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Abstract
Recent advances in ecological modeling have focused on novel methods for characterizing the
environment that use presence-only data and machine-learning algorithms to predict the likelihood
of species occurrence. These novel methods may have great potential for land suitability
applications in the developing world where detailed land cover information is often unavailable or
incomplete. This paper assesses the adaptation and application of the presence-only geographic
species distribution model, MaxEnt, for agricultural crop suitability mapping in a rural Thailand
where lowland paddy rice and upland field crops predominant. To assess this modeling approach,
three independent crop presence datasets were used including a social-demographic survey of farm
households, a remote sensing classification of land use/land cover, and ground control points, used
for geodetic and thematic reference that vary in their geographic distribution and sample size.
Disparate environmental data were integrated to characterize environmental settings across Nang
Rong District, a region of approximately 1,300 sq. km in size. Results indicate that the MaxEnt
model is capable of modeling crop suitability for upland and lowland crops, including rice
varieties, although model results varied between datasets due to the high sensitivity of the model
to the distribution of observed crop locations in geographic and environmental space. Accuracy
assessments indicate that model outcomes were influenced by the sample size and the distribution
of sample points in geographic and environmental space. The need for further research into
accuracy assessments of presence-only models lacking true absence data is discussed. We
conclude that the Maxent model can provide good estimates of crop suitability, but many areas
need to be carefully scrutinized including geographic distribution of input data and assessment
methods to ensure realistic modeling results.
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1. Introduction
Understanding land suitability is important for a host of scientific questions and policy
applications. Whether for studies involving the spread of invasive flora and fauna, patterns
of rare and endangered species, agricultural productivity, or land use dynamics in human-
managed landscapes, land suitability analysis has gained increasing favor among social,
natural, and spatial scientists, in part, due to recent advances in geographic information
sciences, statistical modeling, and spatial analysis. Similarly, niche-based modeling of
species distributions and habitat suitability have rapidly developed in part due to the greater
availability of geo-spatial data and the need to model ecological phenomena across the
landscape, particularly, in response to land use dynamics, climate change, species invasion,
and conservation biology. With the development of niche-based models, a suite of new
applications have been developed to predict geographic outcomes from environmental data.

Niche-based models link environmental and geographic space by linking species locations
with environmental conditions and then geographically-projecting where the species are
likely to be found based on suitable environmental conditions (Guisan and Zimmerman
2000; Austin 2002; Dudik et al. 2004; Guisan and Thuiller 2005; Peterson 2003; Hirzel and
Le Lay 2008). There are a variety of models and techniques that have been used to assess
and predict habitat patterns and species distributions including climatic-envelop models,
statistical models, such as Generalized Linear Models and Generalized Additive Models,
and machine-learning algorithms such as Genetic Algorithm for Rule-set Production -
GARP (Stockwell and Peters 1999) as well as Maximum Entropy - MaxEnt (Phillips et al.
2006, 2009). While numerous models exist (see Elith et al. 2006 for a review), there is a
consensus that machine-learning algorithms are consistently among the best performing
models (Elith et al. 2006; Hernandez et al. 2006; Ortega-Huerta and Peterson 2008). Such
models optimize their performance based on iterative calculations that use defined
geographic positions of target species and their environmental conditions to calculate habitat
suitability or the likelihood of species presence (Dudik et al. 2004; Phillips et al. 2006;
Stockwell and Peters 1999). The development of these models has resulted in new methods
that may be applicable to other geographic applications such as land suitability analysis. Of
interest here are the presence-only models, such as MaxEnt, that do not require true-absence
data, which is often difficult to define or collect, particularly, in geographically inaccessible
areas as well as in many parts of the under-developed and developing worlds.

This paper describes and assesses a new application of presence-only modeling –
agricultural crop suitability mapping. The application of a machine-learning, algorithm-
based model designed to estimate the likelihood of occurrence, based on presence-only data,
has great potential for use, particularly, where extensive land use information is often
difficult to obtain. Crop suitability research has a strong tradition of integrating expert and
traditional knowledge with environmental data using analog techniques including soil
surveys and aerial photo-interpretation, and more recently, a geographic information system
(GIS) approach to integrate local site conditions and regional settings of ecological
parameters (Bandyopadhyay et al. 2009; Joel et al. 2009). Multi-criteria evaluations (Pereira
and Duckstein 1993; Ceballos-Silva and Lopez-Blanco 2003; Rahman and Saha 2008),
fuzzy classification techniques (Groenemans et al. 1997; Burrough et al. 1992; Joss et al.
2008; Kurtener et al. 2008), and simulation models (Littleboy et al. 1996; Manna et al. 2009)
are commonly used to measure the suitability of extant distributions and to predict suitability
across the landscape. These techniques require either a detailed a-priori knowledge of the
required conditions (i.e., multi-criteria evaluation and simulations) or absence data (i.e.,
multi-criteria evaluation and fuzzy classification).
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Novel presence-only, machine learning algorithms are potentially well-suited to the type and
quality of existing data often used in land suitability analysis. In such studies, the landscape
is generally sampled by the placement of field plots, often used to calibrate and validate a
remote sensing image classification. In such studies, the field data are not necessarily
collected with modeling in mind. In this study, we focus on an agricultural landscape in
Northeastern Thailand and the application of the MaxEnt model to assess crop suitability in
a former agricultural frontier. The study area is well positioned to serve our project needs.
Because of our long history of work in the region, we have assembled a rich longitudinal,
demographic database of household characteristics, location of nuclear villages of survey
and non-survey villages, demarcation of village territories indicated by household use
patterns, and land use/land cover information for household field plots for the year 2000.
Through previous efforts, and in support of this paper, we have developed an array of GIS
coverages derived to assess geographic accessibility and resource endowments, as well as an
extensive satellite image time-series that has been classified into land use/land cover types
and validated in the field for contemporary imagery and through the interpretation of aerial
photography for historical periods (Walsh et al. 2005).

1.2 Research Aims
The aim of this paper is to assess the application of presence-only data for crop suitability
modeling, using the MaxEnt, model for upland cassava and lowland paddy rice varieties in a
human-managed landscape in Northeastern Thailand. First, we briefly review the
assumptions of our modeling approach. Second, we determine crop suitability using the
geographic presence-only model, MaxEnt, for the dominant lowland and upland crops in the
study area. Third, using independent data sources, we explore the difference between model
outputs based on the sample size and distribution of input data. Model assessment is
conducted using the Receiver Operating Characteristic (ROC) and Cumulative Distribution
Functions (CDF) plots within and between crop datasets.

1.3 Study Area Nang Rong District, Northeastern Thailand
Nang Rong district, located in Buriram province, occupies approximately 1300 km2 in
Northeast Thailand (Figure 1 – Note that the location of actual study villages has been
omitted for confidentiality reasons related to Human Subjects research). The district is
geographically positioned in the southwest portion of the Khorat Plateau, a wide and
shallow basin that is underlain by Cretaceous sandstones, shales, and siltstones, intruded in
places by Tertiary basalts. The dominant occupation in the region is farming and the
majority of farm households own on average three hectares of land (Ghassemi et al. 1995).
Per capita income in the Northeast is the lowest in the country, largely because of low and
unstable agricultural productivity resulting from inconsistent monsoonal rains and generally
poor soils and inadequate drainage (Parnwell 1992). Nearly one-third of the region is
unsuitable for successful cropping due to steep topography or soil laterization (Parnwell
1988), and only one-third of the land area is suitable for the cultivation of rice, though yields
are only moderate. In the upland settings, where cassava and sugarcane dominate, the soils
are susceptible to erosion. Throughout the region, the soils are generally infertile with high
levels of salinity or acidity (Ghassemi et al. 1995). The exception is the alluvial soils of the
lowlands that support relatively high yields of rice, limited, however, by flooding caused by
extreme monsoonal rains. Over 80-percent of the average annual precipitation that affects
the Northeast occurs as unevenly distributed torrential rains that occur between April and
November (Kaida and Surarerks 1984). For the remainder of the year, soil moisture deficits
are common and droughts and floods are a persistent threat to agriculture (Fukui 1993).
Topography and agricultural suitability are explicitly linked, particularly, to the biophysical
characteristics of the region s landforms, i.e., hills, uplands, high-, medium-, low-terraces,
and floodplains. Figure 2 shows the idealized cropping systems, agro-geomorphic settings,
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land use, and resource limitations and gradients between the uplands and lowlands in
support of agriculture.

1.4 Social-Ecological Context of Nang Rong District, Northeastern Thailand
The people of the Northeast live in nuclear villages in which household dwelling units are
clustered in space and associated agricultural lands are arrayed in a general circular pattern
surrounding the village centers. Land parcels of associated farm households are generally
discontinuous in space. Villages were historically located in close proximity to rivers to
support the dominant crop, rain-fed paddy rice, for subsistence agriculture, but now villages
include upland area and practice a mixed subsistence and commercial cultivation. For
lowland villages, rice paddies dominate the landscape. The highlands are dominated by
forest remnants resulting from deforestation that began in the district in the late 1960s and
early 1970s. Through agricultural extensification, cassava, and to a lesser degree sugarcane,
corn and jute, were cultivated by Thai farmers who began a transition from subsistence
agriculture to a mix of subsistence and commercial agriculture by cultivating forested
uplands (Walsh et al. 1999). The upland field crops, primarily cassava, have very different
resource requirements than lowland paddy rice. In addition, the upland field crops can be
left in the field for a period of time without significant yield declines, thereby, affording the
opportunity to focus labor, time, and energy on lowland paddy rice during planting and
harvesting periods. Today, the isolated parcels of upland field crops have coalesced into
extensively cultivated fields that are suitable for mechanized agriculture. Between the
uplands and the lowlands, high-, medium-, and low-terraces exist that extend the field crops
“down” into the high-middle terraces and the lowland paddy rice “up” into the low-middle
terraces, depending upon environmental conditions, geographic accessibility from nuclear
villages, and crop prices. The terraces are considered transitional areas between the upland
field crops and the lowland paddy rice.

1.5 Assumptions, Simplifications, and Limitations
The MaxEnt model is a niche-based model that assumes the distribution of observations, i.e.,
presence data, represents the realized niche. Although the niche concept (Hutchison 1957) is
central to ecology and biogeography, considerable debate remains about definitions of the
niche and how the niche concept is applied to geography and space (Pulliam 2000; Soberon
2007; Hirzel and Le Lay 2008; Araujo and Guisan 2006; Peterson 2003; Jimenez-Valverde
et al. 2008). This is particularly important given the rapid increase and broad availability of
species data and the methods for deriving species distributions and habitat models. At the
very outset, niche-based modeling requires a clear statement of how the niche concept is
defined and applied (Guisan and Thuiller 2005; Austin 2007). In a human managed
ecosystem, such as Northeastern Thailand, the niche concept must be re-defined. In such
environments, the realized niche for crops is described by the geographic position of their
cultivation, based on the modified environment, for instance, irrigation practices or the
geographic distance from the village to the agricultural plots of households, as well as socio-
economic conditions such as market prices and labor availability.

In our use of the MaxEnt model, we have made the following assumptions and
simplifications, given our project objectives and the available data: (1) agricultural crops are
grown more often in better suited locations relative to other crops. Rain-fed paddy rice is
best suited to lowland settings that are accessible to sufficient water and alluvial soils,
whereas cassava grows best on drier, upland settings. Thus, the MaxEnt species distribution
model is appropriate for this analysis as best” and “worse” geographic settings are used to
describe the primary rice vs. cassava suitability; (2) human management is either systematic
(i.e., use of upper terraces for cassava and alluvial areas and low terraces for rice based on
geomorphic setting and elevation, and fertilizer use based on soil constraints) or random
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(i.e., household application of pesticides and access to household labor) across space. As
such, human management is captured as a co-variant of existing environmental conditions or
it is viewed as a stochastic process; (3) land use decision-making by households is a process
that is influenced by environmental settings and conditions, socio-economic factors, and
demographic considerations. Our model does not explicitly consider the socio-economic and
demographic aspects of crop choice, but like other factors of human management, we
assume that these choices are either systematic or random across the study area; (4) since
human-management factors, such as commodity prices, as well as environmental factors,
such as the timing and amount of monsoonal rains, can vary over time, our model applies
only to conditions in the year 2000, a normal to wet year in Northeastern Thailand and
average crop prices on the local and global markets; and (5) Just as ecological niches have
regional variations of soils and climate (Murphy and Lovett-Doust 2007), socio-ecological
niches also have regional variations of culture and context and thus our model results are not
directly transferable beyond our study region, however, the applicability of the general
approach to modeling crop suitability using the MaxEnt model in human managed
landscapes is suggested through the subsequent project findings.

2. Methods
2.1 Crop Location Data

Three sources of crop data are used in this study (Table 1): (1) “Form 6 Social Survey”
(Form 6) data collected in year 2000 through a household questionnaire that asked farmers
what they planted on specific “plangs,” i.e., land parcels used by farming households, (2) a
“Remote Sensing Classification” (Remote Sensing)” of Landsat TM data, and (3) “Field
Data from Geodetic Ground Control Points” (GCP), over 100 points distributed at strategic
locations, e.g., road intersections and tributary branches of rivers and creeks, throughout the
district and collected using differentially-corrected, GPS technology. All data were collected
in 1999–2000.

2.1.1 Household Social Survey - “Form 6”—Household questionnaire “Form 6” is the
portion of the social survey that deals with land use decisions of households on land parcels
that are geographically described on cadastral maps. In Thailand, these household land
parcels are commonly known as plangs. The questionnaire was administered to all
households in 92 study villages in Nang Rong District in year 2000 (Rindfuss et al. 2003);
nearly 10,000 households were surveyed, land parcels were link to the households that used
them in that year, and nuclear village centroids were defined by collecting GPS coordinates
for all survey villages. Included in the questionnaire were details about land use, such as the
type (i.e., rice or cassava) and variety of crops grown (i.e., jasmine, sticky, or heavy rice) in
2000 on a specific plang by a specific household of known social and demographic
characteristics. In addition, farming practices as well as the names of the users of
neighboring plangs were also collected as part of the social survey. In Nang Rong District,
farmers' dwelling units are separate from the plangs that are used for the cultivation of
crops: generally, farmers living in nuclear village settlements do not live on the land that
they farm, but rather, their land parcels are geographically arrayed in a discontinuous
fashion around the village, with some parcels up to 5-km (or more) away from the village
centroid. Plangs used by households were geo-located using existing cadastral maps and
integrated with other data assembled within a geographic information system. In addition,
community participatory mapping was used that involved large-format, contemporary,
panchromatic, aerial photography and GIS overlays of roads and other landmark features for
recognition by discussion groups, composed of village headman, hunters, long-term farmers,
and other key informants who had an extensive knowledge about the land and the use of
plangs by households in his/her village and nearby-villages.
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Although households were surveyed about the cultivation of cassava on their corresponding
plangs on Form 6, cassava was divided into two types based on its location and function.
“Plantation” cassava is grown in large upland fields as a cash crop, often far from villages,
on marginal rice land, and harvested through mechanization. “Village” cassava is grown in
small garden plots in or near villages and often in the lowlands that are dominated by rice
cultivation. These forms of cassava were separated in our analysis to test whether certain
conditions exist for “plantation” versus “village” cassava. Areally and economically,
“plantation” cassava plots dominate the landscape and they substantially affect household
wealth and assets in villages that can access upland areas. In broad upland areas, individual
household plots coalesce into extensive cassava uplands that are suitable for mechanized
agriculture. “Village” cassava are smaller plots maintained near the household s dwelling
unit and used for food for local family consumption, service local markets, and as feed for
livestock that are locally maintained.

2.2.2 Remote Sensing Land Cover Classification—Relying upon an assembled
Landsat TM classification and an image time-series, a classified image that most suitably
matched the date of the social survey was selected for inclusion in this analysis. The remote
sensing classifications were derived through a multi-phase hybrid classification designed to
examine generalized land use/land cover in Nang Rong District for all image dates of an
assembled Landsat MSS and TM time-series that extends from 1972 to 2006 and includes
nearly 40 images. The classification approach was designed to be repeatable across all
images in the time-series, rely upon image characteristics derived through statistical
measures, limit the reliance on in-situ data because of the antecedent nature of the image
time-series and the difficulty of validating historical land use/land cover classification, and
integrate acquired aerial photography with expert knowledge of the landscape by local
informants for strategic dates in the image time-series that corresponded to important
environmental events (e.g., significant floods or droughts) and noteworthy development
issues in the District (e.g., construction of new roads or the improvement of gravel roads to
all-weather roads) (Messina et al. 2001; Walsh et al. 2005).

The classification procedure followed an approach called cluster busting that is designed to
produce consistent land cover classifications over time for change detection and monitoring
(Jensen et al. 1993). The process began by performing an unsupervised classification that
relied upon the ISODATA decision-rule to define 100 “naturally” occurring spectral classes
that were subsequently reduced to approximately 30 classes through the interpretation of the
transformed divergence statistics, generated as output from the classification process.
Iterative testing was conducted to estimate the number of classes for the initial unsupervised
classification by increasing and decreasing the estimated number of “naturally” occurring
spectral classes by 25% from the initial test group of 75-classes. Test classifications were
conducted for a high of 200 “naturally” occurring spectral classes to a low of 50 “naturally”
occurring spectral classes, thereby, arriving at 100 spectral classes for the initial
unsupervised classification. The classifications, generated to determine the number of
classes for the unsupervised approach, were conducted for a 1994 Landsat TM image of
high quality, i.e., relatively free from clouds/shadows that closely matched the date and areal
coverage of the 1:50,000 scale, vertical, panchromatic aerial photography of the District.
After each unsupervised classification, it was compared to the land use/land cover
information for three study villages that we had routinely visited in the field, possessed good
air-photos, and represented a diversity of landscape conditions and land use/land cover types
that we sought to characterize. Informal assessments were conducted that involved the
generation of error matrices of 150-random points, i.e., observed (classification) vs.
expected (interpretation of aerial photography), to guide us in the selection of 100 spectral
classes for the initial unsupervised classification and for the classification of subsequent
images in the Landsat time-series, including the image used in this analysis.
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Following the unsupervised classification, a supervised classification was applied using the
maximum likelihood classifier to relate unclassified pixels to the 30 spectral classes (i.e., the
training data) defined through the unsupervised classification. The approach allows for the
generalization of classes to a few key land use/land cover types as well as the expansion of
cover types to additional classes as details warrant. The land use/land cover classes that were
generated included high density forest, low/medium density forest, scrub/shrub, upland field
crops, lowland rice, bare/barren, water, built-up/urban, and wetlands. For this study, we
assume that upland crops are cassava, by far, the dominant upland field crop in Nang Rong.

Accuracy of the classification was assessed using independent ground control points. Table
2 shows the classification error matrix. The overall accuracy is 88.7% (kappa = 0.833). The
largest errors were commission errors of forest and omission errors of built land. The upland
class (cassava) has larger errors than the lowland rice class, although the error was only 15%
or less. However, this level of error should be noted when interpreting results based on these
data.

2.2.3 Field Data—To support the remote sensing project objectives, specifically geometric
ortho-rectification, geodetic control points (GCPs) were collect in Nang Rong in February
2000. The GCPs were collected to provide geometrically-correct Landsat imagery using a
systematic spacing of sample locations positioned at road intersections across Nang Rong.
The land use/land cover occurring at those locations were recorded in eight cardinal
directions in the field and photographed in each direction to assist with the geo-location of
GCPs in the imagery. We have adapted the network of over 100-GCPs as crop presence
data, based on the observed land use/land cover at each referenced location. The GCPs are
independent of the remote sensing land use/land cover classification, as they were used only
for geometric correction and were not included as part of the classification training data.
Analysis of historical precipitation records show that the timing and amount of rainfall
during the monsoons from 1999 – 2001 were average to conditions over the preceding 50-
years.

2.2 Environmental Data
2.2.1 DEM—The digital elevation model (DEM) was derived from the digitization of all
10-meter topographic contour lines on the 1:50,000 scale Thai military base maps. As a
supplement to the contours, a total of 1,373 spot elevation points, collected from the
topographic maps, were used to obtain a finer level of detail. ArcInfo s Topogrid was used
to integrate the contour lines with spot elevations and hydrographic enforcement in the
construction of the DEMs. All topographic sinks were removed from the dataset.

2.2.2 Soils—The soils data are derived from two 1:100,000 scale Thai military base maps.
A 1974 soil survey map, created using aerial photography and field verification, contains
detailed soil characteristics, but the data do not cover the entire study area. A 1992
topographic/geomorphic map covers the entire study area, but contains less descriptive
information and less spatial detail than the 1974 soil survey. A combined dataset was created
primarily using the 1974 soils map. The 1992 topographic maps were compared to the soils
map to extend the areal extent of soils data. In the areas in which the 1992 topographic/
geomorphic map are used, the spatial accuracy is less than that of the 1974 map, but suitably
comparable for this application.

2.2.3 Solar Radiation—Solar radiation load was calculated from the DEM using the Area
Solar Radiation Tool in ArcGIS Spatial Analyst. Solar radiation was calculated for the
growing season (i.e., June through January), using the default settings for all other
parameters.
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2.2.4 Other Variables—Several other variables were tested for model selection, but they
were excluded due to either a high co-variance with existing variables or a low model
contribution (<5%). These variables included slope angle, slope aspect, topographic wetness
index, and soil characteristics such as pH, Phosphorous, Nitrogen, saturation, and texture.

2.3 Modeling Techniques
2.3.1 Description of the Maximum Entropy Model (MaxEnt)—MaxEnt is a
presence-only model that uses randomly generated background data to distinguish the
pattern of species occurrence from the random environment. Both categorical and
continuous data are used. Data are fit using linear and non-linear functions and different
functions can be hinged together. Unlike GARP (Genetic Algorithm for Rule-set
Production) and BRT (Boosted Regression Trees), MaxEnt is a deterministic model when
provided with consistent input parameters. MaxEnt has been found to be consistently among
the best methods for niche-based geographic species distribution modeling, and performs
especially well for small data sets (Elith et al. 2006; Hernandez et al. 2007). MaxEnt also
provides useful model assessment tools such as jack-knife environmental parameter
contribution, species-environment curves (with and without other environmental
parameters), the “Area Under the Curve” of the Receiver Operating Characteristic (AUC-
ROC) as a metric of model performance, and a user-friendly graphical user interface and
command line functions.

2.3.2 Modeling Procedure—In this study, MaxEnt is used to model crop suitability. A
variety of conditions were modeled and compared. All models had the following
characteristics: (1) 1,000 runs were made using a random seed to partition crop locations
into training and testing data sets to generate confidence intervals of model output; (2)
environmental parameters included continuous surfaces including elevation, categorical soil
type, and solar radiation; (3) all models partitioned the crop presence data using a random
50/50% split for training and calibration; and (4) model parameters were set to defaults,
following extensive experimentation.

To assess and understand the performance of the MaxEnt model, the following experiments
were tested: (1) crop suitability of rice and the main varieties in the study area and cassava
(Plantation and Village), using only the Form 6 data, and (2) differences in model selection
and output between different crop presence datasets – the “Form 6” social survey, the
“remote sensing” Landsat classification, and the “GCP” field data for rice and cassava to
better understand model accuracy and sensitivity to input data.

2.3.3 Analysis—Model output was compiled in the computing environment MATLAB.
The MaxEnt model outputs a map of occurrence probabilities, and tables of model selection
(e.g., variable contribution to the model) and the AUC-ROC for the training and testing data
sets. The mean and the 95-percentile range of the 1,000 runs for habitat suitability are
mapped. Variable contribution and AUC are displayed as standard box-plots, with the
central mark indicating the mean, box edges at the 25th and 75th percentiles, and whiskers
illustrating the data limits (~99.7 percentile), without consideration of outliers. Additionally,
suitability is compared with a sample of input data and between models, using empirical
cumulative distribution function plots.

3. Results
3.1 Crop Varieties - Rice

Figure 3 illustrates model results for rice suitability. The suitability for jasmine rice (Figure
3B) was medium to high across most of the lowlands with the highest suitability scores
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occurring in a patch located in the northeast corner of the study area. The distribution of
suitability for heavy rice (Figure 3C) was similar to that of jasmine rice, but with a distinct
pattern along the lower portion of the floodplain. In contrast, sticky rice had a distinctly
different suitability distribution (Figure 3D). Overall, variability in suitability scores among
model runs was low, although individual soil polygons have moderate variability (Figure
4A–D).

The contribution of each environmental variable is illustrated in Figure 5(A–C). Elevation
was the dominant variable contributing to the suitability of jasmine rice and heavy rice.
Heavy rice was the most affected by solar radiation. Sticky rice differs from jasmine and
heavy rice as soil type and elevation have a similar contribution to the suitability scores and
patterns. Model performance was good, AUC-ROC was well above random (ROC = 0.5),
and consistent for all models between training and testing data (Figure 6A–B). The pattern
of model performance was interesting in that the major components of the composite rice
model, jasmine rice and heavy rice, performed significantly worse than the composite
model.

3.2 Crop Varieties – Cassava
Cassava was most suitable in the uplands that are located in the south and southwest
portions of Nang Rong District (Figure 3E–F). Although the composite cassava suitability
was dominated by the plantation cassava, the village cassava (Figure 3G) did have a subtle
impact on suitability in the lowlands in the north portion of the study area. Similar to the rice
models, elevation was the dominant environmental parameter in terms of model contribution
(Fig. 5D). Soils were more important than solar radiation (Figure 5E & F). Model
performance, as indicated by the AUC-ROC value, was good (> 0.8). Plantation cassava has
a higher AUC-ROC than the composite or village cassava, likely due to the smaller
environmental envelop and higher sample size (Figure 6C & D).

Variation of suitability was generally lower for the composite and plantation cassava
models, although there is moderate variability (95% range of 30) in several patches in the
southwest portion of the study area (Figure 4E–G). Village cassava was much more variable
with 95% ranges, nearly 40 throughout and several patches around 60. This pattern was
consistent with model contribution (Figure 5D–F). The composite and plantation cassava
models have lower variability between each run, while the village cassava models are highly
variable. For instance, the contribution of elevation varied between ~80% and 30% for the
village cassava models compared to 70% and 55% for the composite cassava models. The
AUC-ROC values were also more variable for the village cassava models, although model
performance remains acceptable even at the lowest outliers.

3.3 Crop Varieties: Comparisons of Suitability
Figure 7 compares the suitability of each variety of rice and composite cassava across the
other crop type locations from Form 6. Each Cumulative Distribution Function (CDF) plot
illustrates the cumulative proportion of crop locations from Form 6 on the y-axis with
suitability equal to or lower than the x-axis. CDF curves that pass through the lower right
quadrant indicate proportionately higher suitability, while curves that pass through the upper
left quadrant indicate proportionately lower suitability. Figure 7A shows the CDF of jasmine
rice suitability for jasmine rice, sticky rice, heavy rice, and composite cassava plots. The
CDF curves for all varieties of rice show moderate suitability (e.g., 20% of locations have a
suitability between 40 and 50, and 50% of locations have a suitability between 50 and 60).
The CDF curve of composite cassava locations show poor suitability, with 70% of locations
showing suitability scores less than 40. These patterns are similar for heavy rice (Figure 7B).
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The CDF curves diverge for sticky rice suitability (Figure 7C). Sticky rice locations have a
greater proportion of higher suitability scores, followed by jasmine rice and heavy rice.
Composite cassava plots are less suitable for sticky rice than for heavy rice varieties, with
90% of locations with a suitability score of 40 or less. Note that the top 10% of locations
where sticky rice is grown has a suitability score greater than 85, while the bottom 40% of
locations have a suitability score of 50 or less. The CDF curves for composite cassava show
the inverse pattern of the rice varieties (Figure 7D). As expected, the plots where cassava is
grown are more suitable than where rice is grown. In sum, the difference between jasmine
rice and heavy rice is minimal, while sticky rice and cassava have distinctly different
growing environments.

3.4 Data Sets - Rice
Modeled crop suitability varied greatly between the rice data sets (Figure 8A–C). The Form
6 model (Figure 8A) illustrates a structured pattern that followed elevation and soil, while
the remote sensing model (Figure 8B) shows a homogenous, moderate suitability for all
areas, except for the upland locations. The GCP model (Figure 8C) showed distinct
suitability patterns based on soil type. The differences correspond to the level of
contribution to the model of each environmental variable (Figure 5G–I). For the rice model,
using the Form 6 survey data, the contribution to the model is primarily elevation (~60%),
followed by solar radiation (~25%), and soil type (~15%). While elevation is the primary
contributor to the remote sensing-based model, soils and solar radiation contribute very
little. Conversely, soil type is the dominant factor for the GCP data set. The variability in
crop suitability scores are similarly low for the large, widespread Form 6 and remote sensing
data sets (Figure 9A and B, respectively), but the smaller GCP data set (Figure 9C) has
considerable variability in several areas.

3.5 Data Sets - Cassava
Figure 8(D–F) maps the suitability of cassava using the Form 6, remote sensing, and GCP
data sets, respectively. All three models predict higher suitability scores for cassava in the
uplands over the lowlands, but the spatial pattern of the suitability scores differs. The Form
6 model (Figure 8D) shows higher suitability scores in a large patch positioned in the
southwest portion of the study area as well as flanking the slopes of the higher volcanic hills
in the south of the district. The remote sensing data set (Figure 8E) shows the highest
suitability scores at the top of these hills and moderate suitability scores around the lowland
villages. The GCP data set (Figure 8F) shows a similar pattern as compared to the Form 6
and remote sensing models, but with distinct polygons being represented from the soils data
set. The variability of cassava suitability (Figure 9D–F) between the data sets is similar to
the rice data sets. Overall, elevation is the dominant suitability factor, although for the
remote sensing data set, soil type is also a major contributor.

3.6 Data Sets - Model Evaluation
Figure 6(D–G) illustrates the AUC-ROC for each of the models. The Form 6 models have
the highest and most consistent AUC-ROC values. For the rice models (Figure 6E–F), the
GCP model performs better than the remote sensing model. Interestingly, the variability of
AUC-ROC does not substantially vary between models, despite larger differences in the
sample size between the GCP and other models. For the cassava models (Figure 6G,H),
Form 6 has a higher AUC on average, although for individual runs, the remote sensing
model may have performed better as indicated by the box whiskers. However, some runs are
also worse than a random model (AUC < 0.5). This high variably illustrates the importance
of training and testing data.
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Figure 10 illustrates the CDF of suitability scores predicted for crop presence locations from
Form 6, remote sensing, and GCP data sets. Overall, the distribution of rice was good, with a
strong delineation between locations with suitability scores less than and greater than 50.
Conversely, the cassava curves show that many of the Form 6 and remote sensing locations
have low predicted suitability. Interestingly, while the Form 6 and remote sensing data sets
have similar distributions for both rice and cassava, the Form 6 model actually predicts
suitability best for the GCP data.

4. Discussion
4.1 Crop Varieties

Nang Rong initially developed as an agricultural frontier where rain-fed, lowland paddy rice
predominated on alluvial soils and in areas adjacent to perennial rivers and streams. In the
uplands, relatively far from reliable sources of water, dry dipterocarp forests dominated until
a demand for high calorie animal feed in Europe transformed the uplands of the Northeast
through deforestation to support the cultivation of cassava, and to a lesser degree sugarcane.
The topographic gradient from the cassava uplands to the paddy rice lowlands is punctuated
by a series of high to low terraces that serve as a transitional landscape subject to resource,
climate, and price variations. This transition is evident from our results. Elevation is the
most important environmental factor in almost every model. Rice, including each variety, is
most suitable in the lowlands and cassava most suitable in the uplands. But in the middle-
high terraces, the difference between rice suitability and cassava diminishes. This suggests
that either rice or cassava can be grown in these locations depending on a variety of factors
that vary spatially and temporally, given environment and socio-economic variation.

The Form 6 data set is the largest, most detailed, and most accurate crop data set available
for the study area. Model results from the Form 6 data show that while there is a relatively
clear pattern of suitability scores between cassava and rice, the differences between the rice
varieties are less distinct. It is important to note that the MaxEnt model predicts the
likelihood of occurrence for a single crop (i.e., potential suitability) at a moment in time,
even though the distribution of a given crop is relative to the distribution of other crops.

While interpretation of high and low crop suitability scores is clear, scores around 50%,
widely observed for the rice varieties, are more difficult to interpret. There are several
potential interpretations. First, the most straight forward interpretation is that in areas of
medium suitability farmers select between crops, not due to environmental conditions, but
rather due to socio-economic factors (e.g., farming tradition). Another interpretation calls
into question the ability of the model to discern between high and low suitability, indicating
possible missing data in the model. For example, missing data can lead to ambiguous results.
Given the widespread occurrence of these crops, the inability of the model to detect high
suitability in the lowlands may be due to the overwhelming presence of these rice varieties
across the observed environmental space, with the exception of higher, upland elevations.
Previous studies using MaxEnt have shown that the model performs exceptionally well for
rare or cryptic species (e.g., Hernandez et al. 2006; Ortega-Huerta and Peterson 2008). It is
likely that if the study area were expanded to include substantial areas in which rice
cultivation does not occur, the model may better distinguish between high and low
suitability and the associated AUC-ROC scores would be higher.

4.2 Sample Size
Sample size has a clear impact on the performance of the models, in terms of variability of
suitability scores and patterns between model runs as well as AUC-ROC scores. The models
that were generated with more observations tend to have lower variability between model
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runs, i.e., suitability scores, variable contribution, and AUC-ROC. Overall, this trend is
consistent with the findings of Trani (2002) and Stockwell and Peterson (2002). However,
the models run with smaller data sets (n ~ 100) are highly variable in their suitability scores
and AUC_ROC compared to the larger data sets (n > 1000). Stockwell and Peterson (2002),
Hernandez et al. (2006), Papes and Gaubert (2007), and Williams et al. (2009), however,
report consistent models with a sample size far less than 100. The difference is likely due to
the distribution of the study organism and whether the species is a specialist or a generalist.
Specialist organisms and particularly rare species have a limited environmental envelop in
which they occur, and thus a smaller sample size is likely to capture that envelop. For a
widespread generalist species, a larger sample size is required to capture all the possible
environmental conditions in which a species may occur. The use of 1,000 random
permutations to partition the data in our models for training and evaluation suggests how
smaller sample sizes of widespread organisms can produce variable model results.

4.4 Sampling Distribution
The areal distribution of observation points has a clear impact on model output, as briefly
discussed in Section 4.1. The effects of areal distribution relate to environmental and
geographic space. For instance, the remote sensing dataset served as an alternate approach to
compare Form 6 data. Since the remote sensing classification was district-wide, a
geographically-based, random sample could be selected. The social survey data (Form 6),
however, is highly clustered and limited in its areal extent as a consequence of the location
of the study villages. Results from the Form 6 rice and cassava models demonstrate two
issues associated with their areal distribution. First, the CDF curves (Figure 10) illustrate an
over-fitting of the model. The cumulative distribution curves have similar form for the
model data and the independent test data, indicating that the environmental space modeled is
comparable. However, the predicted suitability of the test data is noticeably less than the
training data. The agreement of the remote sensing and field data sets strengthen this
argument. Second, the cassava model demonstrates a problem with omitted environmental
space. Our study villages in the Form 6 data excluded the uplands in the southwest corner of
the Nang Rong District that are dominated by the cultivation of cassava, an upland field
crop. The effect of this omission in training data is clear from the comparison of the
suitability maps produced from the Form 6 and the remote sensing data (Figure 8). This is
further illustrated in the CDF curves (Figure 10) that are distinctly different from each other,
and the Form 6 model estimates indicate lower suitability scores for the majority of
locations of the remote sensing and field datasets . It should be noted that the latest version
of Maxent allows for sampling bias to be accounted for in the selection of random
background values (Phillips et al. 2009). We explored this function for the Form 6 cassava
data, but we did not find any substantial improvement. As Phillips et al. (2009) indicate, the
greatest improvement is found for highly (areally) constrained species; all of our crop types
are widespread throughout this agricultural district, although the sampling distribution is not.

4.5 Assessment Challenges of Fuzzy Suitability Analysis using Presence-only Data
The creation of a fuzzy suitability score using presence-only methods is very appealing for a
number of reasons. However, one area that presents challenges is model assessment. The
AUC-ROC is an assessment tool in the MaxEnt modeling software. AUC-ROC is calculated
based on the same data used to optimize the species-environment relationships derived from
the machine learning algorithm. The AUC-ROC assessment uses data consistent with that of
the model and provides a comparison of model performance between runs and between the
training and testing datasets. Lobo et al. (2008) note that the AUC-ROC approach serves as
a measure of the model s ability to distinguish between absolute absences and presences.
However, in the case of Maxent, the “absences” are randomly selected “background” values.
Thus, the AUC-ROC actually measures the ability of the model to distinguish between
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presences and the random background. Several papers have investigated this issue in the
species distribution modeling community drawing attention to how AUC-ROC is calculated,
how pseudo absences are created, and how commission and omission errors are created
(Peterson et al. 2008, Phillips et al. 2009, Lobo et al. 2010, Lobo and Tongelli, 2011).
Despite these issues, Manel et al. (2001) found that the AUC-ROC and the kappa-statistic
are highly correlated and the lack of true absence data required for a kappa statistic and the
fuzzy model output, the AUC-ROC serves as a reasonable modeling assessment tool in this
application. Several alternate approaches have been suggested. Peterson et al. (2008)
compare the AUC-ROC between two competing models at a given predicted area threshold,
rather than comparing a model of the null AUC = 0.5 over the entire predicted area
threshold. Philips et al. (2009) suggest altering the selection of pseudo-absence points based
on sampling bias, whereas Lobo et al. (2010) caution against unrealistic absence points.

In this study, our data and goals are not identical to species distribution modeling and thus
our model interpretation and assessment are not the same. For example, there are no true
absences in our data; a given crop can be grown in any location, but given environmental
constraints, the probability of it being grown is less. Thus, we cannot directly compare
presence and absences. Our interest in the output of the model is the continuous suitability
of a given crop and not a binary presence/absence based on a threshold value. As such, the
suggestions of Peterson et al. (2008) do not apply. We did explore the effect of sampling
bias on the Form 6 data as suggested by Phillips et al. (2009) but did not find that this had a
substantial impact (less than 2% difference in the AUC for cassava, the more constrained
crop). As Phillips et al. (2009) note, sampling bias has the greatest effect on constrained
species; our crop presences are widespread across the study area.

We do not have any true absence data and in fact argue that such data does not exist by
definition for our study area; rather crop suitability ranges across a continuous gradient. For
this analysis, the conceptual framework of the potential niche is more appropriate than a
remote sensing classification. Given that the validity of pseudo absence data has many
issues, we chose to compare model results between our target dataset, with two alternative
datasets to better understand the strengths and weaknesses of the model output.
Additionally, we relied not only on the AUC-ROC, but also the CDF of suitability across the
input data locations. Our comparison illustrated that the Form 6 data was overall comparable
to the remote sensing data with the exception of the omitted area of high crop suitability in
the southwest region where we did not have any study villages. In defense of the use AUC-
ROC assessment method with Maxent, the data used to calculate the AUC-ROC are
consistent with the data used to train and optimize Maxent s machine learning algorithm and
the AUC-ROC is calculated for both the training and testing data. Thus, while the use of
random background points may not be ideal absence data, it provides a consistent
comparison with how the model functions as well as tests for consistency between the
training and testing data, especially for problems with model overfitting

The continuous fuzzy model output and lack of true absence data makes model assessment
using existing tools a serious challenge. While we have relied on a comparison of different
dataset, each with their own data limitations, to better understand the quality of our results,
this does not address the methodological need for a better robust assessment tool. We
sincerely hope that this issue is addressed in the near future as presence-only modeling is a
very promising technique.

5. Conclusions
Novel methods of presence-only modeling have great potential for crop suitability modeling
where true absences do not exist because any given crop could be grown in most or all
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locations in a study area. Our results demonstrate that MaxEnt predicts crop suitability
reasonably well, given the real-world challenges and limitations of our data sets. However,
there are a number of weaknesses apparent as well. First, the model is sensitive to both
sample size and distribution, despite the wide use of the MaxEnt model that relies on
incomplete and areally restricted data sets in many ecological applications. Recent paper
suggest methods to overcome these issues, thought further development is needed with a
focus on potentiall whidespread occurrence species. Second, model assessment is not
straight forward. While the AUC-ROC provides an indication of model performance
between model runs and training and testing datasets, AUC-ROC measures the ability of the
model to distinguish a pattern different than random, rather than a “goodness of fit.” To
validate the model beyond the AUC-ROC, an assessment of the results at locations from
independent data works well. The strengths of MaxEnt outweigh the weaknesses,
particularly, if they are addressed in the design of the experiment. For example, independent
testing data can be used to validate the model, and process-based models can be integrated
to estimate crop yield.

From our analysis, we suggest the following lessons for future modeling studies in human-
managed ecosystems: (1) randomly partition the data and run the model numerous times
(e.g., ~1,000) to understand variability and uncertainty in the data; (2) validate the model
using appropriate data and test for the research question, i.e., do not rely on AUC-ROC
alone; (3) use independent data sets, where available, to understand the limitations of each
data set, especially in the absence of “true” validation data; (4) ensure that the observations
are appropriately distributed in environmental space and (5) social factors may play a
significant role in the distribution of crops in human-managed landscapes that unexplained
by environmental conditions alone. Future areas of research should investigate robust model
assessment of fuzzy classifications using presence-only data and how social factors affect
land suitability using presence-only methods.
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Figure 1. Study Area: Nang Rong District, Thailand
Note that the location of actual study villages has been omitted for confidentiality reasons
related to Human Subjects research.
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Figure 2.
Idealized cropping systems: gradients & constraints (after Rigg 1991).
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Figure 3.
Mean crop suitability of Form 6 models: all rice (A), jasmine rice(B), other rice (C), sticky
rice (D), all cassava (E), plantation cassava(F), village cassava(G).
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Figure 4.
95% range of suitability of Form 6 models: all rice (A), jasmine rice(B), other rice (C),
sticky rice (D), all cassava (E), plantation cassava(F), village cassava(G).
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Figure 5.
Comparison of the percent of total model contribution of elevation, soil type, and solar
radiation for Form 6 rice varieties (A,B,C), Form 6 cassava varieties (D,E,F), rice datasets
(G,H,I), and cassava datasets (J,K,L).
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Figure 6.
Comparison of training and testing AUC scores among Form 6 rice varieties (A,B), Form 6
cassava varieties (C,D), rice datasets (E,F), and cassava datasets (G,H).
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Figure 7.
Cumulative distribution function (CDF) plots of modeled suitability for jasmine rice (A),
other rice (B), sticky rice (C), and all cassava (D) at Form 6 plot locations of the other crop
varieties.
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Figure 8.
Mean crop suitability of all rice from the Form 6 (A), remote sensing (B), and field (C)
datasets and all cassava from Form 6 (D), remote sensing (E), and field (F) datasets.
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Figure 9.
95% range of suitability for all rice from the Form 6 (A), remote sensing (B), and field (C)
datasets and all cassava from Form 6 (D), remote sensing (E), and field (F) datasets.
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Figure 10.
Cumulative distribution function (CDF) plots of modeled suitability of Form 6 all rice (A)
and Form 6 all cassava (B) at Form 6, remote sensing (RS), and field data (GCP) locations.
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Table 1

Data Source Crop Type n Nearest Neighbors Ratio

Form 6 Rice (All) 7739* 0.24

Remote Sensing Rice (All) 3221 0.95

GCP Rice (All) 90 0.78

Form 6 Jasmine Rice 5894 0.5

Form 6 “Other” Rice 4520 0.5

Form 6 Sticky Rice 646 0.49

Form 6 Cassava (All) 486 0.41

Remote Sensing Cassava (All) 471 0.87

GCP Cassava (All) 16 0.71

Form 6 Plantation Cassava 428 0.52

Form 6 Village Cassava 58 0.51

Note: Nearest Neighbor Ratio (mean of 5 nearest neighbors used) = mean distance nearest neighbors / expected mean distance nearest neighbors
from a random distribution
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