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Simulating epidemics in metapopulations is a challenging issue due to the large demographic and geographic
scales to incorporate. Traditional epidemiologic models choose to simplify reality by ignoring both the spatial
distribution of populations and possible intrapopulation heterogeneities, whereas more recent solutions
based on Individual-Based Modeling (IBM) can achieve high precision but are costly to compute and analyze.
We introduce here an original alternative to these two approaches, which relies on a novel hybrid modeling
framework and incarnates a multiscale view of epidemics. The model relies on a technical fusion of two
modeling paradigms: System Dynamics (SD) and Individual-Based Modeling. It features an aggregated
representation of local outbreaks rendered in SD, and at the same time a spatially-explicit simulation of the
spread between populations simulated in IBM. We first present the design of this deterministic model, show
that it can reproduce the dynamics of real resurgent epidemics, and infer from the sensitivity of several spatial
factors absent in compartmental models the importance of having large-scale epidemiological processes
represented inside of an explicitly disaggregated metapopulation. After discussing the implications of results
obtained from simulation runs and the applicability of this model, we conclude that SD–IB hybrid modeling
can be an interesting choice to represent epidemics in a spatially-explicit way without necessarily taking into
account individual heterogeneities, and therefore it can be considered as a valuable alternative to simple
compartmental models suffering from detrimental effects of the well-mixed assumption.
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1. Introduction

The vast majority of epidemic models described so far are
compartmental, meaning that individuals are classified and grouped
depending on their health status (Anderson and May, 1991; Bailey,
1975; Kermack andMcKendrick, 1927). A famous example in ecology is
the model of fox rabies in Europe (Anderson and May, 1979). This class
ofmodels presents the advantage ofmanipulatingproportions of a same
population and not having to deal with individualities. This line of
reasoning has proven to be very efficient, especially from a mathemat-
ical and computational point of view, as models taking account of
individual heterogeneities pose tractability problems for large popula-
tions and can be hard to analyze. Nevertheless, an insidious corollary of
the compartmental approach has been the assumption that the
population under consideration is well-mixed. Even if this sounds
reasonable to describe small local populations, the broadening of this
property to the metapopulation scale seems hazardous. In populations
of wild animals as well as in human societies, individuals are generally
grouped in high-density sites (i.e. cities, farms, and forest patches)
separated spatially by large zones fromwhich they are absent or present
in negligible density only. Between these sites, elements of the
landscape strongly affect the intensity at which individuals from
different sites can interact (Real and Biek, 2007). The number of
contacts each individual has is usually considerably smaller than the
metapopulation size (Keeling and Eames, 2005). Therefore, the idea of a
metapopulation-wide random-mixing of individuals does not seem to
stand. While the variations of compartmental models have been overly
studied (Hethcote, 1995), little attention has been paid to the
correctness of the postulates on which this class of models relies.

In this paper, we detail a generic model that can be used to represent
dynamic processes like epizootics in a spatially-explicit way, thereby
lifting the need for the well-mixed assumption at the metapopulation
scale, and without relinquishing the simplicity offered by the compart-
mental approach. Our solution relies on an approach offering great
flexibility to model complex multiscale systems by uniting System
Dynamics (SD) (Ford, 1999; Forrester, 1971) and Individual-Based
Modeling (IBM) (Grimm and Railsback, 2005). The philosophy and
framework supporting this technique is referred to as SystemDynamics–
Individual-Based (SD–IB) hybrid modeling (Vincenot et al., 2011) and
represents a novel modeling paradigm unused so far in ecology to our
knowledge. Compartmental models are probably the most efficient way
to simulate the dynamics of an epidemic as long as the well-mixed
assumption is met (Fig. 2, top). SystemDynamics is a very advantageous
technique to build such models, because it is based on an ordinary
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differential equation (ODE) solver and features stock-and-flow display,
which is capable of great analytical power through its related tools (e.g.
causal loop diagrams). Furthermore, it makes the model's structure
easier and more straightforward to understand than raw differential
equations. On the other hand, Individual-Based Modeling (IBM),
technically originating from Agent-BasedModeling (ABM), is inherently
capable of representing network structures in a spatially-explicit way
making it possible to take into account distances between sites. In
addition, it can handle large numbers of sites in amore efficientway than
SD (Fig. 2, bottom). Thus, it is a perfect candidate to simulate the global
spread of a disease in a network-like structure. These considerations
motivated the use of an SD–IB hybrid model to reproduce the contagion
mechanisms in an accurate, understandable, and tractable manner.

We start by describing the design of our hybridmodel of epizootics
in population networks. Then we show through simulations how it
can render characteristic behaviors of large-scale epidemics, which
are generally absent from compartmental models. Afterwards, we
discuss the significance and implications of these results as well as the
pertinence of the solution proposed here.

2. Method

2.1. Description of the hybrid model

We follow hereafter the updated 7-points Overview-Design
concepts-Details (ODD) standard protocol formulated by Grimm et
al. (2006, 2010) for describing individual-based models.

2.1.1. Purpose
The purpose of this model is to simulate the dynamics of disease

contagion in very large fragmented populations at both the local and
global scales. Here, we use this model to study the impact of network
topology on the global evolution of epidemics.

2.1.2. Entities, state variables, and scales
Thismodel is based on a geographic breakdown ofmetapopulations,

and features a single entity called site. Each site actually equals to one
population and is basically defined by three state variables (represented
as stocks in the System Dynamics submodel) dividing the local
population into classes of susceptible (S), infected (I), and recovered
(R) individuals. On top of these, two more state variables keep track of
ongoing emigration and immigration of infectious individuals. Each site
is also characterized by its unique two-dimensional spatial coordinates
set at initialization time and invariant thereafter. Fundamentally, the
model integrates disease dynamics at two spatial scales, namely inside
of sites (local outbreaks) and between sites (global epidemics). For this
purpose, connections between neighboring sites are also taken into
account. A neighboring site is defined as any site closer than a threshold
distance given by the neighborhood range parameter. The simulations,
running in steps of one week, are meant to reproduce disease
propagation inside of a 500×500 km study area in a time frame of
several months to years after its introduction.

2.1.3. Process overview and scheduling
Two processes take place in the following order inside of themodel:

the renderingof local outbreakdynamics ineach site, and themigrations
of infectious individuals between sites. Variables are updated synchro-
nously inside of eachprocess. The globalmodel runs in hybrid timewith
local outbreaks calculated in continuous time, and the migrations
happening as discrete events. Note that an integration step (Δt) of 0.01
week was used to compute the results reported in this study.

2.1.4. Design concepts

2.1.4.1. Basic principles. First, the model is built on the assumption that
network structures, extensively studied in social sciences and graph
theory, play an important role in the understanding of epidemiolog-
ical processes (Keeling and Eames, 2005, and references therein).
Indeed, large-scale epidemical outbreaks occur between several sites
on which individuals are present in high density. At the metapopula-
tion scale, a disease spreads when it is transferred by infected
individuals (or third-party vectors) from site to site. As a result, each
site can be regarded as the node of a large network.

Second, an underlying idea supporting this model is that
epidemics take place concurrently at two different scales: local
(inside of each site/node) and global (between sites/nodes inside of
the network). The bond between these two dimensions is manifest in
spatially-explicit observational datasets (Fig. 1). That is why the goal
of the hybrid model presented here was to offer the possibility to
simulate accurately disease transmission at both levels.

2.1.4.2. Emergence. The dynamics of the global epidemics emerge from
the interactions of concurrent local outbreaks. As such, the dynamics
of local outbreaks are primarily dependent on epidemiological
parameters especially during the first epidemic wave, whereas the
global epidemic arises entirely from the interaction of concurrent
outbreaks.

2.1.4.3. Interaction. Migration of individuals, described in detail in
Section 2.1.6, is the only form of direct interaction between sites.

2.1.4.4. Stochasticity. The model is entirely deterministic and does not
integrate any stochastic process.

2.1.4.5. Observation. The prevalence of the disease, more precisely the

value of
I

S + I + R
, is the main data sampled for observation. In one

experiment (Fig. 6), the immigration and infection processes (i.e. in
SD terminology, the inflows to stock I) are observed jointly with the
evolution of the number of infected individuals (I).

2.1.5. Initialization
At initialization, sites are set to be organized in random spatial

layouts, except in the experiment related in Fig. 4 in which sites are
filling the available space by being placed at a regular interval from
their neighbors (i.e. the so-called “arranged” or “regular” layout). The
spatial arrangement changes neither at runtime nor between runs of
the same experiment. Links between sites are automatically estab-
lished by the framework for sites lying within their neighborhood
range (i.e. 150 km, except in the experiment related in Fig. 4). Also, at
the beginning of the simulation, inside of each site, the entire
population is concentrated in the susceptible (S) state variable and no
infectious individual exists. The first infection is triggered manually at
runtime. Parameter values used in the hybrid model and their sources
are given in Table 1.

2.1.6. Submodels
The hybrid model can reproduce the two-scale dynamics of an

epidemic outbreak inside of a metapopulation structured in a network
of sites by merging an IBM submodel and an SD submodel (Fig. 3).
Their description is given hereafter.

2.1.6.1. Local outbreaks computation (SD). We assert that each site
contains a closed and homogeneously mixed population. Hence, a
classic SIRS epidemic model with delayed recovery is used to model
the dynamics of outbreaks inside of sites. The content of this type of
compartmental model has been described extensively in the literature
(Anderson andMay, 1979; Hethcote et al., 1981) and has been used to
study diseases involving potential recovery which confers temporary
immunity (e.g. Orthomyxoviridae causing the seasonal flu). It features
three compartments representing generic infection stages of in-
dividuals in a population: susceptible (S), infected (I), and recovered



Fig. 1. Typical real-life epidemic episode illustrating the view of large-scale epidemics as metapopulation-scale phenomena emerging from the transport of individuals between
interconnected subpopulations subject to concurrent disease outbreaks. Here, the tight coupling between local outbreaks, metapopulation structure, and the resulting large-scale
epidemic dynamics is made obvious. (A) Number of cases of influenza reported in Japan from 2007 (week 40) to 2008 (week 18). All strains are shown here, although influenza A
(H1) accounts for the vast majority of the infections (at the very least 75% of the reports in any week during the period of interest). (B1–B8) Spatial distribution of the disease in the
prefectures of Japan. The strength of the epidemic is represented by colors ranging from white to orange for inexistent to mild epidemic status, and rosa to red for strong disease
prevalence. The disease erupts in Hokkaido (northernmost island of Japan) (B1 — week 45) and spreads throughout most of the country with the number of infected individuals
reaching a first peak (B2 —week 51). Shortly after, following a decrease in intensity in Hokkaido in the 52nd week, the epidemic drops off (B3 —week 1). After an intensification of
the disease on the other islands, the epidemic bounces back in a stronger second wave and propagates throughout all the prefectures (B4—week 4). While the disease is in recession
on Hokkaido, the global epidemic starts to decline (B5—week 5). A short-lived outbreak in Hokkaido generates a minor peak (B6/B7—weeks 7–8). Finally, the epidemic fades away
and puts an end to this episode (B8 — week 10). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: Compiled from archive data of the Infectious Agents Surveillance Report (IASR) published by the Infectious Disease Surveillance Center (IDSC), National Institute of Infectious
Diseases, Japan.
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(R). The epidemic's dynamics is then described as processes moving
numbers of individuals between these compartments. Several rates
dictate the transfer from one class to another, like the effective contact
Fig. 2. Efficiency of the System Dynamics (dashed lines) and Individual-Based Modeling
(plain lines) approaches to deal with large populations (top) and disaggregation into
several sites (bottom). Note that in the top case, IBM can engender superlinear
computational cost depending on the nature of inter-individual interactions.
rate β from S to I, the recovery rate υ from I to R, and the immunity loss
rate dr

−1 from R to S. Following the results of de Jong et al. (1995), we
prefer basing the infection process on the true mass-action assump-
tion, with a transmission term dependent on the size of the population.
We keep the model as simple as possible by considering a constant
population size. This way, the effects of disease dynamics are well-
known in advance and their role in results obtained during later runs
of the hybrid model at the metapopulation scale can be isolated from
concurrent exogenous phenomena. Finally, the non-linear system can
be expressed as a set of differential equations.

dS
dt

= d−1
r R tð Þ−β

I tð Þ
S tð Þ + I tð Þ + R tð Þ S tð Þ

dI
dt

= β
I tð Þ

S tð Þ + I tð Þ + R tð Þ S tð Þ−I t−υð Þ

dR
dt

= I t−υð Þ−d−1
r R tð Þ

ð1Þ

Eq. (1) shows the compartmental SIRS model.
This compartmental model is translated into System Dynamics in

the hybrid model. In SD terminology, each class of individuals (i.e.

image of Fig.�1


Table 1
Parameter values used in the hybrid model. When not specified otherwise, the unit is week−1. Epidemiological parameter values are based on average data relevant to influenza
from Dushoff et al. (2004), Mills et al. (2004), and Valleron et al. (2010).

Aspects Parameter Symbol Value Comments

Demography Initial population size (individuals) S 105 Variable in scenario C. Nsites ×105 for the entire metapopulation
Epidemiology Effective contact rate β 1.71 Varied in Section 3.2 (S.A. range: 1–7)

Infectious duration υ 1.11
Immunity duration dr 20 Varied in Section 3.2 (S.A. range: 20–50)

Spatial spread Emigration rate remigration 0.01 Varied in Section 3.2 (S.A. range: 0.0–0.3)
Number of sites Nsites 25 Exceptions: 18 in Fig. 6, and 30 in Fig. 7

Simulation Delta time (DT) (time steps) Δt 10−2 SD equations solved by the Runge–Kutta (RK4) method
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susceptible, infected and recovered) is symbolized by stocks, while
the processes moving numbers of individuals between them (i.e.
infection, recovery, and immunity loss) correspond to flows linking
together the previous stocks. To verify the previous equations and
reconstruct an SIRS model similar to what was already studied in the
literature (Hethcote et al., 1981), the “recovery” flow is set to delay its
inflow by a given time period (i.e. the duration of infectiousness) to
form what is often referred to as “conveyor” in the SD literature. It
should be noted that we deliberately do not consider infinitesimal
numbers of remaining individual in the infected compartment (I). A
minimum value (floor) under which the number of infected in-
dividuals is considered as zero is fixed. The reason for this is clarified
in Section 4.1.1.
2.1.6.2. Migrations inside of the metapopulation (IBM). The number of
emigrants is calculated based on the number of infected individuals
and the emigration rate. A transfer function then practically performs
a weighted distribution of these infected migrants to neighboring
sites using the pre-established connections. The weights are chosen to
be proportional to the relative proximity of each neighbor from the
current site (Eq. (2)). This function is called for each site agent in a
Fig. 3. Visual output of the SD–IB hybrid model. Communicating IBM agents,
representing sites (here, visualized as clouds), each incorporate an SD submodel (a
partial view of which is inserted in the bottom-right corner of the figure) computing the
evolution of the local outbreaks. These agents are in charge of the exchange of infected
individuals between sites composing the network.
periodic way at each time-step of the simulation engine. Here too, we
chose not to realize transfers of fractions of an individual.

T Sa; Sb; tð Þ = remigration × ISa tð Þ ×
1

dist Sa; Sbð Þ
∑Sn� neighbors Sað Þ

1
dist Sa ;Snð Þ ð2Þ

Eq. (2) shows the weighted distribution function used to calculate
the number of infected individuals to be dispatched from a site Sa to a
site Sb at time t. This function is distance-based and is iterated on Sb to
distribute all the emigrants (remigration × ISa tð Þwith remigration being the
emigration rate and ISa tð Þ the number of infected individuals present
on the site Sa at time t) to the site's neighbors proportionally to their
remoteness dist Sa; Sbð Þð Þ.

2.1.6.3. Practical implementation and fusion of the SD and IBM
submodels. We chose xjTek's AnyLogic 6.4.1, an Eclipse-based
development environment, to implement both submodels. Since
this framework is object-oriented and relies entirely on Sun's Java
Virtual Machine (JVM), the SD and IB model components could be
integrated as Java classes. As a consequence, interactions between
SD components and IB agents could be translated as algorithms
performing data exchanges between objects. This offered an
opportunity to bridge the SD model with IBM agents in a simple
yet flexible manner, and this inside of a single program. Conceptu-
ally, the SD model was virtually embedded inside of the class of
agents representing sites. Technically, this meant that for each
instance of the “site” class, an internal reference to a new instance of
our SD model was created. Moreover, to facilitate the interaction
between each agent and its assigned SDmodel instance, we included
in the structure of the template SD model two stocks – an
immigration stock and an emigration stock – with which the agent's
Fig. 4. Evolution of the infected population in comparative runs between the traditional
compartmental model (a), and three runs of the hybrid model (scenario A) with 100%
(b), 56% (c), 24% (d) and 13% (e) network connectivity (measured as the percentage of
nodes in the network with which a node is linked in average) obtained by setting the
neighborhood range parameter to +∞, 360, 180, and 125 km respectively.

image of Fig.�3
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Fig. 5. Prediction of the traditional compartmental model versus typical runs of our
hybrid model with the same parameters. The latter, thanks to its capacity to explicitly
represent the epidemic network, produces episodes featuring a longer duration, lower
instantaneous prevalence, and complex dynamics with multiple peaks (upper half).
What is more, rendered without the well-mixed assumption, the epidemics show a
tendency to bounce back and engender several episodes (lower half). Note that
simulations of an outbreak in an isolated site using the traditional compartmental
model would only return a single peak and no resurgent behavior.
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algorithmic rules could programmatically interact to perform the
migration of infected individuals between sites. In short, a dedicated
rule was written in the site agent class to retrieve the information of
the emigration stock of the current site agent and, following the
weighted distribution function (Eq. (2)), dispatch the infected
individuals in the form of increments of the neighboring sites'
immigration stocks.

2.2. Simulation experiments, parameters, and analysis

The model was run to simulate the spread of a contagious disease
in a metapopulation under various conditions. First, taking the same
epidemiological parameters for every population, the SD–IB hybrid
model was executed with different types of distribution of the
metapopulation. Three main scenarios were then tested:

Scenario A The metapopulation is distributed in a regular and fully-
connected network (i.e. sites are uniformly distributed
and each of them is connected to every other site of the
network).

Scenario B The metapopulation is distributed in a random layout in
which the distance between neighboring sites is highly
variable and impacts the connectivity of the network, but
each population has strictly the same size.

Scenario C The metapopulation is distributed in a fixed layout, and
the population's size is allowed to vary between sites.

Iterative runs with conditions ranging from scenario A towards a
reduction of the network connectivity were also performed. Note that,
in this paper, “network connectivity” stands for a metric defined as
the percentage of the total network that sites have within their
neighborhood range in average (i.e. the share of the network they are
connected to). For example, in a network of 11 sites, if in average each
site is connected to 5 other sites, the network connectivity equals 50%.
As already mentioned, a “neighborhood range” parameter controlled
the distance under which sites were considered as neighbors, and
indirectly allowed in the scope of this experiment to produce
metapopulations with different values of network connectivity.

The result of each runwas qualitatively comparedwith predictions
from a classic compartmental model based on the well-mixed
assumption. For each experiment, the latter model, based on Eq. (1),
was initialized with exactly the same epidemiological parameters as
the ones used for the simulation of local outbreaks in the hybrid
model, and the susceptible compartment (S) was set to a value
equivalent to the size of the entire metapopulation (refer to Table 1
for exact values).

In a second step, while sticking to a fixed network layout and equal
population size for every population, sensitivity analysis (S.A.) was
performed on epidemiological and spatial parameters (contact rate,
immunity loss rate, starting point of the epidemic, and emigration
rate) to evaluate their impact on the epidemic's development.
Different sets of values were chosen and the model was run
sequentially with each of them to determine the joint effects of
parameter changes. The ranges used for this sensitivity analysis are
reported in the comments of Table 1. Additionally, to evaluate the
impact of dynamic variations during the epidemic (resulting from
prophylactic measures for example), the values of some of these
parameters (contact rate and emigration rate) were also varied
manually at runtime through the model's graphical control interface.

3. Results

3.1. Qualitative impact of variations at the metapopulation scale

In scenario A, the evolution of the prevalence output by the hybrid
model was very close to the prediction made by a classic SIRS model,
which considers the metapopulation as well-mixed. With a gradual
lessening of the network connectivity, however, the discrepancies
with this model worsened (Fig. 4).

In scenario B, the previous tendency was accentuated. Here, the
hybrid model displayed complex dynamics. The delay introduced by
the spread between sites considerably influenced the global evolution
of the outbreak. On top of introducing an obvious lag in the spread of
the epidemic, it also reduced the spot prevalence of the disease in the
metapopulation during thewhole length of the experiments. The force
of infection f = βI = S + I + Rð Þ was also proportionally impacted.
Moreover, the shape described by the evolution of the overall infected
population showed great variability, as opposed to the regular peak
produced by traditional compartmental models. Several peaks of
different amplitudes could be visible during a single episode (Fig. 5,
top). More importantly, the epidemic exhibited a risk of installing
itself and becoming resurgent (Fig. 5, bottom). The model showed
that the location of the starting point of the outbreakwas an important
parameter conditioning the appearance of such a behavior (Fig. 7).

The last scenario (C) was mainly aimed at testing the effect of
heterogeneity in demographic parameters (here, population size) on
the epidemic spread. Therefore, the network topology stayed fixed
while the populations varied in size between sites. Fundamentally, the
output of this model was comparable to what was obtained for
scenario B. Furthermore, we observed that variations of population
size on a single site could alter the geographic propagation path of the
disease (Fig. 8). Seen on a global scale, this resulted in different
possible developments of the epidemic, which could reach all sites in a
single burst (Fig. 8, top), be impaired in its progression (Fig. 8,
middle), or even come to a sudden end (Fig. 8, bottom) depending on
the size of the population attributed to the site.

Globally, the network topology as well as the starting point of the
outbreak proved to be very important parameters influencing the
duration, amplitude, shape and resurgence in these scenarios.

image of Fig.�5


Fig. 6. Snapshot of the evolution of the number of local infected individuals and
immigrating infected individuals at the starting point of an emerging resurgent
epidemic episode.

Fig. 7. Impact of the location of the epidemic's starting point on its evolution. A local
outbreak was started on two different sites in separate simulations. The results of the
evolution of the large scale epidemic are represented in the chart. In one case, after a
dense and long episode with average prevalence, the disease dies off. In the second run,
even though the epidemic peaks at high prevalence and seems to disappear very fast,
several other episodes eventually follow, exhibiting globally a resurgent behavior.
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3.2. Coupled effects of epidemiologic parameters and topology of the
metapopulation

When varying the transient immunity duration, we could observe
that the higher the value of the latter was, the lower the number of
sites that could give birth to a resurgent epidemic was. This
parameter interacted in a highly sensitive way with the network
topology. For example, on a given fixed layout with 29 connected
sites, we obtained that with dr = 29weeks, all the sites were
potential starting points for resurgent epidemics, whereas with
dr = 30weeks and dr = 31weeks, their numbers were reduced to 22
and 3 respectively, translating into a global risk of resurgence of 0.75
and 0.10 respectively.

The effects of varying the migration rate were also investigated.
High migration rates (superior to 0.25) lead to a dampening of the
periodic oscillations generated by the epidemic episodes. In such
cases, ultimately, we observed a convergence to a stable equilibrium.
Another experiment involved simulating the effect of “cutting off”
migrations inside of the metapopulation once a resurgent epidemic
is installed. This resulted in a strong decrease of the global
prevalence over the following months, with lower peaks than
before, and an apparent eradication of the disease generally after
less than 3 years. However, at this point, although only a negligible
fraction of infected individuals were left (b0.005% of the total
population), allowing migrations again in the following months was
enough to generate a violent epidemic resilience. Further results
arose from studying the effect of dynamically modifying the contact
rate of the disease. First, we could notice that an epidemic requires a
lower contact rate to survive than to initially spread. For example,
launching a successful epidemic required a contact rate of 1.335
while a minimum of 1.207 was enough to maintain it (given that the
decrease didn't take place abruptly but progressively). In another
experiment, we compared the decrease in transmissibility (i.e.
contact rate) needed to break a stable epidemic with different
migration rates.We observed that the higher themigration rate was,
the more the epidemic was resistant to lower disease transmissibil-
ity. For instance, always on the same map, with a migration rate of
0.14, the epidemic could survive to a contact rate of 1.10, whereas
with a migration rate of 0.01 the epidemic died off if the
transmissibility dropped under 1.207. This apparent interference
between demographic movements and epidemiological processes
suggests the higher efficacy of synergistic containment initiatives.
Finally, we also monitored a peculiar and counterintuitive behavior
when the critical contact rate at which the epidemic is not viable
anymore was reached. Before the abrupt disappearance of the
epidemic, the peaks started growing more and more in amplitude
while their frequency decreased.
4. Discussion

4.1. Model results

4.1.1. Importance of network topology
On top of the importance of the outbreak's origin on the epidemic's

success, we could observe that network topology itself was an
essential factor that could influence whether or not a disease would
spread. Indeed, taking the same epidemiological parameters, model
runs with several different distributions of the metapopulation
returned totally different results, some of them exhibiting large-
scale resurgent epidemics, others a single fleeting and weak outbreak.

An explanation for the appearance of this phenomenon lies in the
fact that, unlike traditional compartmental models, the hybrid model
could reckon with spatio-temporal waves and geographically isolated
pockets, which could serve as sparks to reignite a new episode. A
closer look at the starting point of a resurgent epidemic episode
showed that a small number of remaining infected individuals
traveling in waves across the network and converging to a same site
were the trigger of new episodes (Fig. 6).

The dramatic resurgent behavior of the epidemics exhibited by
many of the hybridmodel's runs reproduces behaviors that have often
been reported in real outbreaks (Gubler, 2002; Raga et al., 2008; Riley
et al., 2003) and completes previous observations made using
different methodologies (Vazquez, 2007; Watts et al., 2005).

Also, even if this paper was not aiming to provide a full insight on
the impact of network topology on the evolution of outbreaks, results
from our model reveal the critical importance of this factor, which
proved to be able to strongly modulate almost all the aspects of
disease contagion (amplitude and number of epidemic peaks,
cumulative incidence, duration of the outbreak, number of episodes,
etc.). For instance, the hybrid model predicted that an epidemic

image of Fig.�6
image of Fig.�7
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episode could die-off if occurring in a network featuring a site carrying
a smaller population entrapped in a bottleneck (Fig. 8, bottom).
Moreover, as exposed in Section 3.2, spatial parameters could interact
with epidemiological parameters in a synergistic or destructive way,
with metapopulation-scale properties either exacerbating or balan-
cing the contagion mechanism. This variability of epidemics depend-
ing on network topology has been constantly exhibited by our model,
and proves that metapopulation structure is a factor of control
important to integrate in the prophylaxis of transmissible diseases. On
Fig. 8. Effect of local population size variations on the evolution of an epidemic. An
outbreak is started on the most upper-right site of the network. The propagation of the
outbreak is evaluated depending on the size of the population located on the circled
site: original size (i.e. 5000 individuals) (top), 50% (middle) and 20% (bottom) of the
original size. In the first case, the outbreak spreads to the whole network through both
paths A and B, whereas in the second case, it is too weak to transmit the disease through
path A. In the last case, the small population size combined with the topology of the
network causes the epidemic to die off.
this aspect, the experiment simulating a suppression of migrations
(Section 3.2) particularly underlined the usefulness of being able to
restrain spatial processes and parameters but also the risk of relaxing
policies before the total control of the epidemic. Besides, the results
presented in Fig. 7, Fig. 8, and Section 3.2 also imply that all sites are
not equal in importance, and as a consequence targeted policies on
selected sites can have a far greater effect than metapopulation-wide
measures. This is in accordance with conclusions from previous
individual-based stochastic simulations of the worldwide spread of
the severe acute respiratory syndrome (SARS) (Hufnagel et al., 2004)
and of the spread of foot-and-mouth disease virus (FMDV) at a
regional scale (Keeling et al., 2003).

It is important to note that standard compartmental models based
on a homogeneous representation of the metapopulation rely solely
on the positive feedback loop responsible for the amplification of the
infection process to generate cyclic episodes. In some cases, it has
been observed that for this purpose, they end up computing
infinitesimal values for the number of individuals remaining in the
infected stock (I). The correctness of this calculation is doubtful and
can be risky (Bartlett, 1957). On the contrary, here, thanks to the
mechanism revealed previously (Fig. 6), the hybrid model could
produce such oscillatory behavior without considering fractions of
remaining individuals for the number of infected and the number of
migrating individuals. Accordingly, we can say that the network
topology itself possesses the intrinsic capacity to make epidemics
resurgent and can explain alone such phenomenon.

It should be noted that the previous findings are emerging
properties of the structure of the metapopulation network only and
are not characteristic of the precise type of compartmental epidemic
model used here to simulate outbreaks. Some results were confirmed
by replacing the SIRSmodel by a classic SIR model with vital dynamics
(i.e. featuring a logistic population increasing up to a carrying capacity
and independent death rates for I and R) (Vincenot andMoriya, 2009).
Besides this, unlike in previous metapopulation models (e.g. Watts et
al. (2005)), the real-life phenomena discussed earlier could be
reproduced without resorting to any form of stochasticity.

Some anterior works have sought to explain the multiple peaks
observed in many epidemics by rendering the cross-protection
between strains (Lavenu et al., 2004). This hypothesis is certainly
satisfying in many cases, but it cannot always explain the dynamics
observed for influenza outbreaks. For instance, in the data presented
in Fig. 1, two main peaks are visible while no interaction between
strains could be identified as the episode was driven by the single AH1
strain. At such a large scale, metapopulation structure can offer an
explanation for such phenomenon as illustrated in the simulation of
Fig. 5 (top) for example.

4.1.2. Detrimental impact of the well-mixed assumption to represent
large-scale epidemics

Splitting the metapopulation in several distant spots was enough
to engender complex spatial dynamics, which would be very difficult
or impossible to reproduce with aggregated models. The evolution of
the epidemic proved to be a function of the distribution of the
populations depending on their distance from the starting point. The
notion of distance between sites (hosting populations) and starting
point of epidemics are obviously not integrated in models that
consider the metapopulation as a single well-mixed entity. This
deficiency was clearly visible here (Fig. 4) and it was exacerbated
when considering local population size variability (as demonstrated
with scenario C).

A further divergence exposed by scenario C happened with the
threshold over which the disease spreads. Compartmental models
generally use the basic reproduction number R0 as metric for this
purpose. As expected, this was still verified on the local scale in the
hybridmodel; if R0N1was true for a given site, the disease could break
out inside of this population. Nonetheless, as opposed to what models

image of Fig.�8
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based on thewell-mixed assumptionwouldpredict, this did not assure
that the disease would spread successfully throughout the metapo-
pulation. A second threshold appeared at themetapopulation scale. At
this level, the spread of the disease was also conditioned by the
migrations of individuals between sites. The combination of popula-
tion size and connectivity of each site determined the number of
infected individuals it would distribute to its neighbors. As a
consequence, it was possible for a site not to get enough migrants to
ignite a local outbreak, owing to the limited size or particular
connectivity of his neighbors or both. Logically, except the starting
point, any site for which ∄t∑Sn�neighbors Scurrentð ÞT Sn; Scurrent; tð Þ≥1 would
surely not act as a relay for the outbreak. This could impact the spread
of the disease, and, dependingon the position of the site in the network
topology, even bring an end to the epidemic (Fig. 8). It is safe to assume
that this phenomenon would be amplified in more realistic models
including stochastic mortality during migrations, an explicit lag
proportional to travel duration, or migration strengths depending on
the actual connectivity between sites. This limited capacity of R0 to
judge from the chance of an outbreak to turn into an epidemic in this
hybridmodel supports the results obtained byWatts et al. (2005)with
a stochastic individual-centered model, and fuels the surfacing debate
on the disputable value of this metric to predict the outcome of large-
scale epidemics (Larson, 2007).

From the previous observations, we can stress that the use of
compartmental models to represent epidemics in a population will
inevitably be flawed if the population does not meet strictly the
conditions of random-mixing. By definition, the latter assumption is
rarely verified for metapopulations. This leads us to the conclusion
that traditional aggregated models should be avoided when possible
or should only be used with extreme care to simulate processes taking
place inside of metapopulations such as large-scale epidemics. This
corroborates results obtained about the detrimental effects of the
well-mixed assumption in other fields (Beauchemin, 2006).
4.2. Model implementation

4.2.1. Modeling flexibility
The hybrid model presented here can be seen as an incarnation of

Bailey's (1975) view of large-scale epidemics as metapopulation-scale
phenomena emerging from the transport of individuals between
interconnected subpopulations subject to concurrent disease out-
breaks (as visible in Fig. 1). To render this multiscale nature of
epidemics, our solution had a simple structure composed of two
interacting layers (network of IBM agents, and at lower level, SD
models). Its design was quick and straightforward considering the
respective capabilities of the SD and IBM paradigms. Moreover, the
sole creation of templates of an IBM agent class (for sites) and an SD
submodel (for local outbreak dynamics) was needed, leaving all the
instantiation, inter-agent linkage and distance calculation work to the
framework. Consequently, further modifications, even dealing with
local heterogeneities, were easy to perform thanks to the good
structuring made possible by this hybrid system. At runtime, owing to
the complete fusion of the IBM and SD models inside of the JVM, full
feedback became available from both approaches. As a consequence,
all the processes taking part in the epidemic's dynamics could be
exposed in real-time for analysis (as visible in Fig. 3). The spread in
the metapopulation was visible at the IBM level through a gradient
change of color of the clouds representing sites depending on their
epidemic stage as well as the display of the disease prevalence on each
of them, while the real-time dynamics of the local outbreaks could be
queried and displayed in SD form for any site selected. On top of this,
stock-and-flow display was a convenient and accessible way to
describe and show in real-time the local epidemic processes. It proved
to be much easier and quicker to handle than differential equations or
algorithmic rules. In this aspect, it enhanced considerably the
understandability and communicability of the model, while making
it easier to analyze.

4.2.2. Hybridization in comparison with single paradigms
From a technical point of view, so far, two major modeling

techniques have been in use to build metapopulation models:
Individual-Based Modeling (hereafter referred to as “Agent-Based
Modeling” to avoid any semantic ambiguity in the following
description) and Cellular Automata. In comparison to these single
paradigms, the hybrid model approach described in this paper fills a
technical void and presents several advantages.

4.2.2.1. Multi-agent systems only (IBM/ABM). Two alternatives exist
when simulating epidemiologic outbreaks with Agent-Based Model-
ing (ABM) only.

First, agents can be used to represent individuals. This offers
flexibility and the highest precision by integrating individual
heterogeneities in the model (Kramer-Schadt et al., 2009). Still, this
also comes with some drawbacks, the major one being that the
simulation of a large number of individuals is computationally very
heavy, posing a problem of tractability (Bansal et al., 2007). The larger
the metapopulation to render, the longer the simulation takes to
compute (Fig. 2, top). This problem does not occur with the hybrid
model because the population dynamics is expressed as numbers,
relaxing the need to consider each individual explicitly. Also, ABM
expresses the behavior of individuals in the form of algorithms. This
makes it more difficult to track the epidemic's dynamics than with the
stock-and-flow display available in the hybrid model. Indeed, ABM
makes it easy to visualize the behavior of individuals, but, unlike
System Dynamics, it does not offer a way to explain the causes of the
system's behavior.

A second variant is to use agents to represent sites (Keeling et al.,
2001). In this case, the only difference with our solution is that the
processes involved in the local outbreaks have to be described
algorithmically. This presents no advantage. On the contrary, this
form of description can be very hard to understand, analyze, and
communicate as visible in an indisputable way throughout the
history of software engineering (Eisenstadt, 1993). The most
important factor of problems is the difficulty to create a robust
mentalmodel of how an algorithmworks (Pennington, 1987; Vessey,
1989). Notwithstanding the promising standardization of a model
description protocol for agent-based models (Grimm et al., 2006;
Grimm et al., 2010) and the increasing use of flowcharts to explain
algorithms, this remains a delicate issue (see, for example, Pitt et al.,
2003). In the hybrid model, this obstacle is alleviated by the use of
SystemDynamics andmore precisely stock-and-flow representation,
which eases the understanding of the functioning of the local
epidemiological processes by presenting both the causal relations
between the different state variables and parameters (which can be
transcribed on paper) and the dynamic variations of the value of each
variable at runtime.

4.2.2.2. Cellular Automata (CA). Cellular Automata are natively
spatially-explicit and present a regular grid-like structure of inter-
connected cells. Each cell has states and a neighborhood. The future
state of a cell is a function of its current state and the state of its
neighbors. All these properties are fitting to describe epidemiological
spread. This explains why a significant number of epidemic models,
especially probabilistic ones, have been based on this technique
(Kawasaki et al., 2006; Schneckenreither et al., 2008; Sirakoulis et al.,
2000; White et al., 2007). The simplicity of the concept of CA also
results in simulationswith short execution times (Emrich et al., 2008).
Nevertheless, fundamentally, CA is no more suitable than ABM to
model network epidemics in a deterministic manner. It has the same
downsides as the second variant of ABM models described above for
the same reasons. What is more, it presents a further conceptual flaw:
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modeling a network by a grid is unnatural. In grids, every cell has the
same number of other cells to which it is connected. On top of this,
these “neighbors” are all located in the direct proximity of the cell at
equidistant locations. Obviously, this contrasts with the description of
metapopulations, which are structurally closer to networks or graphs.
In this aspect too, the hybrid approach is more optimal.

4.2.3. Applicability of this hybrid approach and potential evolution
The hybrid model described in this paper is one of a few able to

simulate large outbreaks occurring at several concurrent levels. Our
metapopulation model offers a tractable deterministic alternative to
Watts et al.'s (2005) stochastic formalization of Bailey's (1975) view.
An advantage of the present model resides in its capability to serve as
platform to free existing compartmental epidemic models from the
homogeneous mixing assumption at the metapopulation scale.
Traditional compartmental models are generally expressed as
ordinary differential equations. System Dynamics, which is used in
our hybrid model to render local outbreaks, is based on an ordinary
differential equation solver. Therefore, any compartmental model can
be very easily imported in the hybrid framework and run in a
distributed metapopulation. Moreover, once integrated, its structure
is visualized through stock-and-flow representation, thereby making
it more intelligible. The switch to System Dynamics also comes along
with many precious tools to analyze the model's internal dynamics. In
this manner, existing compartmental models can be reused and
augmented inside of the hybrid model presented here.

Thanks to a spatially-explicit disaggregation of the metapopula-
tion in sites, the capacity to consider local heterogeneities was gained.
This is especially valuable if we bear in mind that some usual
parameters of compartmental epidemic models rely on local-scale
mechanisms. For example, it has been shown that the outcome of
Feline Leukemia Virus (FeLV) epizootics can depend heavily on
density-dependent host population dynamics (Fromont et al., 2003),
which we are able to integrate on a local scale using the model
presented here. Incidentally, the increase in precision allowed by this
approach also enables to test local countermeasures, something that
traditional compartmental models have not been able to do.

Our hybrid approach lifted the assumption that the metapopula-
tion is well-mixed. Still, it should be noted that the choice of the
resolution at which the disaggregation into sites happens is critical to
avoid the same approximations as with the previous assumption.
Actually, the size of sites must be chosen to maintain a random-
mixing of the population that they each carry. Ideally, populations
should be small enough for each individual to be a potential vector of
the disease and be able to infect in a direct manner any other member
of the population he belongs to.

Additionally, under some circumstances, it may be necessary to
take individualities into consideration (Bansal et al., 2007; Kramer-
Schadt et al., 2009). Individual-based models have been used to tackle
such situations, but they pose some serious tractability issues (cf.
Section 4.2.2). A possible evolution of the current model could offer a
way to solve this dilemma. SD–IB hybrid modeling makes it possible
to model a component (here, the outbreak dynamics in a local
population) in both SD and IBM, but have it simulated in only one of
them at a time, with an event triggering the change of paradigm
(Vincenot et al., 2011). Epidemics are more sensitive to individual
behaviors in their early stages. Afterwards, their evolution can be
rendered with a reasonable approximation with aggregated models
relying on the law of large numbers, which have the advantage of
being lighter to compute. Therefore, it would be possible to render
individual-scale mechanisms at the early stage by having each site
also contain an IB model of local outbreak dynamics. As soon as the
second phase of the epidemic is reached, the IB model could be
replaced dynamically by the SD model to switch back to the
previously described solution. In this manner, in case of individuality
being a necessary aspect to integrate in the model, this technique
would make it possible to opt for an advantageous tradeoff between
precision and tractability.

Lastly, taking into consideration the deterministic nature of this
hybrid model, we ignored on purpose fractions of individuals in the
computations (see Section 2.1.6.1). If this choice was adapted for the
present study, it induces some shortcomings. The most obvious one is
that a parametrization that engenders no global epidemic with our
model could very well yield different outcomes when run with a
model not based on the previous design choice. Moreover, we can
safely assert that our model is not able to cover all the space of
possible epidemic scenarios due to this. Therefore, in other works, it
could probably be beneficial to wave this limitation. To this end,
simply introducing stochasticity represents one obvious solution.
When encountering a fraction, the model could simply use it as a
probability of the existence of an individual in the compartment
considered. Another option lies in the dynamic transition between
IBM and SD for the rendering of local outbreaks as described in the
previous paragraph, because individuals would be rendered explicitly
when present in low numbers. The stochastic interactions of
individuals would then translate more accurately what fractions
may represent in the aggregated SD model.
4.3. Implications for future research

“The pathogen is nothing, the environment is everything”

This quotation attributed to physiologist Claude Bernard (1813–
1878) should probably be more often minded in the field of
epidemiology and animal disease modeling. As already recommended
by Hethcote (1995) in his review of “A thousand and one epidemic
models”, we advocate that less time should be spent studying endless
parameter variations in compartmental models. Instead, we suggest a
reorientation of research efforts towards a deepening of our
understanding of the role of metapopulation spatial structure and
heterogeneities between populations on the outcome of epidemics.
The present study was not aiming at doing an in-depth analysis of
network epidemic models, but it pointed out several critical factors
that strongly impact them and that cannot be taken into account by
traditional compartmental models. Moreover, the divergence be-
tweenwhat was displayed by our hybridmodel and the results output
by a classic compartmental model confirmed that the latter carries
several critical limitations, all originating from the premise that the
metapopulation is well-mixed. This leads us to stress the importance
of lifting this assumption, and more generally to study the effects of
spatial disaggregation on compartmental models. To these ends, the
original hybrid technique that we have presented here seems like a
fitting alternative as regards simplicity, intuitiveness, and analytical
power.
5. Notes

For demonstration purpose, a simplified version of the model
presented in this paper has been released online at the following
address: http://bre.soc.i.kyoto-u.ac.jp/~vincenot/models.html.
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