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Abstract 

Understanding how biodiversity will respond to future climate change is a major 

conservation and societal challenge. Climate change is predicted to force many species to shift 

their ranges in pursuit of suitable conditions. This study aims to use landscape genetics, the study 

of the effects of environmental heterogeneity on the spatial distribution of genetic variation, as a 

predictive tool to assess how species will shift their ranges to track climatic changes and inform 

conservation measures that will facilitate movement. The approach is based on three steps: 1) 

using Species Distribution Models (SDMs) to predict suitable ranges under future climate 

change, 2) using the landscape genetics framework to identify landscape variables that impede or 

facilitate movement, and 3) extrapolating the effect of landscape connectivity on range shifts in 

response to future climate change. I show how this approach can be implemented using the 

publicly available genetic dataset of the grey long-eared bat, Plecotus austriacus, in the Iberian 

Peninsula. Forest cover gradient was the main landscape variable affecting genetic connectivity 

between colonies. Forest availability is likely to limit future range shifts in response to climate 

change, primarily over the central plateau, but important range shift pathways have been 

identified along the eastern and western coasts. I provide outputs that can be directly used by 

conservation managers and review the viability of the approach. Using landscape genetics as a 
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predictive tool in combination with SDMs enables the identification of potential pathways, whose 

loss can affect the ability of species to shift their range into future climatically suitable areas, and 

the appropriate conservation management measures to increase landscape connectivity and 

facilitate movement. 

Keywords: Chiroptera; Climate Change; Ecological Niche Modelling; Genetic Connectivity; 

Landscape Connectivity, Plecotus austriacus.  

Introduction 

Understanding how biodiversity will respond to future climate change is a major 

conservation and societal challenge. Global climate change is predicted to force many species to 

shift their ranges in pursuit of suitable conditions (IPCC 2014). There is ample evidence showing 

that species are already shifting their geographic distributions in line with changing climatic 

conditions (Parmesan & Yohe 2003; Thomas 2010; Chen et al. 2011). However, it is unclear 

whether species will be able to shift their ranges fast enough to track the velocity of climate 

change (Loarie et al. 2009), or if they are able to shift their ranges in face of anthropogenic 

habitat loss and fragmentation (Warren et al. 2001).  

Conservation responses to climate change under constraints of urgency and uncertainty 

need to integrate a broad range of approaches and be guided by predictive forecasts and scientific 

evidence (Gillson et al. 2013). Species distribution modelling is an effective way of determining 

species conservation requirements and potential range changes under future climate change 

(Guisan & Thuiller 2005). Predictive modelling studies have warned that a high proportion of 

species will be committed to extinction, especially under the more severe climate change 
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scenarios (Thomas et al. 2004), and identified reductions in species ranges, with some South-East 

Asian bats losing their entire current niche space (Hughes et al. 2012). 

Despite their potential conservation applications, the practical use of Species Distribution 

Models (SDMs) in conservation management and decision making has been limited by lack of 

communication and appropriate translation of scientific knowledge (Guisan et al. 2013). 

Moreover, instead of properly addressing species’ dispersal abilities and range shift potential, 

studies thus far have commonly assumed one of two extreme, and mostly unrealistic, scenarios: 

no dispersal or unlimited dispersal to new climatically suitable areas (Bateman et al. 2013). The 

ability of species to reach new areas or shift their ranges away from areas that have become 

climatically unsuitable greatly depends on landscape connectivity (Lowler 2009; Krosby et al. 

2010), the extent to which individual movement is facilitated or impeded by the landscape 

(Taylor et al. 1993). Hence, understanding how the landscape affects species movement ecology 

is essential for developing strategies for conserving biodiversity under climate change (Sgrò et al. 

2011). 

The landscape genetics framework uses genetic data to understand the movement of 

individuals across the landscape and how global change affects evolutionary processes (Manel & 

Holderegger 2013). Landscape genetics integrates population genetics, landscape ecology and 

spatial statistics to study the effects of environmental heterogeneity on the spatial distribution of 

genetic variation. It can be used to quantify the effect of landscape composition, configuration 

and quality on genetic connectivity, and to identify barriers to gene flow and movement corridors 

(Manel et al. 2003; Storfer et al. 2007). However to fulfil its potential to inform conservation 
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management, landscape genetics needs to develop beyond describing patterns into a predictive 

discipline (Manel & Holderegger 2013). 

This study aims to use landscape genetics as a predictive tool to assess the ability of 

species to shift their range to climatically suitable areas and to identify range shift pathways to 

guide conservation management under future climate change. As a case study I use the grey long-

eared bat, Plecotus austriacus, in the Iberian Peninsula (hereafter Iberia). Bats have been 

suggested as good indicators of the effects of environmental changes on biodiversity because of 

their high diversity, wide habitat use, role as top predators and sensitivity to disturbance (Jones et 

al. 2009). Future climate change is predicted to affect the distribution of many European bat 

species (Rebelo et al. 2010), and P. austriacus, in particular, is predicted to experience severe 

range contractions in Iberia where populations have persisted across past climatic changes 

(Razgour et al. 2013). I focus on the Iberian Peninsula because of its evolutionary importance as 

a major Pleistocene glacial refuge for European biodiversity (Hewitt 2004), and because it is 

where the effects of future climate change are predicted to be most severe (EEA 2012). 

The fine-scale approach is based on three steps. First predictive SDMs are used to 

determine the future potential climatic range and identify populations at risk (located in areas that 

will become climatically unsuitable by the end of the century). Next, the landscape genetics 

framework is employed to identify landscape variables that impede or facilitate movement in the 

form of gene flow and genetic connectivity. In the final step information from the two previous 

steps is combined to extrapolate the effect of landscape connectivity on range shifts in response 

to future climate change. Using this approach I aim to provide output maps and recommendations 

to inform conservation management under climate change. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

5 

 

2.   Material and Methods  

This study is based on the Plecotus austriacus microsatellite and location records datasets 

published in Razgour et al. (2013, 2014) and available to download from Dryad 

(doi:10.5061/dryad.pt0gh). The microsatellite dataset includes samples from the five Iberian 

colonies with 6-18 samples each (N=64), which were genotyped at 23 autosomal loci (Table 

A.1). 

2.1   Species Distribution Modelling  

Species Distribution Models (SDMs) were generated in Maxent v3.3.3 (Phillips et al. 

2006) and included the same 142 genetically-confirmed location records used in Razgour et al. 

(2013). The extent was set as the whole of Europe and model resolution as 30 arc seconds 

(approximately 1km at the equator). I generated two types of SDMs: a climate model that was 

projected to 2070 to study how climate change will affect the distribution of suitable conditions 

for the species, and a full model, which included land cover variables and was used as a measure 

of habitat suitability in the landscape genetics analysis. The full SDM was cut to the extent of the 

Iberian Peninsula for use in the landscape genetics analysis. 

After removing highly correlated variables (correlation coefficients ≥0.8, tested with 

ENMTools v1.3, Warren et al. 2010) and variables that did not contribute to the model, the 

following variables were included in the climate model: temperature annual range (BIO7), mean 

temperature of the warmest (BIO10) and coldest (BIO11) quarters, annual precipitation (BIO12), 

precipitation seasonality (BIO15), precipitation during the warmest quarter (BIO18) (downloaded 

from WordlClim http://www.worldclim.org), altitude and slope (generated from the Digital 

Elevation Model, CGIAR Consortium for Spatial Information http://srtm.csi.cgiar.org/index.asp). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

6 

 

The full model also included the following variables: land cover type (GlobCover 2009, ESA 

2010 and UCLouvain, http://due.esrin.esa.int/page_globcover.php, reclassified into ten 

categories, Table A.2), distance to unimproved grasslands and distance to broadleaf woodlands 

(generated from Corine Land Cover map 2006, http://www.eea.europa.eu/data-and-

maps/data/corine-land-cover-2006-raster-3), and human population density (LandScan 2008 

http://www.ornl.gov/sci/landscan/). The climate model was projected to the future using the 

HadGEM2_ES General Circulation Model and the IPCC5 ‘business as usual’ climate scenario 

(8.5 W/m
2
 Representative Concentration Pathway; IPCC 2013). 

Modelling methods followed the recommendations in Merow et al. (2013). I tested the 

effect of changing model parameters (regularization values, number of features included) on 

model fit in ENMTools based on Akaike Information Criterion (AIC) values. The final models 

included all features with a regularization value of 1, 10,000 background points and 2000 

iterations. Model outputs were converted into binary maps using the thresholding method that 

maximises the sum of sensitivity and specificity (Liu et al. 2013). Model predictive ability was 

tested with ten-fold cross-validation and compared based on the Area Under the Curve (AUC) of 

the Receiver Operator Characteristics. Training and test AUC scores above 0.75 indicate 

reasonable to high model discrimination ability, and therefore good model performance (Elith et 

al. 2006).   

2.2   Landscape Genetics Analysis 

To identify the effect of the landscape on genetic differentiation, as a surrogate for gene 

flow between colonies, I used the landscape resistance approach implemented in Circuitscape 

v4.0.5 (McRae 2006; McRae et al. 2008). Circuitscape estimates potential movement pathways 
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across a heterogeneous landscape based on the cumulative cost of movement due to landscape 

resistance, and calculates resistance distance matrices between populations. I compared the effect 

of nine landscape elements deemed to be potentially important for the species based on radio-

tracking studies (in the UK: Razgour et al. 2011; in Iberia: Xavier Puig Montserrat, personal 

communications) and species distribution modelling (Table 1). Landscape variables were 

assigned resistance costs ranging from one (no resistance to movement) to 100 (strong barrier to 

movement). Maps were processed in ArcGIS v10.2 (ESRI). Euclidian distances between pairs of 

colonies were calculated using the Landscape Genetics tool (Etherington 2011) in ArcGIS, and 

were log-transformed. Although Euclidian distance was previously shown to have limited 

explanatory power (Razgour et al. 2014), it was included here in order to distinguish between the 

effect of geographic distance per se and landscape resistance to movement. All analyses also 

included a null model, representing a neutral landscape resistance surface (Spear et al. 2010) in 

which all land surfaces were assigned no resistance cost (1), while seas were assigned the highest 

resistance costs (100) to account for continent shape alone.  

I used Mantel and partial Mantel tests (performed in Zt v1.1, Bonnet & Van de Peer 2002) 

to identify the landscape variables that most significantly affect genetic differentiation, as a 

surrogate for gene flow between P. austriacus colonies, following the causal modelling 

framework in Cushman et al. (2006) and Razgour et al. (2014). Landscape variables that 

significantly explained genetic differentiation in the Mantel tests were correlated against the 

genetic distance matrix with competing Euclidian distance, null model or landscape resistance 

matrices partialled-out in partial Mantel tests. Genetic differentiation was determined based on 
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linearised Fst values (Fst/(1-Fst)), calculated in GenAlEx v6.5 (Peakall & Smouse 2012; Table 

2). 

2.3   Future Analysis 

Binary maps of predicted relative occurrence probabilities based on the future SDM were 

used to determine which areas will be climatically suitable for P. austriacus in 2070. To identify 

future range shift pathways I used Circuitscape to generate movement density (current) maps 

between southern Iberian colonies that are predicted to be located in climatically unsuitable areas 

by 2070 (N=17) and locations in the centre, north and north-west of the Peninsula that are 

predicted to be climatically suitable in 2070 (N=30). The latter locations were selected to 

represent the extent and shape of the predicted suitable areas (Fig 1B). Because I was interested in 

movement from unsuitable to suitable areas rather than movement between colonies within each 

area, each area was treated as a single population with multiple location records. Landscape 

resistance to future movement was determined based on the landscape element identified in the 

causal modelling analysis as the variable that most significantly affected genetic differentiation 

between the five colonies after accounting for the effect of all other variables. I used the same 

resistance map as in the present landscape genetics analysis. The validity of using present 

landscape maps was assessed by comparing the extent and nature of land cover changes between 

the present and 2050 based on projections generated by the IMAGE 3.0 model (Stehfest et al. 

2014; www.pbl.nl/image) based on predicted future climate change and human impacts (Global 

Biodiversity Outlook, GBO4). To identify potential future movement pathways, the continuous 

output current (movement) density map was converted in to a binary map based on the Jenk’s 
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optimization natural breaks method in ArcGIS, and is also provided as a KMZ file to view in 

Google Earth. 

3.   Results 

Both SDMs had high predictive ability and did not overfit presence data (full model: 

AUC=0.906, AUCcrossvalidation=0.822 ±0.039; climatic model: AUC=0.882, AUCcrossvalidation=0.812 

±0.033). The most important variables contributing to the climatic and full models were average 

temperature of the coldest quarter and land cover type (full model only; Fig. A.1-A.2). Future 

projections indicate considerable range losses in Iberia, with most of the centre, south and east of 

the peninsula predicted to become climatically unsuitable for the species by 2070 (Fig. 1). 

Neither Euclidian distance (r=0.537, P=0.208) nor the null model (r=0.958, P=0.058) 

were significantly correlated with genetic differentiation. While Mantel tests of all forest 

variables were statistically significant, landscape resistance due to forest cover gradient best 

explained genetic differentiation between colonies, attaining the highest correlation coefficient 

(r=0.989, P<0.01, Fig. 2). This was the only model to remain significant after controlling for the 

effect of Euclidian distance (r=0.988, P<0.01), the null model (r=0.864, P<0.01) and all other 

landscape variables, while other variables were not significant after controlling for the effect of 

this model. The remaining non-forest variables (altitude, slope, habitat suitability and distance to 

unimproved grasslands and mosaic vegetation) were not significantly correlated with genetic 

differentiation (Table A.3). 

Future projections based on landscape resistance due to forest cover gradient identified 

potential range shift pathways primarily along the east coast of Spain, the western coast (centre 

and central coast of Portugal) and surrounding the southern central plateau (Meseta Central), but 
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none across the plateau where forest cover is minimal (Fig 2; Supplementary Google Earth file). 

Comparison of present and future (2050) land cover maps based on the IMAGE 3.0 model show 

that 82% of the study area is predicted to experience no land cover changes. Conversion of forest 

habitats into non-forest habitats (agriculture and scrub) will occur in 3% of the Peninsula, 

primarily along the north Atlantic coast, north-west and the Pyrenees. Conversion of non-forest 

habitat (grassland) into forests is only predicted to occur in one grid cell (0.4% of the area) to the 

south-west of La Rioja colony.  

4.   Discussion 

Whilst SDMs have been widely used to predict range losses and changes for biodiversity 

under future climate change (e.g. Thomas et al. 2004; Araújo et al. 2006; Hughes et al. 2012), a 

predictive landscape genetic approach can help identify how species will shift their ranges to 

track these changes and inform conservation measures that will facilitate movement.  

SDMs predict that P. austriacus is vulnerable to the effects of future climate change in 

Iberia, as most of the peninsula will become climatically unsuitable for this species. Similar range 

contractions are predicted for Mediterranean bat species in general (Rebelo et al. 2010), 

highlighting the importance of facilitating movement for bat populations’ survival in Iberia, 

especially as this area contains high levels of genetic diversity due to its role as a major 

Pleistocene glacial refugia (Hewitt 2004; Razgour et al. 2013). 

Landscape resistance due to forest cover gradient best explains variation in genetic 

differentiation as a surrogate for gene flow. The strong correlations of all forest variables with 

genetic distance highlight the importance of this habitat type for P. austriacus in Iberia. A radio-

tracking study has identified broadleaf woodlands as one of the main foraging habitats of P. 
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austriacus in the UK (Razgour et al. 2011). However, a landscape genetic analysis showed that 

distance to the most important foraging habitat, unimproved grassland, determined genetic 

connectivity in this fragmented edge-of-range population (Razgour et al. 2014), though the study 

did not include forest variables, thus precluding direct comparison. Distance to unimproved 

grasslands was not significantly correlated with genetic distance in this study, either due to 

differences in foraging behaviour across the species’ range or general land cover and habitat 

composition differences between the two geographical areas that result in differences in the 

importance of forest cover for movement behaviour.  

Circuitscape has so far been mainly used as a descriptive tool to identify landscape 

variables affecting genetic connectivity or movement corridors between populations (e.g. McRae 

& Beier 2007; Castillo et al. 2014). Its use as a predictive tool has only been explored in a couple 

of recent studies, albeit not within the landscape genetics framework which allows testing 

whether the landscape variable actually affects movement in the form of gene flow. Cianfrani et 

al. (2013) used Circuitscape to assess the recolonization potential of otter populations into 

Switzerland based on the extent of predicted suitable habitat connectivity, but did not include 

genetic data and a comprehensive landscape resistance model selection approach. Lawler et al. 

(2013) used a similar approach to generate potential movement routes for 2903 vertebrate species 

in response to future climate change based on landscape resistance due to human influence index. 

However, modelling for many species over a large area required a very coarse resolution (50km 

grid cells), which not only obscured fine-scale patterns but is also beyond the natal dispersal 

distances of many species. Moreover, no alternative landscape variables were tested in the multi-
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species analysis, and the effect of human influence index on movement was not confirmed with 

genetic data.  

In contrast, the fine-scale approach developed in this study is designed to first identify the 

most important landscape elements affecting connectivity and only then use this information to 

predict future range shift patterns at a fine enough scale to direct and inform conservation 

management action. Species-specific analysis is necessary given that the effect of landscape 

variables cannot be generalised across species (Storfer et al. 2010). Increasing availability of 

genetic datasets through data archiving repositories (e.g. Dryad) and journal requirements for 

data accessibility means that such fine-scale analysis can be carried out on multiple species 

without the need for extensive field and molecular laboratory work or high costs.  

Predictive future forest cover maps may be more suitable for identifying future range shift 

pathways, but these maps are only available at a very coarse resolution (50km grid cells). Yet 

future land cover projections (IMAGE 3.0 model) suggest that at least at the broad scale there 

will be little changes in forest cover in the south, centre, and eastern and western coasts of Iberia, 

where the majority of range shift movement is predicted to take place (Figure A.3). Therefore, at 

least in this study area, current forest cover gradient can offer a good approximation of future 

forest cover. Moreover, forests may show a lag in their response to future climate change in the 

trailing edge of their range because adult trees can persist in areas where conditions have become 

progressively less suitable due to their longevity and phenotypic plasticity (Jump et al. 2009), and 

therefore climate change may have limited effect on forest cover in the short term.  

Although projected forest losses at the north and north-west of Iberia are unlikely to affect 

the ability of P. austriacus to reach climatically suitable areas, they are likely to affect population 
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establishment and its ability to survive in these areas in the long term. Indeed land use changes 

can exacerbate range contractions and species declines under future climate change (Jetz et al. 

2007) and are predicted to be a major driver of terrestrial biodiversity changes this century, 

especially in Mediterranean ecosystems (Sala et al. 2000).  

Species distribution modelling offers an effective tool for forecasting how climate change 

will alter global species diversity and distribution (Guisan & Thuiller 2005). However, projecting 

species future distributions based on Global Circulation Models (GCMs) of predicted climatic 

changes may be problematic not only because of uncertainties associated with GCM projections, 

but also because species geographic distributions are not determined by climate alone. Most 

predictive modelling approaches used to date have been criticised for being over-simplistic and 

failing to integrate key eco-evolutionary processes that shape species ranges, such as biotic 

interactions and evolutionary adaptations (Thuiller et al. 2013). While interspecific competition 

may limit the ability of species to shift their range into climatically suitable areas, adaptations 

may enable populations to survive in areas with climatic conditions outside the species’ current 

environmental niche. Taking these factors into account can alter the predicted future suitable 

ranges of species, but not how landscape barriers to movement will affect species ability to 

expand their range into climatically suitable areas.  

Like other landscape genetics studies, the novel approach described in this study may be 

sensitive to the parameterisation of the landscape resistance or cost surfaces that are used as a 

measure of functional connectivity (Koen et al. 2012). To avoid biases, this study primarily used 

continuous variables that can be transformed into linear cumulative resistance values bound 

between 1 and 100, and retained a similar cumulative linear approach with the categorical 
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variable. Cumulative values are particularly suitable for identifying landscape or environmental 

features that facilitate or constrain genetic connectivity, but predicting how future landscapes 

may affect genetic connectivity and movement is particularly challenging due to uncertainty 

about future environments (Spear et al. 2010).   

5.   Conclusions 

Using landscape genetics as a predictive tool in combination with SDMs has allowed the 

identification of potential pathways whose loss can affect the ability of species to shift their range 

into climatically suitable areas in response to future changes. These areas should be the focus of 

conservation efforts aimed to increase landscape connectivity to facilitate species movement, an 

important management strategy for climate change adaptation (Heller & Zavaleta 2009) and for 

increasing evolutionary resilience (Sgrò et al. 2011). Through identifying the exact landscape 

variable that enhances connectivity, this fine-scale approach can also directly inform 

conservation management. In the case of P. austriacus, connectivity can be achieved by 

maintaining and enhancing forest availability along range shift pathways. More specifically, 

unlike the remaining forest variables, forest cover gradient also included low resistance costs for 

more open forest habitats, suggesting that even low forest cover can aid future range shifts for 

this species. Such informative analysis can be achieved using publicly available ecological and 

genetic datasets, and can be extrapolated to other areas across species ranges where conditions 

are similar.  
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Figure Captions 

Figure 1 – Changes in the distribution of suitable conditions for Plecotus austriacus under future 

climate change based on the predictions of the climate Species Distribution Models for the 

present (A) and 2070 (B). Grey areas indicate areas predicted to be unsuitable, and black suitable. 

White circles denote the location of colonies predicted to be located in climatically unsuitable 

areas, and white triangles the locations chosen to represent future climatic range suitability in the 

future range shift analysis. 

 

Figure 2 – Predicted movement (current) density maps for Plecotus austriacus across the Iberian 

Peninsula as a factor of landscape resistance due to forest cover gradient: A) between the five 

study colonies (marked with pink circles), B) projected to represent range shift pathways to 

climatically suitable areas. Potential movement density ranges from low in dark blue to high in 

yellow. C) Range shift pathways based on the upper quantile of projected movement density 

shown over a National Geographic map of the Iberian Peninsula (ESRI; available as 

supplementary KMZ file). 
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Table 1 – List of landscape variables included in the landscape genetics analysis, their source 

maps, original scale and scale after conversion to a resistance surface. 

Landscape 
variables 

Source map 
 

Original map scale 
 

Resistance scale 
 

Habitat Suitability 
 

full SDM 
 

0-100  
(low-high suitability) 

1-100 (decreases with habitat suitability) 
 

Altitude Digital Elevation Model 0-3370 m 1-102 (increases with altitude) 

Slope Digital Elevation Model 0-766 1-101 (increases with slope) 

Percent tree canopy 
cover 

Global forest change 
(Hansen et al. 2013) 

0-100 % 
 

1-101 (decreases with tree cover) 
 

Forest cover 
gradient 
 
 
 
 

Reclassified GlobCover 
2009 
 
 
 
 

5 main forest cover 
categories 
 
 
 
 

Categories: 1= >40% forest 
10= 15-40% forest 
25= >15% forest/shrub 
50= mosaic grassland with some forest 
75= mosaic arable with some forest 
100= arable, sparse, bare, water bodies 

Distance to mosaic 
vegetation 

Reclassified GlobCover 
2009 

Euclidian distances 
from variable 

1-100 (increases with distance) 
 

Distance to 
broadleaved 
woodland 

Reclassified Corine Land 
Cover 2006 
 

Euclidian distances 
from variable 
  

1-100 (increases with distance) 
 
 

Distance to all 
woodlands 

Reclassified Corine Land 
Cover 2006 

Euclidian distances 
from variable 

1-100 (increases with distance) 
 

Distance to 
unimproved 
grasslands 

Reclassified Corine Land 
Cover 2006 
 

Euclidian distances 
from variable 
 

1-100 (increases with distance) 
 
 

 

Table 2 – Genetic (Fst) and geographic (Euclidian distances in kilometres) distances between the 

five Iberian Plecotus austriacus colonies 

  La Rioja Lisbon Granada Almeria Jaen 

La Rioja   614.34 575.76 547.67 473.60 

Lisbon 0.046   472.86 533.44 481.04 

Granada 0.022 0.047   79.58 107.85 

Almeria 0.023 0.047 0.022   81.44 

Jaen 0.020 0.045 0.024 0.018   
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Beyond species distribution modelling: a landscape genetics approach to 

investigating range shifts under future climate change 

Orly Razgour 

 

Highlights: 

1. Predictive landscape genetics is used to identify future range shift pathways. 

2. Current genetic connectivity in P. austriacus is limited by forest cover gradient.  

3. Forest availability may limit future movement across parts of the Iberia Peninsula. 

4. This fine-scale approach can inform conservation management under climate change. 


