
in Figure 2.

Using a two-sided paired t-test, we determined that while the difference in
TPFP5 values was not significant, the difference in AUC values between the
two sampling methods and the weight method was significant (p < 0.01). It is
surprising to see the weight method outperform the confidence value methods,

2This allows for negative population numbers, but this is not a problem since LASSO
regression does not assume that population numbers have to be positive.
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Figure 2: AUC and TPFP5 performance measures for the LASSO reconstruction of the
simple network model. Shaded boxes show the result when thresholding is applied.

as we would expect confidence values to produce equally good if not better
results.

The reason for this discrepancy becomes apparent once we change the proce-
dure for estimating confidence values slightly. Instead of treating all non-zero
weight values in each sampled dataset as evidence of an edge, we only keep
those above a certain threshold (arbitrarily set at 0.1). To be fair in our com-
parison, we also apply the threshold to the weight method. When we do this,
we notice that the AUC values between the confidence value methods and the
weight method are no longer significantly different (p > 0.3).

The problem is that the selection process which sets some weights to zero is
not a very conservative process. This means that some weights may never or
rarely get set to zero, despite having a very low value. A threshold artificially
removes those weights, and thus reduces the variance in the performance. This
evens out the difference between the weight method and the confidence value
methods.

Ecological Network Simulation Model. We also want to compare the different
methods using the simulation model described in Section 3.1 of the main paper.
We use the same datasets that were used in the rest of this study.

Since we have already established that thresholding is needed to remove the
variance due to small but persistent weights in the confidence value methods,
we also use this method here. Figure 3 shows the results on the ecological
simulation data. A two-sided paired t-test shows that all differences in AUC
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Figure 3: AUC and TPFP5 performance measures for the LASSO reconstruction of the
ecological network simulation model.

values are significant (p < 0.01), but none of the differences in TPFP5 values
are (p > 0.08).

Interestingly, the significant difference in AUC now shows an increased perfor-
mance for the confidence value methods. However, one must remember that
the model does not include any spatial autocorrelation (cf. Section 2.2.1 of
the main paper), which is by necessity, as sampling destroys the spatial struc-
ture. But this also means that sampling reduces the spatial autocorrelation,
because we only sample a subset of the total number of nodes, so some of the
neighbours of a selected location are left out. This explains why we see a slight
increase in performance in AUC. It is reasonable that it would not be mirrored
in the TPFP5 score, because this score relies on edges with high edge weights,
which will be found in any case.

4. Additional Results on Simulated Data

In this section, we present additional results on the simulated data that could
not be included in the main paper due to space restrictions. We show the
results for discretised data (Section 4.1), a study of different types of consensus
networks (Section 4.2) and the results of a latent variable model for Bayesian
networks (Section 4.3). We also list the significance of all results in a separate
section (Section 4.4).
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Figure 4: AUC and TPFP5 performance measures for discretised simulation data. Shaded
boxes show the result when spatial autocorrelation is included in the model.

4.1. Discrete Data

To better simulate a real dataset, we discretise the continuous data from the
simulation model using the observation process described in Section 2.2. The
results of applying our network reconstruction methods on the discrete data
can be seen in Figure 4.

As expected, the performance decreased when compared to the continuous
data (see Section 4.1 in the main paper), due to the information loss inherent
in the discretisation process. The AUC scores dropped around 0.1 for all
methods, and the TPFP5 scores showed a similar drop, except in the case
of SBR, which stayed about the same. This is because discretisation mostly
hinders the identification of the more subtle interactions, which SBR had not
even detected in the continuous case. Apart from SBR, there is no significant
difference in the scores between methods for discrete data.

To finish our investigation, we looked at the effect of including spatial auto-
correlation for the discretised data. The results are shown in Figure 4 (shaded
boxes).

Unfortunately, none of the scores improved significantly when including spatial
autocorrelation in the discrete case. This is likely due to the information
loss in the observation process, which makes it harder to estimate spatial
autocorrelation effects reliably. Our future work aims to reduce the information
loss by applying more complex spatial-temporal models, e.g. along the lines
of the Markov random field model proposed in Wei and Li (2007).
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4.2. Consensus Networks

As described in the main paper, it is useful to combine outputs of different
network reconstruction methods into one single recovered network. We call this
a consensus network, because it captures the consensus between the various
methods, whilst simultaneously allowing the strengths of the different methods
to be combined. There are several different ways in which we can combine these
methods:

• Arithmetic Mean: Edge strengths produced by regression methods are
scaled to the range [0, 1] (posterior probabilities obtained by Bayesian
nets are left unchanged), then we take the arithmetic mean of the scaled
strengths and probabilities obtained by all methods and use this as in-
dication of the confidence we have in each edge.

• Harmonic Mean: This is the same as the previous method, but instead
of using the arithmetic mean, we calculate the harmonic mean, which is
generally more appropriate for rates.

• Thresholded: In this method, we use the posterior probabilities obtained
by Bayesian nets as a threshold. All edges with probability less than
0.1 are removed. Then the remaining edges are evaluated based on the
interaction strengths found in regression.

Note that some of these methods potentially confuse confidence values (proba-
bilities) with interaction strengths, but for methods where both were available
we found a very strong Spearman rank correlation between the two (ρ = 0.92),
so this is not problematic. As a base line, we used the mean of the AUC or
TPFP5 scores obtained from the different network reconstruction methods in
isolation. A consensus method works if it produces a better score than the
mean score of the individual methods.

Figure 5 shows the results using the discretised dataset with spatial autocorre-
lation modelled. This most closely mirrors the experiments on the bird data;
however, results using continuous data and data without modelling the spatial
autocorrelation were similar. As can be seen, the only method performing
better than our baseline is the arithmetic mean. For AUC the difference is sig-
nificant (using a two-sided paired t-test, p = 0.03) while the harmonic mean
does not perform significantly different (though only barely, p = 0.05) and the
thresholded approach performs significantly worse (p = 10−3). For the TPFP5
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Figure 5: AUC and TPFP5 performance measures for different types of consensus networks.
This figure only shows the results for discrete data with an spatial autocorrelation model.
Results for other datasets were similar.

score, none of the three consensus methods performs significantly different
from the baseline of taking the mean of the scores, although the arithmetic
mean comes closest (p = 0.06 versus p = 0.25 and p = 0.58 for harmonic mean
and thresholded approach, respectively).

These results show that the arithmetic mean performs best when it comes to
combining different network reconstruction methods. On the basis of this in-
vestigation, we have used the arithmetic mean to construct consensus networks
for the bird atlas data.

4.3. Allowing for Unobserved Effects

As explained in Section 2.1, we may want to take account of unobserved effects
that act on the different species. While there are no explicit environmental
factors (other than noise) in the simulation model, it is easy to model an
unobserved effect by adding a species that acts directly on all other species,
and removing the presence/absence data for that species reconstructing the
network. To assess the helpfulness of this approach, we tested it on a small
network consisting of three observed nodes and one unobserved node, with no
interactions between the observed nodes (Fig. 6a). Under these circumstances,
the latent variable model should produce fewer spurious interactions than a
model without latent variables. In the Bayesian network model, this means
that the posterior probability of edges between observed nodes should be lower
when using the latent variable model.

Figure 6b shows the performance of the Latent Variable Model, compared with
12
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Figure 6: (a) The network used to test the performance of the latent variable model, con-
sisting of one fully connected species Z, and three unconnected species X1, X2, X3. (b)
Boxplot showing the posterior probabilities of spurious edges found using Structure MCMC
with one fully-connected missing species, Structure MCMC with a latent variable, and
Structure MCMC with a complete dataset (no missing species).

13



(a) Continuous, No Spat. Autocorr. Model

BN GGM LASSO SBR
BN 1 0.06 0.02 0.06
GGM 1 0.28 0.00

LASSO 1 0.00

SBR 1

(b) Discrete, No Spat. Autocorr. Model

BN GGM LASSO SBR
BN 1 0.09 0.06 0.00

GGM 1 0.08 0.00

LASSO 1 0.00

SBR 1

(c) Continuous, With Spat. Autocorr.
Model

BN LASSO SBR
BN 1 0.21 0.52
LASSO 1 0.00

SBR 1

(d) Discrete, With Spat. Autocorr.
Model

BN LASSO SBR
BN 1 0.08 0.16
LASSO 1 0.01

SBR 1

Table 2: Significance values obtained using a two-sided paired t-test when comparing dif-
ferent methods based on the AUC scores of the reconstructed networks. Significant results
(with threshold p = 0.05) are marked in bold.

the baseline of using simple Structure MCMC with a missing species and the
optimal scenario of having complete data. As can be seen, the Latent Variable
Model succeeds in reducing the median probability of spurious edges, although
not quite to the level of having complete knowledge of the data.

4.4. Significance Tests

This section gives an overview of the significance of the differences between the
network reconstruction methods (Tables 2 and 3), as well as between methods
that include spatial autocorrelation and those that do not (Table 4). We have
used two-sided paired t-tests everywhere, pairing up results on data simulated
from the same network. The threshold for statistical significance is set at
p = 0.05. For an interpretation of the significant results, see Section 4 in the
main paper.
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(a) Continuous, No Spat. Autocorr. Model

BN GGM LASSO SBR
BN 1 0.55 0.02 0.00

GGM 1 0.38 0.00

LASSO 1 0.00

SBR 1

(b) Discrete, No Spat. Autocorr. Model

BN GGM LASSO SBR
BN 1 0.22 0.58 0.00

GGM 1 0.71 0.00

LASSO 1 0.01

SBR 1

(c) Continuous, With Spat. Autocorr.
Model

BN LASSO SBR
BN 1 0.17 0.00

LASSO 1 0.00

SBR 1

(d) Discrete, With Spat. Autocorr.
Model

BN LASSO SBR
BN 1 0.06 0.01

LASSO 1 0.01

SBR 1

Table 3: Significance values obtained using a two-sided paired t-test when comparing differ-
ent methods based on the TPFP5 scores of the reconstructed networks. Significant results
(with threshold p = 0.05) are marked in bold.

(a) Continuous Data

AUC TPFP5
BN 0.01 0.00

LASSO 0.00 0.00

SBR 0.00 0.04

(b) Discrete Data

AUC TPFP5
BN 0.58 0.80
LASSO 0.51 0.07
SBR 0.65 0.84

Table 4: Significance values obtained using a two-sided paired t-test when network recon-
struction methods with spatial autocorrelation model to those without. Significant results
(with threshold p = 0.05) are marked in bold.

15



5. Application to the European bird atlas data

5.1. A priori network construction

To construct the a priori network, we used two sources: knowledge from the
literature, and expert judgement.

First, we searched the ecological literature using ISI Web of Knowledge 3 (ac-
cessed on 10/5/09). For each species, we searched for all articles using the
complete scientific name. If more than 100 articles were returned, we refined
the search adding the terms ’interaction’ or ’competition’. We studied all ab-
stracts and identified papers containing information about interspecific inter-
actions for detailed reading. We identified 30 interactions using this method.

For the remaining 711 pairwise interactions we used our expert judgement to
answer the question: In areas where these species occur in close proximity, is
it plausible that one of the species would become more abundant or expand
into different habitats if the other species were absent? In cases where we
considered this likely we recorded an interaction in the network.

The final network can be found at http://www.bioss.ac.uk/students/frankd.
html.

5.2. Phylogenetic distance analysis

To calculate the phylogenetic distances between warbler species, we first needed
to get general information on warbler phylogeny. To that end, we searched the
taxonomic literature (e.g. Alstroem et al. (2006)) and ’Tree of Life’ servers
(such as The Tree of Life Web Project in Maddison et al. (2007)). A con-
servative consensus tree was generated depicting relationships between the 39
warbler species as in Figure 7.

As path lengths were unavailable we computed a range of distances using the
method advocated by Grafen (1989) with values of ρ of 1, 0.6 and 0.3. Al-
though correlations between the phylogenetic distance and recovered interac-
tion scores were not qualitatively different when these different distances were
assumed, they are arbitrary choices none the less. Consequently, we repeated
the correlation analysis using Kendall’s τ as a measure of rank correlation that

3Found at http://www.isiwebofknowledge.com/.
16



 C. cetti
 P. borealis
 P. trochilus
 P. collybita
 P. lorenzii
 P. bonelli
 P. sibilatrix
 P. inornatus
 P. trochiloides
 L. naevia
 L. lanceolata
 L. fluviatilis
 L. luscinioides
 H. polyglotta
 H. icterina
 H. olivetorum
 H. pallida
 H. caligata
 A. paludicola
 A. schoenobaenus
 A. melanopogon
 A. scirpaceus
 A. palustris
 A. dumetorum
 A. agricola
 A. arundinaceus
 S. borin
 S. atricapilla
 S. nisoria
 S. curruca
 S. hortensis
 S. communis
 S. consipcillata
 S. undata
 S. sarda
 S. rueppelli
 S. cantillans
 S. mystacea
 S. melanocephala

Figure 7: Phylogenetic tree for the warbler species in our study.
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is unaffected by assumed branch lengths. Again, results were qualitatively sim-
ilar; they can be found in Table 5. For the correlation analyses we used only
data from the upper triangle of the distance matrices.

Network ρ Correlation

Basic

1 -0.12 (-0.18, -0.04)
0.6 -0.11 (-0.18, -0.04)
0.3 -0.12 (-0.19, -0.05)

Kendall’s τ -0.08

Spat. Autocorr

1 -0.12 (-0.19, -0.05)
0.6 -0.12 (-0.19, -0.05)
0.3 -0.12 (-0.19, -0.05)

Kendall’s τ -0.08
1 -0.14 (-0.21, -0.07)

Spat. Autocorr. and 0.6 -0.14 (-0.21, -0.07)
Bio-Climate Covariates 0.3 -0.12 (-0.22, -0.07)

Kendall’s τ -0.09

Table 5: Correlation coefficients of reconstructed networks with the phylogenetic tree whose
branch lengths have been generated with different values of ρ, or with Kendall’s τ . Numbers
in brackets show the confidence intervals at 95%. None of the confidence intervals includes
zero, indicating that the correlations are significant.

5.3. Ecological distance analysis

Ecological trait data for each of the 39 species is presented in Table 6. From
the habitat and migration status data we generated indicator variables identi-
fying species with shared habitat and shared migration strategy. We combined
these indicator variables with the morphological data and clutch size, centred
and scaled each variable and calculated the Euclidian distance. As with the
phylogenetic distance analysis, we used only data from the upper triangle of
the distance matrix in correlation analyses.
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Species Length Mass Wingspan Clutch Migrant status Preferred Habitat

Acrocephalus agricola 13 11 16 4.5 Long Distance Resident
Acrocephalus arundinaceus 20 33 26 4.5 Long Distance Resident
Acrocephalus dumetorum 13 12 18 5 Long Distance Resident
Acrocephalus melanopogon 12 12 16 4.5 Short Distance Resident
Acrocephalus paludicola 13 12 18 5 Long Distance Resident
Acrocephalus palustris 13 13 20 4.5 Long Distance Shrub

Acrocephalus schoenobaenus 13 12 19 5 Long Distance Shrub
Acrocephalus scirpaceus 13 13 19 4 Long Distance Resident

Cettia cetti 14 13.5 17 4.5 Resident Resident
Hippolais icterina 14 13 22 4.5 Long Distance Broad-leaf Forest

Hippolais olivetorum 15 18 25 3.5 Long Distance Broad-leaf Forest
Hippolais pallida 13 11 20 2.5 Long Distance Shrub

Hippolais polyglotta 13 13 18 4 Long Distance Broad-leaf Forest
Locustella fluviatilis 13 17 20 6 Long Distance Shrub

Locustella luscinioides 14 18 20 5 Long Distance Resident
Locustella naevia 13 14 17 5.55 Long Distance Shrub

Phylloscopus collybita collybita 10 9 18 5.49 Short Distance Broad-leaf Forest
Phylloscopus bonelli bonelli 12 9 18 5 Long Distance Broad-leaf Forest

Phylloscopus borealis 11 10 19 5.5 Long Distance Pine Forest
Phylloscopus trochiloides 10 8 18 5.49 Long Distance Pine Forest
Phylloscopus sibilatrix 12 10 22 5.77 Long Distance Broad-leaf Forest
Phylloscopus trochilus 11 10 19 5.93 Long Distance Broad-leaf Forest

Sylvia atricapilla 13 21 22 4.56 Short Distance Shrub
Sylvia borin 14 19 22 4.32 Long Distance Shrub
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Sylvia cantillans 12 11 17 4 Long Distance Garrigue
Sylvia communis 14 16 20 4.64 Long Distance Shrub
Sylvia conspicillata 12 10 15 4.5 Short Distance Garrigue

Sylvia curruca 13 12 18 4.67 Long Distance Shrub
Sylvia hortensis 15 21 22 5 Long Distance Broad-leaf Forest

Sylvia melanocephala 14 13 16 4.5 Resident Garrigue
Sylvia nisoria 16 25 25 4.5 Long Distance Shrub
Sylvia rueppelli 14 14 20 5 Long Distance Broad-leaf Forest
Sylvia sarda 12 10 16 4 Resident Garrigue
Sylvia undata 12 10 16 4 Resident Garrigue
Sylvia mystacea 14 10 17 4.5 Short Distance Shrub
Hippolais caligata 12 10 20 3.5 Long Distance Shrub

Phylloscopus inornatus 10 7 17 4 Long Distance Pine Forest
Phylloscopus lorenzii 10 8 18 5.5 Short Distance Broad-leaf Forest
Locustella lanceolata 12 12 15 5 Long Distance Shrub

Table 6: Ecological traits for the warbler birds.
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A priori net Phylogenetic Dist. Ecological Dist.

A priori net
1 0.38 0.08

(0.73, 0.02) (0.21, -0.05)

Phylogenetic Dist.
1 0.28

(0.21, 0.34)
Ecological Dist. 1

Table 7: Results of comparison between the ecological measures represented by the a priori

interaction network, phylogenetic distance and ecological distance. A priori comparisons
made with logistic regression are the regression coefficient, other results are Pearson’s cor-
relation coefficients, all with 95% confidence intervals

5.4. Comparison of Ecological Measures

We have three different ecological indicators that we can compare our recon-
structed networks to: The a priori network, the phylogenetic distance and the
ecological distance. The correlation of these indicators with the reconstructed
networks that we present in the main paper is always significant, but also far
from perfect correlation. This can be explained by the fact that these measures
are not a true gold standard. In fact, each measure captures different aspects
of the true relationships between species. In Table 7 we present the correlation
coefficients between the three ecological measures and show that they are also
small but (mostly) significant.

Another way to compare the ecological indicators is by taking the a priori
network as a gold standard, and calculating the AUC and TPFP5 values for
the phylogenetic and ecological distance measures. In effect, we are treat-
ing these distance measures as inverse edge scores. The results are shown in
Table 8. Again, The scores are better than random expectation (AUC=0.5,
TPFP5=0.05), but far from perfect (AUC=TPFP5=1.0). This indicates that
the various measures capture relevant, but only partial aspects of the unknown
true interaction network.

5.5. Thresholding on Edge Interactions

To produce a single, interpretable network from the edge interaction strengths,
we need to set a threshold to discard edges with low values. Recall that the
“interaction strengths” are of different nature: marginal posterior probabili-
ties for Bayesian networks, and regularised regression coefficients for LASSO.
We would like to map them to p-values, which are more commonly used in
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AUC TPFP5
Phylogenetic Distance 0.79 0.37
Ecological Distance 0.67 0.22

Table 8: Comparison between the ecological measures by computing AUC and TPFP5 scores
for phylogenetic and ecological distance measures, using the a priori interaction network as
a gold standard.
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Figure 8: Distribution of edge strengths/posterior probabilities under the null hypothesis,
averaged over 15,210 random species interactions from permuted data.

statistics. To this end, we carried out a randomisation test. The rows and
columns of the original warbler data were permuted ten times, and on each of
these replications we carried out the same inference as for the original data.
Since the permutation destroys all genuine associations among the species,
the distribution of “interaction strengths” represents the null hypothesis of no
species interaction. From this distribution, the p-value is easily computed as
the probability of exceeding a given threshold.

Figure 8 shows the null distributions obtained for Bayesian networks (left
panel), LASSO (centre panel), and the consensus network (right panel). Ta-
ble 9 shows the “interaction strengths” corresponding to p-values of 0.1 and
0.01. Note that the p-values are used as descriptive measures, and no Bonfer-
roni correction (which would be too conservative) was carried out.

p-value BN LASSO Consensus

0.1 0.2 0.3 0.4
0.01 0.5 0.4 0.5

Table 9: Mapping from p-value thresholds to edge strengths/posterior probabilities.
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Figure 9: Consensus network recovered from the basic dataset (without spatial autocorre-
lation or bio-climate covariates). The edges are pruned by placing a threshold value of 0.5
on the consensus network, which corresponds to a p-value of 0.01. See Section 5.5 for a
description of how these p-values were calculated. The boxes on the right show unconnected
species.

5.6. Recovered Networks

Figures 9-11 shows the consensus networks that were recovered from the war-
bler data. We get three different networks: one for the basic dataset, one
for a dataset where we have modelled spatial autocorrelation as described in
Section 2.2.1 of the main paper, and one for a dataset where we have included
both spatial autocorrelation and two bio-climate covariates: temperature and
availability of water. Details on how the sparsity and the correlation with the
ecological measures vary for the different networks can be found in the main
paper (Section 4.2).

5.7. Network Characterisation

Studies have shown that molecular regulatory networks have degree distribu-
tions that approximately follow a power-law (Wagner, 2001; Guelzim et al.,

23



Figure 10: Consensus networks recovered from the dataset with spatial autocorrelation
included (but without bio-climate covariates). The edges are pruned by placing a threshold
value of 0.5 on the original consensus network, which corresponds to a p-value of 0.01. See
Section 5.5 for a description of how these p-values were calculated. The boxes on the right
show unconnected species.
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Figure 11: Consensus networks recovered from the dataset with both spatial autocorrelation
and bio-climate covariates included. The edges are pruned by placing a threshold value of
0.5 on the original consensus network, which corresponds to a p-value of 0.01. See Section
5.5 for a description of how these p-values were calculated. The boxes on the right show
unconnected species.
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Figure 12: Cumulative degree distribution for the consensus networks on the log-linear

scale as the threshold varies. (Top) Basic bird data, (Middle) Bird data with spatial au-
tocorrelation model added, (Bottom) Birds with spatial autocorrelation and bio-climate
covariates. From left to right the thresholds are set at p-values 0.2, 0.15, 0.1, 0.05, 0.02, and
0.01.
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Figure 13: Cumulative degree distribution for the consensus networks on the log-log scale

as the threshold varies. (Top) Basic bird data, (Middle) Bird data with spatial autocorrela-
tion model added, (Bottom) Birds with spatial autocorrelation and bio-climate covariates.
From left to right the thresholds are set at p-values 0.2, 0.15, 0.1, 0.05, 0.02, and 0.01.
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(b) Network Diameter

Figure 14: Variation of the clustering coefficient and network diameter for the consensus
networks as the threshold varies.

2002; May, 2006). Loosely speaking, this means that there are many nodes
with only one or few connections, but also some nodes with many more connec-
tions than the average degree. Studies on food webs generally agree that the
degree distribution is not Poisson (Proulx et al., 2005), however they disagree
on whether the degree distributions are best fit by a power-law or by some
other distribution. The existence of a variety of distributions has been shown,
including power-law, truncated power-law and exponential (Dunne et al., 2002;
Jordano et al., 2003; Laird and Jensen, 2006). In our study we observe that
the distributions are closer to linear on the log-linear plot of the cumulative
degree distribution (Fig. 12), than on the log-log plot (Fig. 13). Linearity
on the log-log plot would be characteristic of a power-law distribution, but
linearity on the log-linear plot shows that the network exhibits a near expo-
nential distribution. The data also displays the insensitivity of this behaviour
to varying the threshold.

Figure 14 shows the variation of the clustering coefficient and the network
diameter (characteristic path length) as the threshold varies. There is no
discernable trend, which may mean that these particular statistics are not
useful characterisations of the types of networks that we are considering.
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