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A B S T R A C T

Aiming to identify plants, we propose to evaluate the color texture of the palisade parenchyma, from microscopic
images of leaf cross-sections, using a graph based approach. Our texture analysis approach models the image
texture as a graph and uses measurements computed from the shortest paths between specific vertices to provide
a feasible texture signature. For a more consistent evaluation, we compared our approach to different methods
for color texture analysis in a texture classification experiment. The results obtained indicate that our approach
is the most suitable for this histological analysis as it surpassed all the other texture approaches using Linear
Discriminant Analysis, and obtained the second best accuracy using 1-Nearest Neighbor. These results also
corroborate the feasibility of using both histological (as the palisade parenchyma) and computer analysis for
identification and delimitation of plant taxa.

1. Introduction

Texture is one of the most important features in image analysis field,
thus promoting intensive research of approaches that extract more
discriminative image descriptors. Although there is a lack of formal
definition, texture is usually defined as visual patterns composed of sub-
patterns (texture primitives) with specific size, orientation, brightness,
color, etc. This definition, however, is not suitable for natural textures
(e.g., clouds and smoke) as they present a random and persistent
stochastic pattern, thus resulting in a cloud like texture appearance
(Kaplan, 1999).

Another important attribute of images is color and there is extensive
discussion whether color and texture information should be considered
jointly or separately (Drimbarean and Whelan, 2001; Bianconi et al.,
2011). The approach in Backes et al. (2012) used fractal descriptors to
investigate the complexity in R, G and B color channels to characterize
a texture sample. This approach is also used in the combinations of RGB
channels, taking into consideration the correlations among them.
Drimbarean and Whelan (2001) aimed to determine the contribution
of color information to the overall classification performance. This was
performed by evaluating the contribution of color and texture features

separately and collectively, as well as the effect of using different color
spaces. In Bianconi et al. (2011) the authors performed a comprehen-
sive comparison, from both a theoretical and experimental standpoint,
of the use of color and texture information jointly and separately. As it
turns out, there is no standard procedure for processing color textures,
and, basically, the methods have been grouped into three categories:
parallel (color and texture are processed separately); sequential (colors
are indexed in order to construct images that can be processed as
grayscale textures); and integrative (color and texture are processed
jointly) (Palm, 2004).

Traditional identification of plants is a complex task, consuming
time and depending on knowledge of few specialists. In this regard,
automated plant identification has become the subject of intensive
research in computer vision. Moreover, computer vision systems can
quantify characteristics not considered in traditional plant taxonomy,
such as color, texture and shape, thus providing novel tools to this
knowledge field.

Among the plant organs used for taxonomic purposes, leaf has
proven to be a rich information source. For instance, Casanova et al.
(2009) applied Gabor filters in grayscale textures from leaf surfaces.
Plotze et al. (2005) analyzed the leaf shape and venation from 10
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species of the genus Passiflora by using fractal dimension. The papers of
Sá Junior et al. (2011, 2013) explored the internal structure of leaves
(palisade parenchyma, spongy parenchyma, adaxial face of epidermis
and its cuticle) from microscopic images of their cross-sections.

The present work proposes to apply a recent integrative color
texture analysis method based on shortest paths in graphs to images
of palisade parenchyma cells in order to identify plants. This approach
was proposed for two reasons. First, this texture analysis algorithm,
proposed in the paper of Sá Junior et al. (2014), has presented excellent
success rates in three well-known color texture benchmarks, proving to
be able to provide discriminative signatures. Second, parenchyma
palisade has proven to be a very informative plant tissue according to
the papers of Sá Junior et al. (2011, 2013).

The paper is organized as follows: Section 2 explains how to convert
a color texture image into an undirected graph. In Section 3, we show
the procedure of extracting signatures from shortest paths in graphs.
Section 4 details the palisade parenchyma dataset, explains the experi-
mental procedure, and discusses the results obtained. Finally, Section 5
presents some remarks on this study.

2. Color texture modeled as a graph

To model a texture as an undirected graph G(V,E), each pixel I(x,y)
is interpreted as a vertex v ∈ V. An undirected edge e ∈ E connects two
vertices if the Chebyshev distance between them is smaller than or
equal to 1, that is,

E e v v V V x x y y= { =( , )∈ × | max (| − |, | − |) ≤ 1},′ ′ ′ (1)

where x and y are the Cartesian coordinates of the pixel I(x,y). Each
edge has a weight w(e) determined according to the following equation:

w e I x y I x y I x y I x y( ) = | ( , )− ( , )| + ( ( , ) + ( , ))/2,′ ′ ′ ′ (2)

where I(x,y)=g, g ∈ {0, …,255} is the intensity of the pixel I(x,y).
Notice that the weight of an edge consists of two parts. The first part
emphasizes the absolute difference between pixels, so that it privileges
vertices associated to similar pixels and avoids abrupt changes in the
image. The second part emphasizes the search for lower levels of
intensity, a characteristic that may be related to change in the
illumination or borders in the image.

The RGB color texture was converted into a graph in two manners.
In the first approach, each color channel is an independent graph. For
each color channel IC(x,y), C ∈{R,G,B}, a graph is built according to Eq.
(1). In the second approach, the three color channels are considered
altogether and only one graph is constructed. In this unique graph, two
vertices v and v′ representing Ia(x,y) and Ib(x′,y′), respectively, where
a,b ∈{R,G,B}, are connected by an undirected edge e ∈ E if the
Chebyshev distance is also shorter than or equal to 1, but subject to
(a=b) ∨ (a=G ∧ b ∈{R,B}). Notice that we use channel G as a bridge
connecting the other two channels. Thus, we force image exploration to
a multi-channel level, so that the shortest paths are able to hold
information about the transitions between channels. In both ap-
proaches, the weight edge w(e) is determined according to Eq. (2).
More details can be found in the paper of Sá Junior et al. (2014).

3. Shortest path signatures for color textures

To extract a color signature from a graph, we propose to use shortest
paths computed by Dijkstra's algorithm (Dijkstra, 1959). For this
purpose, each color channel has four sets of starting and respective
ending vertices, called horizontal points (path p0∘), vertical points (path
p90∘) and diagonal points (paths p45∘ and p135∘), as shown in Fig. 1.

Even though both strategies for graph modeling have the same sets
of starting and ending vertices, their shortest paths present different
behavior. In the first approach “one graph per color channel”, a shortest
path always belongs to a same color channel. On the other hand, in the

approach “one graph for the whole image”, a shortest path always starts
and ends in the same color channel, but can explore other channels
along the path. Thus, it is possible to extract textural information from
each color channel and explore the interactions among the image
colors.

In order to obtain a signature that contains both local and global
characteristics, two groups of feature vectors are proposed. In the first
group, the image is covered by a grid of disjoint windows l× l (disjoint
windows are used to decrease the computational cost of the method).
For each window and color channel C ∈{R,G,B}, we compute the four
shortest paths (p0∘, p45∘, p90∘ and p135∘). Next, we compute average μd∘

and standard deviation σd∘ in a same direction d ∈{0,45,90,135}.
Thus, we propose the following feature vectors:

α μ σ μ σ μ σ μ σ→ = [ , , , , , , , ],l
C

0 0 45 45 90 90 135 135∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ (3)

and

β μ σ μ σ μ σ μ σ
⎯→⎯

= [ , , , , , , , ],l

C
0 0 45 45 90 90 135 135∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ (4)

where α→l and β
⎯→⎯

l represent the approaches “one graph per color
channel” and “one graph for the whole image”, respectively. Notice
that both α→l and β

⎯→⎯
l contains 8 descriptors (average and standard

deviation for each of the 4 directions considered).
By considering a window size l and the three color channels, the

following feature vectors can be obtained. Feature vectors θ
→

l and ψ→l
contain 24 descriptors (8 descriptors for each RGB color channel), while
ω→l represents their concatenation, totalising 48 descriptors:

θ α α α
→

= [→ , → , → ],l l
R

l
G

l
B

(5)

ψ β β β→ = [
⎯→⎯

,
⎯→⎯

,
⎯→⎯

],l l

R

l

G

l

B
(6)

and

ω θ ψ→ = [
→

, →].l l l (7)

In the second group of feature vectors, which aims to achieve a
multi-scale approach for color texture characterization, it is important
to consider multiple window sizes l. This can be easily achieved by
concatenating the previous feature vectors, as described below. In this
case, feature vectors Θ

→
and Ψ

→
contain 24 descriptors for each window

size l i n, = 1, …,i , while their concatenation, Ω
→
, contains 48 descriptors

for each window size:

θ θ θΘ
→

= [
→

,
→

,…,
→

],l l l l l l, , …, n n1 2 1 2 (8)

ψ ψ ψΨ
→

= [→ , → ,…,→ ],l l l l l l, , …, n n1 2 1 2 (9)

Ω
→

= [Ψ
→

, Θ
→

].l l l l l l l l l, , …, , , …, , , …,n n n1 2 1 2 1 2 (10)

4. Experiment and results

The database used in this work is composed of 320 images
60×60 pixel size of palisade parenchyma tissue divided into 8 classes.
Each class contains 40 samples obtained from 10 randomly chosen
individuals of each species. The classes represent the plant species
Byrsonima intermedia, Miconia albicans, Tibouchina stenocarpa, Vochysia
tucanorum, Xylopia aromatica, Moquiniastrum polymorphum (=
Gochnatia polymorpha), Miconia chamissois and Jacaranda caroba. For
obtaining the images, all leaf samples were fixed in formalin-acetic
acid-alcohol 70% (FAA 70), dehydrated in a graded ethanol series,
infiltrated and embedded in paraffin and cut into 8 μm sections. In the
sequence, the cross-sections were stained with astra blue-basic fuchsine
and permanently mounted in entellan. For image acquisition, we used a
trinocular microscope Leica, model DM-1000, coupled with a video
camera Leica, DFC-280, using 20 × objective lenses. Fig. 2 shows one
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sample of each class. The signatures provided by our texture analysis
method were classified using 1-Nearest Neighbor (1-NN) and Linear
Discriminant Analysis (LDA) (Fukunaga, 1990) in a leave-one-out cross
validation strategy.

In our proposed texture analysis method, computing the shortest
paths can be a time consuming task if the number of vertices and edges
in a graph is large. Thus, to extract the shortest paths from the image
graphs, we divided each image sample (60×60 pixels) into disjoint
windows of l× l pixel size. Since the l value affects the calculus of the
average and standard deviation used in the proposed signatures, we
performed several tests with different window sizes l, as shown in
Table 1. Results show that the performance of the method tends to
reduce as the l values increase. This can be explained by two reasons.
First, a larger l value results in a smaller number of windows used to
subdivide the texture. Second, each window may contain regions of the
texture that present different aspects. Thus, because the proposed
descriptors compress different aspects of the texture into a single pair
of values (average and standard deviation), a bad sampling of different
regions of the texture may cause a loss of discrimination ability of the
method.

This experiment also showed that the approach “one graph per
channel” is more efficient than the approach “one graph for the whole
image” for the characterization of the palisade parenchyma database
used in this study (except for the window size l=4). Also, it demon-
strated that the synergism of the vectors θ

→
l and ψ→l not always increases

the capacity of discriminating the samples.
Different window sizes affect how the texture is sampled by the

method. This indicates a multi-resolution behavior of the method. Thus,
it may be interesting to evaluate the performance of the method as we
combine the signatures computed for multiple l values, as shown in
Table 2. Unlike the experiments presented in the paper of Sá Junior

et al. (2014), the use of sets of values l tends to decrease the success
rate. Thus, none of the success rates surpassed the result obtained by
the feature vector ω→4, which is 86,56%. One possible explanation for
such results is the size of the original samples (60×60 pixel size). We
are working with small samples of a very similar plant tissue. Thus,
even though the signatures computed for different l values may be
different, they do not hold enough difference between each other to

Fig. 1. The four sets of vertices used to compute the shortest paths.
Source: Modified from Sá Junior et al. (2014).

Fig. 2. Windows 60×60 pixel size selected from palisade parenchyma tissue: Species: (a) B. intermedia, (b) M. albicans, (c) T. stenocarpa, (d) V. tucanorum, (e) X. aromatica, (f) M.
polymorphum, (g) M. chamissois and (h) J. caroba.

Table 1
Success rate (%) of the shortest paths in graphs method applied to the palisade
parenchyma database for different window sizes l using 1-NN.

Success rate (%)

l 4 5 6 10 12 15 20 30

θ
→

l
81.25 83.13 82.81 78.44 79.69 79.38 78.13 76.88

ψ→l 84.06 81.88 76.56 64.69 59.69 51.88 45.63 39.06

ω→l 86.56 82.81 85.63 76.88 76.88 80.63 70.63 65.31

Table 2
Success rate (%) of the shortest paths in graphs method applied to the palisade
parenchyma database for different sets of window sizes l using 1-NN.

Success rate (%)

Set of window sizes {l1,l2,…,ln} Θ
→

l l ln1, 2, …, Ψ
→

l l ln1, 2, …, Ω
→

l l ln1, 2, …,

{4,5} 83.13 84.69 85.63
{4,5,6} 82.50 83.13 85.94
{4,5,6,10} 80.94 83.13 86.25
{4,5,6,10,12} 82.19 80.31 84.69
{4,5,6,10,12,15} 81.88 76.88 84.69
{4,5,6,10,12,15,20} 81.88 76.56 –
{4,5,6,10,12,15,20,30} 82.81 77.19 –
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improve the classification when combined.
To improve the evaluation of our method, we also proposed a

comparison with traditional texture analysis methods found in litera-
ture. For this comparison, we included five color texture analysis
methods: Gabor EEE (Hoang and Geusebroek, 2002; Hoang et al.,
2005), HRF (Paschos and Petrou, 2003) (it has its own classification
scheme), Multilayer CCR (Bianconi et al., 2009), MSD (Liu et al., 2011)
and “LBP + Haralick” (Porebski et al., 2008). We also included, for
comparison and baseline, two grey-scale texture descriptors: Local
Binary Patterns (LBP) (Ojala et al., 2002) and Completed Local Binary
Patterns (CLBP) (Guo et al., 2010) (it has its own classification scheme).

Taking into account the previous results, we adopted the signature
ω→4, which provides the highest success rate in Table 1, to compare our
signature using 1-NN and LDA. As we can notice in Table 3, the
performance of our approach surpassed all the results of the compared
methods using LDA and obtained the second best accuracy using 1-NN.
Also, it is worth mentioning the small number of used descriptors (48),
which is only greater than the number of descriptors of the “LBP
+ Haralick” method. For instance, “Multilayer CCR” method uses 640
descriptors to obtain the closest success rate to ours and Gabor EEE uses
192 descriptors to overcome our method, thus making our result
statistically significant. Results also show that color is an important
information to be considered as grey-scale baseline methods (LBP
(Ojala et al., 2002) and CLBP (Guo et al., 2010)) perform poorly in
this problem.

5. Conclusion

Plant images in general, and in particular images of palisade
parenchyma tissue, represent a difficult classification problem for
image analysis methods. This is mostly due to the high similarity
among samples from different species and irregularities within a same
species. In order to address this problem, this paper presents a recent
and powerful approach to extract features from a texture pattern. We
compared our approach to different methods for color texture analysis.
If we considered the highest number of correctly classified samples,
together with the fewest descriptors needed, the results of our approach
surpassed those of the other methods compared. In addition, the results

obtained demonstrated that the histological analysis of the palisade
parenchyma is suitable for plant identification.
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