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Topography has remarkable effects on the local climate, especially inmountainous areas. The accuracy of climate
data is pivotal to the estimation of net primary productivity (NPP). Unrealistic simulations of climate data with-
out considering the topography would lead to biased estimation of NPP. In this work, we aim to evaluate quan-
titatively the NPP difference with and without considering the topographical effects of climate data, and
furthermore, to explore the spatio-temporal characteristics of NPP difference and the primary contributing var-
iables to the difference. For these purposes, two different climate datasets were first built and comparedwith the
station observations, one of which considered topographical effects (terrain-based climate dataset) while the
other one did not (ordinary climate dataset).We quantified topographical effects of climate data on NPP estima-
tion by inputting two different climate datasets to the same ecosystemmodel, the Boreal Ecosystem Productivity
Simulator (BEPS), to evaluate the importance of considering topography during NPP calculations. Then, spatio-
temporal characteristics of the NPP differencewere explored, and the primary contributing variables were deter-
mined through a series of simulation experiments. Results showed that, on average, ordinary climate dataset
underestimatedNPP by 12.5% comparedwith terrain-based climate dataset over thewholeWulingmountainous
area. Topographical effects of climate data had larger impacts on theNPP estimation in summer time than inwin-
termonths. In space, differences between ordinary NPP and terrain-based NPPwere negligible below 200m, and
above 200m, the differences increasedfirst and then steadily decreased; discrepancies betweenNPPs continually
augmented with the slope increasing; and NPPwasmore likely to be affected in the north and northwest than in
the south and southeast. The primary climate variables contributing to the NPP difference in Wuling mountain-
ous area were temperatures, followed by global solar radiation. The research methods developed in this case
study can also be applied to other study areas and other ecosystem models.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The terrestrial carbon cycle is one of the core issues of global change re-
search (Cramer and Field, 1999). Accurate estimation of net primary produc-
tivity (NPP) has been a subject of increasing interest because of the
importance of NPP in global atmospheric CO2 budget affecting climate and
terrestrial carbon cycle (Feng et al., 2004; Zhou and Wang, 2003). NPP is
also the primary source of food for human beings and other living organisms
(Running, 2012), and it provides information useful for the management of
natural resources to achieve sustainable development (Liu et al., 1997).

In the light of difficulties to measure NPP directly in large spatial ex-
tents, a multitude of models have been developed for large-scale NPP es-
timations (Cramer et al., 1999). From earlier statistical models (Lieth,
istrict, Beijing, China. Tel.:+86
1972; Zhou and Zhang, 1995) to recent process-based models (Liu
et al., 1999; Piao et al., 2012; Tian et al., 2010), estimating tools for NPP
have combined more techniques (e.g. remote sensing) and their accura-
cies have been improving steadily (Xu et al., 2007; Zhu et al., 2005). As
previous studies reported, there were large discrepancies among these
model estimates evenusing the samemodel due to differentmodel struc-
ture, quality of input variables, model parameterization, and calibration
(Feng et al., 2007;Wang, 2004). Baldocchi et al. (2002) based on amodel-
ing point of view, partitioned the uncertainties in modeling carbon and
water fluxes within an ecosystem into five categories, and the accuracy
of driving environmental variables is one of the critical sources. Further,
authors concluded that better representation of CO2 and water vapor ex-
change between vegetation canopy and atmosphere would require more
and better input data (Baldocchi et al., 2002).

Meteorological variables determining the environmental condi-
tions for vegetation growth are major input data required by most
ecosystem models. Their accuracies are pivotal to the estimation of
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NPP (Matsushita et al., 2004). Topographyhas remarkable effects on the
simulation of climate data including temperature, precipitation, humid-
ity, incident solar radiation, et al., especially in mountainous areas
(Zhou et al., 2007). In previous studies, traditional methods such as bi-
linear interpolation or kriging interpolation have been utilized to ac-
quire the spatial distribution of meteorological data in complex terrain
(Li, 2013; Piao and Fang, 2002; Zheng, 2006), especially for the global
solar radiation (Zhou et al., 2007). Such unrealistic simulations of cli-
mate data without considering the topographical effects would give
rise to biases in estimated net C exchange between the atmosphere
and ecosystems. Chen et al. (2007) reported that, with consideration
of topographical effects on the climate data, simulated NPP could ac-
count for 76% of the variability in measured NPP across all the sampled
sites at the middle of Chinese Qinling Mountain, while excluding topo-
graphical effects the simulated values only captured 64% of the variabil-
ity. Liu et al. (2013) compared NPP results simulated before and after
topographical corrections of air temperature and total solar radiation in
a mountainous region of central China, and concluded that without
consideration of topographical effects, simulatedmean NPPwas significantly
underestimated.Atpresent, eventhoughtherearea fewstudiespayingatten-
tion to the topographical effects on NPP estimation, they generally focus on
the difference or deviation between NPPs with and without considering the
topographical effects. Primary contributing variables to the NPP difference
and its spatio-temporal characteristics in complex terrain are still not
researched (Huang et al., 2010). It should be noted that, except local climate,
topographical influences onNPPestimation can fromvarious aspects, such as
soil nutrient transformation(Ryunosukeetal., 2004)and lateralmovementof
soil water (Chen et al., 2007; Grant, 2004). But, in this paper only the topo-
graphical effects from climate data are evaluated and explored intensively
for modeling NPPmore accurately in complex terrain.

In this work, we aim to evaluate quantitatively the NPP difference with
and without considering topographical effects of climatic inputs, and fur-
thermore, to explore the spatio-temporal characteristics of NPP difference
and contributions of various climate variables to the difference. For these
purposes, we are going to: (1) build two different climate datasets with
and without considering the topography during simulations of climate
data, and then compare them with the station observations; (2) quantify
the topographical effects of climatic inputs on NPP estimation by inputting
two different climate datasets to the same process-based model, BEPS
model; (3) analyze the spatio-temporal characteristics of theNPPdifference
resulted from different climatic inputs; and (4) design experiments to find
the primary contributing variables to the difference given an overall accura-
cy of the model output for NPP.
Fig. 1. Location and topogra
2. Materials and methods

2.1. Study area

Wuling mountainous area (25°52′–31°24′ N, 107°4′–112°2′ E) is
a large region where Wuling Mountain is located. It lies in the south-
central China and spreads for 420 km across three provinces
(i.e. Hubei Province, Hunan Province, Guizhou Province) and one
municipality—Chongqing City (Fig. 1). The total area is approximately
171,800 km2 and the altitude ranges from −9 to 2979 m above sea
level. Most of lands in the study area are hillsides with the mean slope
of 15°. Soil erosion is severe and rocky desertification is widely devel-
oped in this region. Located in the ecotone from subtropical to warm
temperate zone, mean annual temperature for Wuling mountainous
area is 13.5–17.0 °C, and mean annual precipitation is from 1100 to
1600 mm. Influenced by the climate and terrain, main soil types in the
study area are yellow soil, red soil, and yellow–brown soil. Prevalent
vegetation types are forests including evergreen broadleaf forest,
evergreen coniferous forest, deciduous broadleaf forest, and mixed
broadleaf–conifer forest. Wulingmountainous area has a very high per-
centage of forest cover and it is the core district of subtropical forests
distributed in China. At the same time, however, it is also one of the vul-
nerable ecological regions and plays an important role in the environ-
mental development of south China.

2.2. Climate data

Climate variables required by BEPS model include daily maximum
temperature, minimum temperature, precipitation, relative humidity,
and global solar radiation. Temperatures, precipitation, and relative hu-
midity are conventional meteorological observations of intensive
weather station network with 104 stations over Wuling mountainous
area and its perimeter zone. Among them, there are 12 stations above
1000 m (only 2 stations in Wuling mountainous area) and 18 stations
located in 500–1000 m. At the same time, 36 stations are situated
below 200 m (Fig. 2). Traditional bilinear interpolation method of
BEPSmodel, however, is not suitable for this situation because of the un-
even distribution of meteorological stations in the vertical dimension.
Thin plate spline interpolation algorithm (Hutchinson, 2001) was
adopted in this study to acquire the spatial climate data for NPP estima-
tion, and the interpolation software, ANUSPLIN 4.2, was applied to
accomplishing this. As to incoming solar radiation, stations are so sparse
(only 7 stations located in the interpolation area) that it cannot be
phy of the study area.



Fig. 2. Spatial distribution of meteorological stations used in the study.
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directly obtained through interpolation. In this research, daily solar
radiation was estimated using an empirical equation based on the
spatially distributed sunshine duration (Angstrom, 1924; He and Xie,
2010) which was also acquired through interpolation using ANUSPLIN.

ANUSPLIN has been employed successfully at various regions and
scales (Feng et al., 2007; Price et al., 2000). One of its greatest advan-
tages is that it allows for including terrain factors influencing the climate
variable as additional covariates during the interpolation. According to
our previous study Sun et al. (2014) and Chen et al. (2007), elevation,
slope, and aspect are main variables affecting the spatial distributions
of temperatures and global solar radiation. So, we chose elevation,
slope, and aspect as covariates during the interpolation of maximum
temperature, minimum temperature, and sunshine duration, while
the longitude and latitude were used as independent spline variables.
In regard to precipitation and relative humidity, only the elevation
was utilized as the covariate during interpolations. For comparison, sim-
ilar operations based on the ANUSPLINwith only longitude and latitude
data as the independent spline variables and without any terrain factor
served as the covariate were executed.

Daily solar radiation (S)was calculated using the following empirical
equation:

S ¼ aþ b� N
N0

� �
� S0; ð1Þ

where N is the sunshine duration, and a and b are the empirical
constants which vary with the geographical locations. For Wuling
mountainous area, a and b are assigned 0.0058 and 0.17 respectively
according to our regression results (R2 = 0.79, RMSE = 7.8%). S0 is
the extraterrestrial solar radiation, and its calculation formulas can be
obtained from Weng (1997). N0 is the maximum possible sunshine
duration estimated from the latitude (φ) and solar declination (δ):

N0 ¼ 24
π

arccos − tan φð Þ tan δð Þð Þ: ð2Þ

Similarly, we obtained two different radiation inputs of the study
area based on two sets of sunshine duration data which had been
acquired through interpolations with ANUSPLIN. The climate data con-
sidering topography during interpolations formed the terrain-based
climate dataset, while those climate data without including any terrain
factor as the covariate in the interpolation processes made up the ordi-
nary climate dataset.

2.3. Model description

BEPS model combines remote sensing and ecological process ap-
proaches to simulate spatially carbon and water fluxes between terres-
trial ecosystems and the atmosphere. BEPS was built based on the
stand-level model, FOREST-BGC (Running and Coughlan, 1988), but it
extended stand-level calculations to larger areas (watershed, landscape,
province, or a region) using gridded meteorological and soil data rather
than single station data (Liu et al., 1999). Comparedwith the origin ver-
sion of Forest-BGC, BEPS model is refined in many aspects: (1) BEPS
model includes a canopy-scale photosynthesis model developed from
Farquhar's leaf-scale biochemical model (Farguhar et al., 1980) using a
spatial and temporal scale transformation (Chen et al., 2007); (2) it
has a more advanced radiation transfer model introducing foliage
clumping index to represent the effect of canopy architecture on radia-
tion interception and absorption (Chen and Cihlar, 1995); and (3) BEPS
provides a good framework to address the challenge of integrating data
from different sources and making them spatially and temporally com-
patible (Liu et al., 1997). Detailed descriptions of the model structure
and formulas can be found in Liu et al. (1997, 1999) and Chen et al.
(1999).

BEPS has been utilized to estimate NPP at various scales in Canada
(Liu et al., 1999; Liu et al., 2002), China (Chen et al., 2007; Feng et al.,
2007), and Japan (Higuchi et al., 2005; Huang et al. 2010). The robust-
ness has been repeatedly validated and confirmed (Xu et al., 2007). In
this study, some adjustments have been made to the BEPS model to es-
timate NPP more accurately. The adjustments include: (1) initial values
of some biophysical parameters are modified based on the vegetation
type according to previous studies Tables 1 and 2 interpolation results
based on the ANUSPLIN are directly inputted to the BEPS model and
the algorithm for calculating daily global solar radiation is also embedded
into the model.



Table 1
Some biological parameters for major vegetation types required by BEPS model.

Parameters Unit Broadleaf
forest

Coniferous
forest

Mixed
forest

Shrub Pasture/Crop Reference

Specific leaf area m2 kg C−1 20 25 20 10 30 Feng et al. (2007)
Clumping index – 0.7 0.5 0.6 0.6 0.9 Feng et al. (2007)
Max. stomatal conductance m s−1 0.0045 0.0022 0.0025 0.004 0.005 Matsushita and Tamura (2002) and Feng et al. (2007)
Leaf respiration coefficient kg C d−1 kg−1 0.00398 0.00267 0.003 0.006 0.002 Xu et al. (2007) and Matsushita et al. (2004)
Stem respiration coefficient kg C d−1 kg−1 0.00005 0.00005 0.00005 0.00005 0.00005 Xu et al. (2007) and Matsushita et al. (2004)
Root respiration coefficient kg C d−1 kg−1 0.0002 0.0002 0.0002 0.0002 0.0002 Xu et al. (2007) and Matsushita et al. (2004)
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2.4. Data acquisition and processing

The required BEPS input data, including land cover, LAI, AWC, soil
water content, DEM, forest biomass, and meteorological data, were all
processed in the same coordinate system (Krassovsky ellipsoid/Albers
conical equal area projection) with a spatial resolution of 500 m.

2.4.1. Land cover
Land cover data is mainly used to determine biophysical parameters

that are dependent on the vegetation types. The land cover map of
Wuling mountainous area is part of a 2010 nationwide land cover
map (30 m resolution, interpreted from 16 Landsat TM images) with
more than 30 classes originally. In this study, we regrouped the land
cover types into 13 categories according to Feng et al. (2007), then the
map was resampled at 500 m × 500 m using the Majority method pro-
vided in the ArcGIS resample tool. The final land cover map at a spatial
resolution of 500 m is shown in Fig. 3.

2.4.2. LAI
A consistent 8-day composite LAI series in 2010 generated from

MODIS data based on the GLOBCARBON algorithm (Deng et al., 2006)
at the resolution of 500 m was used to drive BEPS model in this work.
The GLOBCARBON algorithm is a physical LAI retrieval method which
was developed on the basis of a geometrical optical model (4-Scale)
and embedded BRDF corrections during its reversal processes. Derived
LAI compared favorably against the field plot measurements and fine
resolution LAI maps at the national scale (Liu et al., 2012). The LAI
data of our study area was derived from extraction with the usage of
boundary vector of Wuling mountainous area.

2.4.3. Soil data
Available soil water is a crucial factor affecting plant growth. The

AWC data was derived from Harmonized World Soil Database
(HWSD, version 1.2)whichwas compiled using the European Soil Data-
base (ESDB), the 1:1 million soil map of China, various regional SOTER
(the SOil and TERrain) databases, and the Soil Map of the World
(Nachtergaele et al., 2012). The 1:1million soil data of China is provided
by Nanjing Institute of Geography & Limnology, Chinese Academy of
Sciences, and the data comes from a large number of samples in the
field. In this database, 7 AWC classes had been estimated for all soil
units accounting for topsoil (0–30 cm) textural class and depth/volume
limiting soil phases. Codes and true values of theAWCdata are shown in
Table 2.
Table 2
Codes in the AWC data and their true values.

Codes AWC

1 150 mm/m
2 125 mm/m
3 100 mm/m
4 75 mm/m
5 50 mm/m
6 15 mm/m
7 0
2.4.4. Daily meteorological data
Daily meteorological observation data including maximum tem-

perature, minimum temperature, precipitation, relative humidity,
sunshine duration, and solar radiation in 2010 is available from
China Meteorological Data Sharing Service System (http://cdc.cma.
gov.cn/home.do). According to methods described in the 1.3, we
first acquired two datasets of conventional meteorological variables
using ANUSPLIN based on data of 69 stations which were randomly
and uniformly selected from the 104 conventional meteorological
stations (approximately 2/3) within our interpolation area (Fig. 2). Be-
cause of the particularity of incoming shortwave radiation, it was esti-
mated using Eq. (2) separately. Then, we extracted values of the
remaining 35 stations from two interpolated datasets and daily obser-
vation datasets involving temperatures, precipitation, and relative hu-
midity. Regarding the solar radiation, observed data of 7 stations were
all used to examine the accuracies and topographical effects of radiation
inputs. Finally, comparisons were implemented both spatially and
temporally.

2.4.5. Forest biomass data
Forest biomass is a critical input parameter for calculating autotrophic

respiration of forest types. We produced this data mainly through linear
relationships between aboveground biomass (AGB) and LAI (Feng et al.,
2007; Zhou et al., 2007), as shown in Eq. (4):

AGB ¼ A� LAI þ B ð4Þ

where A and B are cover-type dependent parameters, and the unit of
AGB is t/hm2. The aboveground biomass data was calculated from the
dataset of Luo (1996), but we only used those sites where the
vegetation type had not been changed compared with the land cover
in 2010. The underground biomass was estimated through correlation
with the aboveground biomass, and the ratio was given 1:4 in this
study (Guo et al., 2002). After validation against ground data (also
from Luo's dataset), total forest biomass for Wuling mountainous area
was obtained.

2.5. Simulation experiments

A series of experiments were conducted to quantify what difference
the distinct climatic inputs make to estimate NPP of Wuling mountain-
ous area. Two climate datasets were used in the simulations, one of
which considered topographical effects during interpolation processes
was referred as terrain-based climate dataset, while the other one
was called ordinary climate dataset. Climate variables were divided
into 4 groups: (1) temperatures including maximum temperature and
minimum temperature, (2) precipitation, (3) relative humidity, and
(4) solar radiation.We first used all the variables from terrain-based cli-
mate dataset as input data to the BEPSmodel, whichwe called the base-
line run. Then, we employed all the variables in the ordinary climate
dataset to drive BEPS model again for a direct comparison. And next,
we ran themodel repeatedly, on the basis of the baseline run, by replac-
ing one group of variables from the terrain-based climate dataset each
time with the same group of variables from the ordinary climate
dataset, to explore in depth the primary variables contributing to the
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Fig. 3. Land cover map of Wuling mountainous area in 2010.
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NPP difference with and without considering the topographical effects
of climate data. Detailed design of simulation experiments is shown in
Table 3.
2.6. Spatio-temporal analysis of NPP difference

In this study, simulated NPP acquired using all the terrain-based cli-
mate data was referred to as terrain-based NPP, while the NPP estimat-
ed based on all the ordinary climate data was referred to as ordinary
NPP. The spatial distribution of NPP difference was calculated through
terrain-based NPP minus ordinary NPP pixel by pixel. To further reveal
the spatial pattern of NPP difference varying with the altitude, slope,
and aspect, we divided the continuous altitude, slope, and aspect data
into several intervals first. Then, we calculatedmean value and standard
deviation of two NPP estimations and their NPP difference within each
interval. Finally, we used line charts to visualize the spatial variation
characteristics of the NPP difference. The temporal variation character-
istics of NPP difference was studied at monthly scale. The monthly
NPP was obtained by modifying the output step of BEPS model to one
month.
Table 3
Simulation experiments using two different climate datasets.

Simulations Temperatures Precipitation Relative humidity Solar radiation

Experiment I * * * *
Experiment II ♦ ♦ ♦ ♦
Experiment III ♦ * * *
Experiment IV * ♦ * *
Experiment V * * ♦ *
Experiment VI * * * ♦

Symbol * indicates the group of variables from terrain-based climate dataset, while the
group of variables from ordinary climate dataset is indicated by symbol ♦.

Fig. 4. Spatial comparison of two climate datasets on the day of 180 in 2010. Subfigures (a), (c),
precipitation, relative humidity, and global solar radiation in the terrain-based climate dataset, w
dataset.
3. Results

3.1. Comparison and validation of two climate datasets

Two different climate datasets that comprised 5 variables in each of
them were compared spatially and temporally. In terms of spatial pat-
terns, terrain-based climate dataset presentedmore reliable topograph-
ical information and the simulated values revealed more accurate
elevation gradients (Fig. 4a–j). Besides, the maximum value of each
climate variable in the ordinary climate dataset was lower, while the
minimum value was higher, than that of the corresponding terrain-
based climate variable. Differences could only be explained by the
topographical effects since other conditions were all the same, except
whether we had introduced terrain factors as covariates or not during
the interpolation processes.

Comparison and validation of two climate datasets with the station
observation dataset were implemented on the daily scale during
365 days in 2010. From Table 4, it can be concluded that, terrain-based
climate dataset was closer to the station observation dataset compared
with the ordinary climate dataset. On average, without considering topo-
graphical effects, the daily maximum temperature was underestimated
about 1.3 °C and the daily minimum temperature was underestimated
about 1.6 °C. For the daily precipitation and relative humidity, topo-
graphical effects were not so distinct. Compared with station obser-
vations, maximum difference of terrain-based solar radiation was
6090.14 KJ m−2 d−1, while the maximum difference of ordinary solar
radiation reached 7357.83 KJ m−2 d−1. The correlation coefficients of
simulated data and observation data were all very high, but the
terrain-based climate data had higher correlation with the station ob-
servations in terms of all the climate variables. In addition, from the
sign of differences, we concluded that simulated temperatures, precip-
itation, and relative humidity including both terrain-based data and or-
dinary data were all smaller than the actual observations. However, as
for global solar radiation, this study seemed to overestimate it in some
degree.
(e), (g), and (i) are spatial distributions of maximum temperature, minimum temperature,
hile subfigures (b), (d), (f), (h), and (j) are corresponding variables in the ordinary climate
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Table 4
Comparison and validation of simulated climate datasets with the station dataset during 365 days in 2010.

Climate datasets Climate variables Maximum differences Minimum differences Mean differences Correlation coefficients

Terrain-based Maximum temperature (°C) −3.47 0 −0.82 0.995
Minimum temperature (°C) −1.87 0 −0.44 0.998
Precipitation (mm) −17.95 0 −1.39 0.915
Relative humidity (%) −8.38 0 −2.00 0.945
Solar radiation (KJ m−2 d−1) 6090.14 20.86 2058.63 0.886

Ordinary Maximum temperature (°C) −4.99 0.02 −2.07 0.993
Minimum temperature (°C) −3.74 0.07 −2.01 0.997
Precipitation (mm) −16.55 0 −1.51 0.891
Relative humidity (%) −8.69 0.01 −2.05 0.940
Solar radiation (KJ m−2 d−1) 7357.83 42.65 3227.81 0.858
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3.2. Topographical effects of climatic inputs on NPP estimation

By inputting two different climate datasets to our BEPS model
(experiment I and experiment II), topographical effects of climatic
inputs on NPP estimation were quantified. From Fig. 5, spatial patterns
of terrain-based NPP and ordinary NPP were almost identical on the
whole, and distributions of high values and low values were also very
similar. However, terrain-based NPP obviously had higher values than
the ordinary NPP in most regions within Wuling mountainous area.
The maximum value of terrain-based NPP in the study area was
1625 g C m−2 yr−1, while the maximum ordinary NPP was only
1490 g C m−2 yr−1 (Table 5). The mean values for the whole study area
of terrain-based NPP and ordinary NPP were 555.17 g C m−2 yr−1 and
485.50 g C m−2 yr−1, respectively. The relative difference was −12.5%
(negative sign means NPP was underestimated by the ordinary climate
dataset), and this difference was attributed to the topographical effects
of climatic inputs on NPP estimation. For Wuling mountainous area,
underestimated total NPP by the ordinary climate dataset reached
11.65 Tg C.
3.3. Spatio-temporal characteristics of the NPP difference

From the maps of difference between terrain-based NPP and ordi-
nary NPP (Fig. 6), we can see clearly that, on the whole, terrain-based
NPPwas higher thanordinary NPP inmost regions ofWulingmountain-
ous area. Landswith the terrain-basedNPP lower than the ordinary NPP
weremostly distributed in valleys. Terrain-based NPP and ordinary NPP
were roughly the same (difference was within 10 g C m−2 yr−1) in flat
areas, such as the Dongting Lake Plain situated in the southeast of
Wuling mountainous area. The relative NPP differences in these low
regions were very small, basically within ±5% in this study. Areas
with larger positive difference were almost hills and mountains, and
the difference of NPP in some high grounds within the study area
could reach 500 g C m−2 yr−1.

To explore detailed spatial characteristics of the NPP difference,
mean NPP and NPP standard deviation within each altitude, slope, and
aspect interval in our study area were analyzed. From Fig. 7a, it was ob-
served that NPP difference was negligible below 200m. Themean value
of NPP difference below 100 m was negative which indicated that the
terrain-based NPP was smaller than the ordinary NPP on average.
With the altitude increasing, NPP difference also increased until it
reached the maximum of 195.68 g C m−2 yr−1 in the interval of
1800 m to 2000 m. Since then, the discrepancy of mean NPP steadily
decreased. The smallest standard deviation of NPP difference occurred
in the 100–200 m, while the largest dispersion of NPP difference was
in the 2200–2500 m. Slope seemed to have simpler impacts on the
NPP calculations, since the mean value and standard deviation of NPP
difference all continually augmented with the slope increasing, yet the
rates of increment were gradually reduced. The maximum mean NPP
for two NPP estimations both occurred in the slope interval of 35° to
40°, but the difference between them was not the maximum (Fig. 7b).
As to the aspect, NPP was more likely to be affected in the north and
northwest than in the south and southeast. ThemaximumNPP difference
was in the northwest with an absolute difference of 82.21 g C m−2 yr−1,
while the minimum distinction, about 60 g Cm−2 yr−1, was observed in
the southeast of our study area (Fig. 7c).

In Fig. 7d, it was obvious that differences between terrain-based NPP
and ordinary NPP changed greatly on themonthly scale. From January to
March, ordinary mean NPP was slightly higher than the terrain-based
mean NPP, and the difference was no more than 5 g C m−2 yr−1. Mean
values of terrain-based NPP and ordinary NPP in April were almost the
same, and the standard deviation of NPP difference was the lowest with-
in the year. FromMay to October, monthly mean values of ordinary NPP
were lower than those of terrain-based NPP with the maximum differ-
ence of 21.82 g Cm−2 yr−1 in August. Commencing fromNovember, or-
dinary NPP was slightly higher than terrain-based NPP again. It was
obvious that in our study area topographical effects of climatic inputs
had larger impacts on the NPP estimation in summer time than inwinter
months, and the impacts inwinterwere so small that could be ignored in
most cases.
3.4. Primary climate variables contributing to the NPP difference

Detailed results of experiment I to experiment VI are listed in the
Table 6. On average, NPP estimated from ordinary climate dataset was
12.5% lower than that from terrain-based climate dataset with varia-
tions among different vegetation types, and the largest variation was
for evergreen broadleaf forest (−19.7%). To explore in depth the pri-
mary climate variables contributing to the discrepancy, we exam-
ined the difference between terrain-based NPP and ordinary NPP
for each climate variable, and found that the ordinary temperatures
alone underestimated NPP by 10.9% over the study area in compari-
son with the baseline run, followed by ordinary global solar radiation
(−1.8%). Surprisingly, differences were negligible when using the
ordinary precipitation and relative humidity data as the model
inputs (0.1% and −0.4%, respectively). These all indicated that the pri-
mary climate variables contributing to the topographical effects of
climatic inputs for Wuling mountainous area were temperatures,
followed by solar radiation. As to the precipitation and relative humid-
ity, including topographical effects or not did not change theNPP results
much. This is mainly due to the abundance of rain in our study area and
the differences of precipitation and humidity were not enough to cause
variation of NPP. However, on the other hand, differences of tempera-
tures between the hilltop and the foot (or the sunny slope and shady
slope) were significant, which were able to bring about variation of
NPP sufficiently. Besides, from the Table 6, we found the amplitude of
underestimation using all the climate variables from ordinary climate
dataset (Difference1) was smaller than the sum of Difference2 to Differ-
ence5 obtained through using one variable from the ordinary climate
dataset and the rest from terrain-based climate dataset, suggesting
non-linear interactions among climate variables in the BEPS model to
estimate NPP.



Fig. 5. Spatial distribution of terrain-based NPP (a) and ordinary NPP (b) in Wuling mountainous area in 2010.
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4. Discussion

Chen et al. (2007) indicated that spatial variations of climate vari-
ables and lateral movement of soil water are the two main characteris-
tics of mountainous areas. In some regions, especially in dry regions,
exclusion of topographical effects on the lateral movement of soil
water is expected to induce large uncertainties in the simulated NPP.
However, the effect of lateral water flow is very small in Wulingmoun-
tainous area because this region generally has sufficient rainfall (Chen
et al., 2007). This is advantageous for our study to focus on the topo-
graphical effects on the spatial variations of climate data. In addition,
vegetation heterogeneity is also an important feature in complex terrain
(Chen et al., 1999), andmany biophysical parameters for NPPmodeling
vary with the vegetation types. Hence, accurate land cover data is re-
quired to achieve satisfactory modeling results. In our simulations, the
land cover data used has a spatial resolution of 30 m with 30 classes
originally. It is a part of results during the second national land survey
in China, and we believe it has the best agreement with field surveys
in the study area among all the available data at present.

In space, by dividing the continuous altitude, slope, and aspect data
into several intervals, we explored the spatial characteristics of NPP
difference caused by topographical effects of climate data in Wuling
mountainous area. According to the results (Fig. 7a–c), variation ten-
dencies of two NPP estimations as well as the NPP difference are very
similar in space. This reflects that although exclusion of topographical
effects of climate data can lead to inaccurate estimation of NPP, it does
not influence the variation pattern in space on the whole. In Fig. 7d, we
can see that, compared with terrain-based NPP, ordinary NPP slightly
overestimated theNPP inwintermonths,while it greatly underestimated
the NPP in summer time. This inconformity is caused by the biased sim-
ulations of climate data. In Fig. 4, it can be clearly observed that themax-
imum value of each climate variable in the ordinary climate dataset is
lower, while theminimumvalue is higher than that of the corresponding
terrain-based climate data. On the monthly scale, by calculating mean
Table 5
Comparison of quantitative characteristics between two NPPs.

NPP data Mean NPP (g C m−2 yr−1) Total NPP (Tg C) Maximum NPP (g C m

Terrain-based NPP 555.17 92.96 1625
Ordinary NPP 485.50 81.29 1490
values of temperatures, precipitation, relative humidity, and total solar
radiation of two climate datasets, we find that the mean values of ordi-
nary climate dataset are generally lower than those of terrain-based cli-
mate dataset in the summer time, while this relationship is opposite in
the winter months, especially for temperatures. We think it can explain
the temporal variation pattern of NPP difference to some extent.

In this study, we concluded that the primary climate variables con-
tributing to the NPP difference in Wuling mountainous area were tem-
peratures, followed by global solar radiation. It should be noted that the
primary contributing variables are study area dependent. In Wuling
mountainous area, the rainfall is plentiful, so precipitation and humidity
are not themain factors impacting the variation of NPP. On the contrary,
because of frequentmist and large elevation range in the study area, in-
coming solar radiation and temperatures become the primary contrib-
uting variables to the variation of NPP. Finally, in our study area, due
to lack of flux data to validate the NPP estimations, we took terrain-
based NPP as the reference, and concluded that the relative difference
was −12.5%. However, terrain-based NPP is not actually the true NPP.
According to Chen et al. (2007) and Table 4, it may also underestimate
the true NPP in some degree; therefore, the relative difference of NPP
is very likely greater than 12.5% without considering topographical
effects during simulations of climate data forWulingmountainous area.

5. Conclusions

The quality and accuracy of the input climate data to ecosystem
models are pivotal to the model outputs, such as NPP. To evaluate the
importance of considering topographical effects of climatic inputs on
NPP calculations and further to explore the spatio-temporal characteris-
tics of NPP difference, we built two climate datasets first (terrain-based
climate dataset and ordinary climate dataset) in Wuling mountainous
area for case study. Then, we quantified the topographical effects of
climatic inputs on NPP estimation by inputting two different climate
datasets to the same BEPS model. Based on those, spatio-temporal
−2 yr−1) Minimum NPP (g C m−2 yr−1) NPP Standard deviation (g C m−2 yr−1)

0 243.58
0 206.65



Fig. 6.Map of difference (a) and relative difference (b) of NPP in Wuling mountainous area.
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characteristics of the difference between two NPP estimations were an-
alyzed. Finally, primary contributing variables to the NPP difference
were determined through a series of simulation experiments. The
main conclusions are as follows:

(1) Terrain-based climate dataset presents more reliable topographi-
cal information and has closer agreements with the station obser-
vations comparedwith ordinary climate dataset on the daily scale.

(2) Annual mean values in 2010 for the whole study area of terrain-
based NPP and ordinary NPP are 555.17 g C m−2 yr−1 and
Fig. 7. Spatio-temporal variation patterns of the difference between terrain-based NPP and ordi
terms of altitude, slope, and aspect, respectively. The subfigure (d) indicates the temporal vari
485.50 g C m−2 yr−1, respectively. On average, ordinary climate
dataset underestimates the mean NPP by 12.5% compared with
terrain-based climate dataset over the whole study area.

(3) Differences between terrain-based NPP and ordinary NPP change
greatly on the monthly scale. Topographical effects of climatic
inputs have larger impacts on the NPP estimation in summer
time than in winter months. In space, differences between ordi-
nary NPP and terrain-based NPP are negligible below 200 m, but
with the altitude increasing, NPP distinction also increases until
it reaches themaximum in the interval of 1800–2000m.However,
nary NPP. Subfigures (a), (b), and (c) illustrate the spatial distributions of NPP difference in
ation of NPP difference.



Table 6
Contributions of different climate variables to the NPP difference for various vegetation types.

Vegetation types NPP0 NPP1 (Difference1) NPP2 (Difference2) NPP3 (Difference3) NPP4 (Difference4) NPP5 (Difference5)

Evergreen coniferous forest 555.89 466.72
(−16.0%)

475.61
(−16.0%)

556.10
(0)

554.66
(−0.2%)

548.80
(−1.3%)

Deciduous broadleaf forest 581.05 470.76
(−19.0%)

484.52
(−16.6%)

581.15
(0)

575.94
(−0.9%)

574.13
(−1.2%)

Evergreen broadleaf forest 680.53 546.20
(−19.7%)

565.52
(−16.9%)

680.87
(0)

672.86
(−1.1%)

670.97
(−1.4%)

Mixed broadleaf–conifer forest 544.31 450.56
(−17.2%)

461.24
(−15.3%)

544.53
(0)

541.69
(−0.5%)

536.81
(−1.4%)

Shrub 600.12 559.96
(−6.7%)

567.22
(−5.5%)

601.06
(0.2%)

597.15
(−0.5%)

595.65
(−0.7%)

Grassland 517.74 480.04
(−7.3%)

484.70
(−6.4%)

518.00
(0.1%)

516.26
(−0.3%)

514.66
(−0.6%)

Cropland 535.85 482.07
(−10.0%)

488.10
(−8.9%)

536.81
(0.2%)

534.26
(−0.3%)

531.25
(−0.9%)

Total 555.17 485.50
(−12.5%)

494.55
(−10.9%)

555.78
(0.1%)

552.92
(−0.4%)

545.42
(−1.8%)

NPP0 means all the climatic inputs were from terrain-based climate dataset, whichwas the result of experiment I (baseline run). NPP1 means all the climate variables were from ordinary
climate dataset (experiment II). NPP2–NPP5 was the corresponding results of experiment III to experiment VI. Difference1 to Difference5 are corresponding relative differences of NPP1–
NPP5 in comparison with the NPP0. In addition, the unit of NPP0 to NPP5 is g C m−2 yr−1.
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discrepancies of mean NPP are steadily decreased afterwards.
Slope has simpler impacts on the NPP calculations since NPP dis-
crepancies continually increase with the slope increasing, yet the
rates of increment are gradually reduced. As to the aspect, NPP is
more likely to be affected in the north and northwest than in the
south and southeast.

(4) Primary climate variables contributing to the NPP difference in
Wuling mountainous area are temperatures, followed by global
solar radiation. Ordinary precipitation and relative humidity
almost do not change the model results.
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