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We propose an automatic pest identification method suitable for large scale, long termmonitoring for mobile or
embedded devices in situ with less computational cost. A procedure of segmentation and image separation was
devised to identify common greenhouse pests, whiteflies, aphid and thrips. Initially, the watershed algorithm
was used to segment insects from the background (i.e., sticky trap) images. Color feature of the insects were sub-
sequently extracted byMahalanobis distance for identification of pest species. Accuracy and computational costs
were evaluated across different image resolutions. The correlation of determination (R2) between the proposed
identification scheme and manual identification were high, showing 0.934 for whitefly, 0.925 for thrips, and
0.945 for aphids even with low resolution images. Comparing with the conventional methods, pests were effi-
ciently identified with low computational cost. Optimal image resolution for species identification regarding
long-term survey was discussed in practical aspect with less computational complexity.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Pest is one of the critical factors causing economic loss in greenhouse
where crops are cultivated in congested conditions in limited areas. In-
tegrated Pest Management (IPM) has been widely applied to the agri-
cultural practices to achieve minimizing crop damage, environmental
contamination, and economic loss concurrently (Allen and Rajotte,
1990). One of prerequisites for IPM, however, is to accurately investi-
gate population densities of pest species. Objective identification of
pest species and density estimation is essential for initiating any pest
management program (Qiao et al., 2008). One of the most common
methods for pest detection in greenhouse, however, has been mainly
based on conventional sticky traps (Pinto-Zevallos and Vänninen,
2013). Counting the number of insects on sticky traps has been conven-
tionally relied on visual judgment by humans (Wise et al., 2007). Due to
complexity of insect morphology automatic identification has been
considered as a difficult task. Especially with the small size pests, such
as greenhouse insect pests, the efficiency of human counting is low
and unreliable depending on observation conditions of observers
(e.g., identification skill, fatigue). Therefore, implementation of auto-
matic pest identification is vital to the modern agricultural production.
Since the automatic pest identification system is mainly based on the
visual information (e.g., pest shape, color), it would not produce any
extra disturbances to environment including chemical/physical pollu-
tions and could not raise degradation issues to the ecosystems. The eco-
logical intensification could be achieved by employing the automatic
pest identification in the agricultural practices that maximizes the pro-
duction while minimizing anthropogenic environmental impacts con-
currently (Bommarco et al., 2013).

Since the last decade computer hardware and imaging devices sig-
nificantly contributed to automatic identification of biological organ-
isms (Gaston and O'Neill, 2004; MacLeod et al., 2010). Detection of
agricultural pests has garnered special attention, especially greenhouse
pests such as whitefly (Bemisia tabaci Genn), aphids (Aphis gossypii
Glover) and thrips (Thrips tabaci L.). These greenhouse pests are small
in size and difficult to recognize, but are critical in causing damage
under congested cultivation conditions. Martin and Thonnat (2007)
presented a cognitive vision approach that adjusts optimal parameters
for segmenting whitefly out of leaves based on adaptive learning tech-
niques. By employing machine vision and knowledge-base techniques,
Boissard et al. (2008) proposed a multidisciplinary cognitive vision ap-
proach applicable to whitefly detection in rose in situ. Solis Sánchez
et al. (2009) utilized the geometric features (e.g., eccentricity, area
size) to whitefly scouting by segmenting the insects from sticky trap
images. Xia et al. (2012) developed a multifractal dimension to detect
whitefly in situ, which was robust to field noise such as unequal illumi-
nation changes and light reflections on trap surface.
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Previous automatic identification, however, was mainly conducted
with one species, whiteflies. Other common species such as aphids
and thrips are also important in greenhouse conditions butwere not ex-
tensively studied with image processing. Cho et al. (2007) proposed an
automatic pest identification method based on YUV color space and
fixed thresholds to examine pests from the sticky traps collected in
greenhouse. Color components and body size of pest were utilized to
identify whitefly, aphids and thrips in this study, but identification
had to be conducted with high resolution images (600 DPI) only.
Gabor filter and histogram of gradients were additionally utilized to ex-
tract the feature of pests in order to identify whitefly and greenfly from
sticky trap in field conditions by Kumar et al. (2010), and they applied
the support vector machine (SVM) to identification of the pests. Solis-
Sánchez et al. (2011) utilized scale invariant feature transform (SIFT)
as a feature descriptor of the segmented insect images, combining
with shape feature of insect body. These methods, however, in general
also require either high resolution of images (Cho et al., 2007;
Solis-Sánchez et al., 2011) or computationally expensive recognition
algorithms (e.g., Gabor filter, SIFT). Although high pest recognition
accuracy was achieved by these methods, the methods are in practical
aspect not specifically suitable for large scale, long termpestmonitoring
(e.g., agricultural sensing network) in field conditions due to high com-
putational cost. Since portable devices or wireless sensor network are
usually powered by small capacity batteries, the high computational
cost would be prone to a high risk of power loss for data processing.
An alternative solution may be to transmit the field images to the
remote terminal (e.g., personal computer) for pest identification. But
the transmission ability of the wireless network would be still a
constraining factor since high resolution images would require a broad-
band network of which the transmission range is limited, especially in
the large scale agricultural field (Koumpouros et al., 2004). Although re-
cent 3G/4G mobile network may provide a technical solution to the
transmission of images in large scale (i.e., data transmission between
cites), the cost of the mobile network would not be affordable for agri-
cultural practices by dealing with high resolution data. Effective pest
recognition algorithm with low computation cost is desired for large
scale pest monitoring in practical aspect.

In this paper, we propose a procedure of image processing suitable
for species identification with low resolution images of small size in-
sects by combining methods for image segmentation and separation.
A classical segmentation algorithm, marker controlled watershed,
was initially applied to the YCbCr color space of sticky trap image.
Subsequently Mahalanobis distance was used as the classification crite-
rion for species identification by differentiating the color components
and insect size. With less computational complexity based on these
algorithms, efficient identificationwas achievedwith reduction in com-
putation time, while still maintaining high precision rate for identifica-
tion of three major pests in greenhouse.

2. Materials and methods

Three species in greenhouse, whitefly (Bemisia tabaci Genn), aphids
(Aphis gossypii Glover) and thrips (Thrips tabaci L.), which reported to
cause serious damage in greenhouse crops over the world (Malais and
Ravensberg, 2004), were selected as the target species for identification
in this study. The sticky traps (15 cm× 10 cm)were placed 10 cmabove
tomato crops that were approximately 160 cm tall. The borders of the
sticky trap were encapsulated by cardboard with 2 mm thickness. In
total, fifteen sticky traps were selected for collecting species for one
week.Methods for plant cultivation and insect observationwere report-
ed in (Chung et al., 2014; Qiao et al., 2008). After field collection, sticky
trap images were acquired by the HP G3110® scanner. Ten of the sticky
traps were randomly selected for developing the species identification
program. The total number of pests attached on the ten sticky traps
was ranged between 62 and 252 individuals per trap with the average
number of pests of 115.2 ± 53.9 individuals per trap. The number of
insects ranged in 13–152 individuals, 13–20 individuals and27–83 individ-
uals for whitefly, aphids, and thrips, respectively. Specifically the average
was 42.0 ± 39.7 individuals per trap for whitefly, 17.2 ± 8.8 individuals
per trap for aphids, and 59.8 ± 20.4 individuals per trap for thrips. To
build the classifier for identification of three pest species, twenty samples
for each pest specieswere randomly selected from the rest of 5 sticky traps.

For segmentation watershed was selected since the algorithm has
been widely used in image processing including object detection
(Boissard et al., 2008) and insect (i.e., whiteflies) body segmentation
from field images (Xia et al., 2012). Direct application of the watershed
segmentation, however, produces a number of unexpected regions in
addition to the segmentation targets (Ng et al., 2006). In order to
solve this problem, the marker controlled watershed has been intro-
duced aswell to decrease the sensitivity to noise and to enhance the re-
liability of watershed segmentation (Parvati et al., 2008).

Mahalanobis distance has been reported to be effective inmeasuring
the similarity of a set of given values to a set of values obtained from the
sampled data. Mahalanobis distance was successful in image recogni-
tion or segmentation (e.g., character recognition, plant segmentation,
plant disease identification) (Kato et al., 1999; Manh et al., 2001;
Weinberger et al., 2006; Xia et al., 2013). In order to measure the simi-
larity between given specimens to the three species, whitefly, aphids
and thrips, variation of the body color was obtained from the insect
samples. The Mahalanobis distance is defined as (De Maesschalck
et al., 2000):

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−μð ÞTS−1 x−μð Þ

q
ð1Þ

where μ is the mean color of the insects, S−1 represents the inverse
of covariance matrix (S) of the color variations of the sampled
insects, T indicates the transpose operation, and x is the input
feature vector of given specimen to be classified. Mean colors and
covariance matrices of each specimen image were obtained from
the insect samples.

Species recognition was conducted by images across different reso-
lutions. Different level of resolution was controlled by adjusting pixel
numbers. The original image resolution acquired from the scanner was
3500 × 2350 pixels (600 DPI), and converted to lower resolutions of
1600 × 1100, 1024 × 690, 800 × 540, and 640 × 430 pixels. The pest
identification program was developed in Matlab 2011b (Mathworks)
on a personal computer equipped with Intel G860® CPU with 4GB
RAM memory.

3. Procedure

3.1. Overall process

The overall process of pest identification is presented in Fig. 1. First, in-
dividual insect images were segmented from the sticky trap on the YCbCr
color spaces. The marker controlled watershed segmentation was utilized
to extract each individual insect from Cb component of YCbCr color spaces.
Candidate insect images were determined by examining the area size of
the segmented blobs. Each individual insect was represented by mean
color of the insect body in HSV color space. Mahalanobis distance was
then introduced as a classifier for identifying species.

Mean colors and covariance matrices of each specimen image were
obtained from the sample specimen. In the identification process,
Mahalanobis distances between the given image of insect and target
species were calculated based on the obtained mean colors and covari-
ance matrices. The specimen was identified to the species showing the
nearest Mahalanobis distance. If the nearest Mahalanobis distance was
longer than the predefined threshold which had been estimated from
pretests, the candidate image was regarded as noise and was removed
from the identification list.



Fig. 1. Schematic flow of insect segmentation and species identification.

Fig. 2. Images of sticky trap and samples. (a) Trap, (b) three insect imag
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3.2. Insect segmentation

The sticky trap images mainly contain 5 colors of objects including
yellow background, green grids, and characteristic tones of black
(Aphids), white (Whitefly), and yellowish brown (Thrips) (Fig. 2a and
b). Green color grids (and alphabets) printed on the yellow sticky trap
was a strong source of heterogeneity against the yellow background of
the sticky trap in the image. Indeed green grids caused severe noises
in insect segmentation (Fig. 2a and c). Since the color of yellow, white
and green has similar RGB values, it was difficult to accurately separate
images of three species (Cho et al., 2007). In order to effectively distin-
guish the insects from grids and background, the sticky trap images
need to be converted from RGB to other color spaces. In this study,
three species were segmented in YCbCr color space. Yellow background
and green grids can be clearly distinguished from insects based on the
Cb component of YCbCr color space. As shown in Fig. 2(c), intensity
values of insects on Cb componentmatched well to positions of individ-
uals (Fig. 2a) and were much higher than the values of background and
green grids. Consequently, the green grids, regarded as noise in this
study, can be effectively removed from the sticky trap images.

The markers for conducting the watershed segmentation were ob-
tained by calculating the regional minima and maxima. Watershed
transform was then performed based on the regional maxima.
Fig. 3(a) shows the segmented candidates of insects (Fig. 2a and
c) with white blobs. Inaccurate segments, however, are also included
within the insect candidates. After segmentation, the candidate images
were determined by examining the area size of the segmented blobs
produced by the watershed. The segmented blobs with improper size
were further eliminated; green letters on the sticky trap (Fig. 2a) or
local color distortion on the background of sticky trap usually produced
large sized blobs.

According to the image resolution, appropriate range of body size
was provided as a threshold to remove the unexpected large or small
segments. For example, body area of insect was ranged in 2 to 60 pixels
e recorded on the trap, and (c) Cb component of sticky trap image.



Fig. 3. Insect segmentation bywatershed algorithm. (a) Candidate insect images, and (b) identified insectsmarked by red crosses. Notice that the large-size blobswere originated from the
green letters.
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with image resolution of 800 × 540 pixels. The ranges of insect
area were mostly determined according to pretests across different
resolutions. The determined insects were marked with red crosses as
shown in Fig. 3. The unexpected large blobs were successfully removed
from the segmentation results.

3.3. Species identification

After segmentation, images of individual insects are separated and
extracted from the background (Fig. 4). The segmented blobs were
numbered as shown in the left part of Fig. 4. The images of individuals
were accordingly extracted and presented in the right panel of Fig. 4.
Low image resolution (800 × 540 pixels) was presented in this case:
the insect body size was less than 20 pixels. Therefore, the contours of
the insects were not smooth and shapes of the insect could not be
Fig. 4. Extraction of individual insects (Numbers indicating the sequence of segmented
blobs).
accurately identified based on size. However, three species, whitefly,
aphids and thrips, showed different colors (Fig. 2b); the color features
of these insects was in fact a critical factor for identifying pest species
in this study.

The mean color μ and covariance matrix S for Mahalanobis distance
could be obtained from insect samples in different species. For the seg-
mented insects (Fig. 4), mean color of the insect body was calculated as
the input vector x. Three Mahalanobis distances were obtained for the
input vector x (of input specimen) to each of three species. By compar-
ing themeasured distances, the insect was classified to species showing
the nearest distance. In this study, color vector x was represented by
HSV color instead of RGB andYCbCr. Although the insectswere accurate-
ly segmented in the YCbCr color space, the intensity value of these insect
on Cb component were similar and difficult to distinguish three species
from these images. HSV color representation, however, demonstrated
high performance in pest identification in the pre-tests. In addition, a
predefined threshold value was given to examine the validation of the
classification results. Species identification would be invalid if the
nearest Mahalanobis distance is longer than the threshold. Since
incorrectly-segmented blobs could be produced during the course of
the segmentation process and could cause additional false alarms,
noises were further removed by thresholding. The threshold was esti-
mated from the preliminary tests; the value of 80 was used for all
image resolutions.

4. Experimental results

Pest identification experiments were conducted in two steps: seg-
mentation of individual insects from the sticky trap images and species
identification of candidate images as stated above. Initially, detection of
insect imageswas carried out by using themarker controlledwatershed
algorithm (see Section 3.2). The accuracy of insect segmentation and
computational timewere evaluated across different levels of resolution.



Fig. 6. Variation and computational cost (s). (a) Standard deviation, and (b) cost propor-
tion (%) of specific identification processes, including classification, blob processing and
segmentation, in relation to the total time cost across different levels of image resolution.
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The precision and recall analysis were applied to determining ac-
curacy of insect detection (Xia et al., 2012). Precision is defined as
the proportion of correct segmentation of insect (true positives) to
the total segmentation results and is expressed as True positive /
(True positive + False positive). Recall is measured as True positive /
(True positive + False negative). The false positive could be also re-
ferred as false alarm since the non-insect (e.g., noise) is reported as an
insect. In addition the false negative would stand for miss-detection of
insects. The F value based on precision and recall analysis represents
the overall performance of the insect detection includingmiss detection
and false alarms:

F ¼ 2 � Precision � Recall
Precisionþ Recall

: ð2Þ

High F value indicates more correct detection with fewer false
alarms at the same time. As presented in Fig. 5, the F value varied
from 0.96 to 0.92; overall performance across different image resolu-
tions was in general over 0.90. The highest F value, 0.96, was obtained
from the 800-pixel resolution, followed by 0.95 with the 640-pixel res-
olution. The detection accuracy on 640-pixel resolution was only slight-
ly lower than the best detection accuracy (800-pixel resolution). On the
contrary, the detection accuracy tended to decrease as the image resolu-
tion increased higher than 800-pixel although the degree was slight.
The images with the highest resolution that provided detailed informa-
tion of insects showed lower detection accuracy (F) in fact, although
requiring much higher computational cost (Fig. 5). Due to over-
segmentation in the higher resolution images, false alarms occurred fre-
quently. Especially, the slight color changes on the yellow background
could be easily confused with whitefly. The standard deviation was
also presented as error barswith precision (F) in Fig. 5. The highest stan-
dard deviationwas found at the highest image resolutionwhich indicat-
ed the segmentation performance with resolution of 3500-pixel was
less robust to noises.

The computational time increased greatlywith the increase in image
resolution (Fig. 5). Especially, the image processing time with the
highest resolution (3500-pixel, 600DPI) increased 4 times (32.3 s) com-
paringwith the processing timewith the 1600-pixel resolution (6.36 s).
This was 37 times longer than the processing time by the 640-pixel res-
olution (0.87 s). Since the computational time showed very large differ-
ences from the low to the high image resolution, the standard deviation
was too small to plot in the line chart (Fig. 5). Instead, the standard de-
viation is separately provided in Fig. 6(a), showing higher values with
increase in image resolution. It was noteworthy that standard deviation
was extremely high with the maximum resolution, 3500-pixel.

The source of time consumption for classification, blob processing,
and segmentation is specifically presented in Fig. 6(b). The blob
Fig. 5. Computational cost (s) and precision (F) across different levels of image resolution
(Error bars indicate standard deviation of precision).
processing includes morphological processing (e.g., erosion and
dilation) and removal of the blob with unsuitable size (i.e., too large or
too small sized blobs). Due to over-segmentation problems occurred
with the high quality images, more blobs were produced by the seg-
mentation processing. In addition to the image segmentation, blob pro-
cessing on the high quality images cost much higher in dealing with the
segmented blobs, comparing with the processing time with the low
quality images. The computational time for both segmentation and
blob processing dramatically increased by more than 20 times from
640-pixel images (1.06 s) to 3500-pixel images (34.51 s)(Fig. 5). This
is understandable since the number of pixels increased 30 times from
640-pixel to 3500-pixel in resolution. The time for identification also
increased substantially about 11 times at the same image resolution.
On the contrary, the proportion of the classification time in relation to
the total time cost decreased from19.0% to 6.4% in imageswithmaximal
resolution (Fig. 6b). The computational cost of the Mahalanobis
classifier was rather low, even the image resolution increased greatly.
In fact, the increase of classification time was mainly caused by color
feature extraction, since the insect image size geometrically increased
with increase in pixels.

To evaluate pest identification accuracy the number of individuals
for each species was separately counted by humans with experience
in insect identification. It was noteworthy that the humans needed 5
to 20 minutes to examine the pests collected from one sticky trap.
Maximal identification timewas 40.6 seconds on the highest image res-
olution (3500-pixel). The average time consumptions by the automatic
identification, however, were only 1.06 seconds on 640-pixel, 1.33 -
seconds for 800-pixel and 2.35 seconds for 1024-pixels.

The accuracy of species identification was evaluated by correlation
of determination (R2) between the automatic identification and
human counting (Table 1). The overall highest accuracy was achieved
with whitefly maintaining maximal R2 ranging 0.927 - 0.957 across dif-
ferent image resolutions (Table 1). Aphid showed the maximum



Table 1
Coefficient of determination (R2) in pest identification between the proposed method and human counting of three insects across different image resolutions (SD indicates standard
deviation).

Insect Image resolution (pixel) Average ± SD

640 800 1024 1600 3500

Aphids 0.881 0.934 0.941 0.912 0.909 0.915 ± 0.023
Thrips 0.916 0.925 0.853 0.692 0.508 0.779 ± 0.093
Whitefly 0.951 0.945 0.957 0.937 0.927 0.943 ± 0.007
Average ± SD 0.916 ± 0.029 0.935 ± 0.008 0.917 ± 0.046 0.847 ± 0.110 0.781 ± 0.193
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recognition rate across different image resolutions, comparing with
other species. The highest identification accuracy (0.941) was obtained
from image resolution of 1024-pixel for aphid. The recognition rate of
thrip was high with image resolutions of 640, 800 and 1024 pixels,
showing correlation of determination (R2) as 0.916, 0.925 and 0.853,
respectively. It was worth noting that the correlation of determination
(R2) was only 0.692 and 0.508 with the high image quality (1600 and
3500 pixels images) for thrips. This was mainly due to false alarms.
Identification accuracy of thrips considerably decreased when image
resolution was higher than 800 pixels. The overall identification perfor-
mance for three species was superior with image resolution of
800 pixels (0.935), followed by 1024 pixels (0.917) and 640 pixels
(0.916) (Table 1).

Precision analysis (Table 2) was further performed to examine the
correctness achieved by identification results; a high precision value in-
dicates that the identification results contain a high percentage of cor-
rectly identified pests and a low percentage of false alarms as well
(Xia et al., 2012), as stated above. False alarms frequently occurred in
the identification results, affecting overall identification accuracy. The
precision analysis reveals the reliability of the identification results. As
shown in Table 2, the precision values are comparatively higher in the
low image resolutions. Precision was 0.905 for aphid, 0.955 for thrip
and 0.871 for whitefly with image resolution of 640 pixels whereas
the values were 0.941, 0.869 and 0.870 with 800 pixels, respectively.
The precision was in general lower in the higher resolution of images
(N1024 pixels). The precision of identifying thrips and whitefly even
decreased significantly to 0.692 and 0.654, respectively, withmaximum
image resolution of 3500 pixels (Table 2). Since over-segmentation in-
creased in high resolution images, false alarms correspondingly in-
creased to induce reduction in precision. Inaccurate segmentation,
which often contained the surrounded background in the insect images,
also caused the inaccuratemean color of insects for identifying pest spe-
cies. Aphids overall showed the best recognition performance (R2)
(Table 2) with different image resolutions although the maximum pre-
cision was achieved with whitefly (Table 1). Due to distinctive size
(i.e., large) and color (i.e., black), aphids overall showed higher feasibil-
ity in identification comparing with other species.

The confusion matrix presents the degree of correct answer along
with the identification errors for the three insects (Fig. 7) (Kohavi and
Provost, 1998). The diagonal elements of the confusion matrix indicate
the true positives. The rest of elements in rows represent the false pos-
itives of classification. Overall diagonal elements showed themaximum
values as expected. Substantially small numbers were found at either
row or column elements. The values decreased in general alongwith in-
crease in image resolution, especially at maximum resolution for
Table 2
Precision in pest identification of three insects across different image resolutions (SD indicates

Insects Image resolution (pixel)

640 800 1024

Aphids 0.905 0.941 0.858
Thrips 0.955 0.869 0.790
Whitefly 0.871 0.870 0.818
Average ± SD 0.910 ± 0.034 0.893 ± 0.034 0.822 ± 0
whitefly and thrips. For instance the thripswere confusedwithwhitefly,
and vice versa, at maximum resolution, showing the error rates as 0.144
and 0.087, respectively, whereas the values were substantially lower at
other resolutions (Fig. 7). Whitefly and thrips tended to be easily con-
fused in the classification results. Caution is needed in identifying
aphids. Segmentation of aphids occasionally ended up with several
small segments, some of which were recognized as single individual
although the segment is only a part of the body.

By taking into account the correlation of determination, precision
analysis, and the computational cost all together (Tables 1 and 2, and
Fig. 7), the image resolution of 800-pixel could be an optimal choice
for detecting and counting the three major pests in greenhouse. The
image resolution of 640-pixel could be also an option to detect pests
in practical aspect, considering low computational cost.

5. Discussion

Cho et al. (2007) reported the segmentation of three species, aphids,
whitefly and thrips, by two different approaches: aphids were detected
in RGB imagewhereaswhitefly and thripswere segmented in YUV color
space. In this study, three species of pestswere segmented based on one
method for concurrent identification of three species from the sticky
trap images. The preliminary experiments of insect segmentation
were conducted on widely used color spaces including CIELab, HSV
and YCbCr color models (Payne et al., 2014; Sural et al., 2002; Zheng
and Lu, 2012). The YCbCr color model showed the better segmentation
comparing with CIELab and HSV. In our study the insects and grids on
the sticky traps were presented as local maxima in the Cb channel of
YCbCr color model (Fig. 2c). Consequently the local maxima on the
image could be extracted as the markers for the marker-controlled wa-
tershed segmentation. The green grids, however, showed much lower
intensity values in the Cb channel than common greenhouse species
(Fig. 2c). Therefore, the accuracy of insect segmentation was higher in
the Cb channel. The segmentation from the yellow sticky traps was
also demonstrated with the green color insects such as greenfly
(Kumar et al., 2010), however the segmentation in this case was only
conducted with the traps without printed green grids and alphabets.
We demonstrated that segmentation was even possible with images
showing grids and alphabets in this study (Fig. 2a).

Althoughmultifractal demonstrated showedhigher performance re-
garding accuracy than watershed on insect segmentation against noise
in field conditions (e.g., illumination reflections) (Xia et al., 2012),
multifractal is much more computationally expensive. Consequently,
automation withmultifractal would not be affordable for long term op-
eration of portable devices. Otsu algorithm (Otsu, 1979) demands less
standard deviation).

Average ± SD

1600 3500

0.828 0.746 0.856 ± 0.043
0.806 0.692 0.822 ± 0.065
0.773 0.654 0.797 ± 0.041

.028 0.802 ± 0.023 0.697 ± 0.038



Fig. 7. Confusion matrices for human counting and predication in recognition of three in-
sects across different image resolutions (Darker color indicates higher accuracy for diago-
nal elements).

Fig. 8. Images of small size pests difficult for recognition. (a) Over-segmentation of large
pests, and (b) ambiguous objects for identification.
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computational cost, however the method is mainly designed for global
thresholding and is highly sensitive to illumination changes (Xia et al.,
2012). The local adaptive thresholding (Kom et al., 2007) could be an-
other option to extract the insects from sticky trap images without
green grids as reported by Kumar et al. (2010) and Bechar et al.
(2010). In this case, however, the green grids on the sticky traps should
be separately segmented before identifying insects. Considering extrac-
tion of the green grids, the watershed (Vincent and Soille, 1991) could
be an optimal solution to acquire accurate segmentation of insects
from backgrounds in acceptable precision level while achieving lower
computational cost concurrently. Computational complexity of insect
segmentation could be further reduced by the integrating adaptive
thresholding algorithms (Rahman and Islam, 2013). This will be investi-
gated in the future study.

Segmentation accuracy showed a slightly decreasing trend as
resolution increased in this study (Fig. 5). This was due to hyper sensi-
tivity to noise caused by high image resolution. Although high quality
images (N1600 pixels) contained details of the pests, the detection
results turned out to be too sensitive to environmental effects
(e.g., illumination change). Details of image were amplified in high res-
olution and more local maxima were produced while extracting pest
images from backgrounds. Since the watershed segmentation was
based on the localmaxima, the large number of localmaxima led to pro-
duction of more watershed segmentations, causing hypersensitivity to
noise subsequently. The inaccurate segmentation or partially segment-
ed insect images were an important source of the identification errors
according to authors' experience. Legs and wings of the large aphids,
for example, were occasionally segmented as separate objects to serve
as extra noise sources. The ill-segmented objects were sometimes in-
correctly identified as different species (e.g., thrips) to make a false sig-
nal (Fig. 8a). Since thrips' body contains gray and white areas together,
thrips were occasionally divided into two parts in the high resolution
images (Tables 1 and 2). With low resolution images on the other
hand, image feature of legs and wings were not strong and were
neglected by the segmentation algorithm. The optimal level of resolu-
tion was required as shown in this study.

In order to deal with the high quality images, more sophisticated
algorithms would be necessary such as scale invariant feature transfor-
mation (SIFT) (Solis-Sánchez et al., 2011). However, since the appear-
ance of three species (thrips, aphids and whitefly) were mainly
distinguishable with color features in field conditions, the complicated
algorithms applied to high quality images were not necessary to detect
and identify pests collected on sticky traps in field conditions in practi-
cal aspect as demonstrated in this study.

Although aphids showed the best recognition performance, inaccu-
rately segmented aphids led to incorrect identifications. Some segmented
images of aphids contained their legs or the surrounding backgrounds,
therefore, the mean color of the aphid was sometimes distorted since
the legs and background color were included in calculating the mean
color. The aphids could be miss-recognized as thrips in these cases. The
incorrect identification of aphids, however, was not frequent, especially
with the low image resolution.

Identification performance of thrips was relatively lower comparing
with other species, since small size thrips are often confused with
whitefly as presented in the confusion matrices (Fig. 7). As presented
in Fig. 8(b), the pest in the center was identified as whitefly andmarked
with a red letter ‘W’. The mean color of that pest was close to whitefly
but the pest body was in fact surrounded by gray shadow, which also
fit to the feature of thrips. These pests were incorrectly identified as
whitefly in this case as shown in Fig. 8(b). In addition, the overlapped
image of specimens may also reduce the identification accuracy. The
pest sizewas rather smaller in this study, and therewas a lowpossibility
of overlapping. In the future, however, new method should be devised
in case pest population size increased and overlapping of specimens
would increase on the sticky trap.

Light condition was an additional problem for insect identification.
Illumination conditions vary in a high degree in natural condition and
would cause color distortion in image capturing in greenhouse especial-
ly with high resolution images. In this study, it was aimed to present a
prototype of automatic pest identification system, and the current
version of the proposed method still needs further implementation
tests in response to various environmental factors (e.g., continuously
changing illumination conditions) and different population size to
build the products for satisfactory use in agricultural practices.
Color correction (Rizzi et al., 2003) or automatic parameter tuning
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(Boissard et al., 2008) should be also considered in this regard in the
future. In addition, real scale field testswould be further needed to eval-
uate identification performance over space (e.g., whole green house)
and time (e.g., during whole procedure of cultivation). Further study is
required in this regard with the aid of field assessment methods and
integrative pest management programs.

6. Conclusion

By using watershed algorithm and Mahalanobis distance on YCrCb
color space, a pest identification procedure was proposed, achieving
both low computational cost and high feasibility in identifying three
common species, aphid, thrips and whitefly, in greenhouse. The pest
detection and species identification accuracy were verified through
experiments with specimens collected on sticky traps in greenhouse
conditions. The proposed method demonstrated high performance in
identifying and counting small sized pests especially with low resolu-
tion images (i.e., 800-pixel, 640-pixel) when compared with human
identification results. The proposed method would be especially practi-
cal for large scale, long term monitoring by using the portable devices
which requireminimal power consumption and endurable data storage.
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