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Abstract 18 

Methods that quantify multiple-site resemblance are basic toolkits of ecology for studying 19 

community variation in space and time. Although both pairwise and multiple-site 20 

coefficients have received increasing attention in the past decade, the high variety of 21 

methodologies combined with the absence of a systematic review prevents full 22 

understanding and comprehension. To illuminate the situation, we compare and classify 23 

methods that use incidence data and propose a unified terminology. The methods can be 24 

grouped according to families, approaches and forms. The examination of algebraic 25 

expressions and analyses of artificial and actual data sets suggest that inference drawn 26 

about communities strongly depends on the methodology applied. We found that the 27 

impact of mimicking the original pairwise indices (i.e. the impact of families) was stronger 28 

than the impact of components used in formulating the coefficients (i.e. the impact of 29 

approach). Our findings suggest that the measures examined quantify drastically different 30 



facets of multiple-site resemblance and therefore they have to be selected with care in 31 

community studies.  32 
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1. Introduction 39 

 40 

Understanding spatial variation in species composition is one of the most fundamental 41 

challenges of community ecology. This is promoted by testing hypotheses about the 42 

processes that generate and maintain biodiversity in ecosystems (Legendre & De Cáceres, 43 

2013). Invasion ecologists, for instance, examine the impact of alien species on native 44 

communities, while conservation biologists rely on the measurement of compositional 45 

variation in prioritizing areas. The spatial variation of communities can be viewed as either 46 

compositional differentiation or similarity (Jost et al., 2011). Beta diversity (Whittaker, 1960, 47 

1972), for instance, expresses compositional differentiation, while community overlap (Arita, 48 

2017, Schmera, 2017) relates to compositional similarity – which are two sides of the same 49 

coin. 50 

 51 

Community variation has been traditionally studied by examining several pairs of sites from 52 

the same locality (but see Legendre & De Cáceres, 2013, for alternative solutions) and 53 

quantified by the average value of pairwise resemblance (i.e., similarity or dissimilarity) 54 

coefficients (Koleff et al., 2003). Such averages may be used to express both compositional 55 

similarity and differentiation. Recently, however, it has been suggested that inference drawn 56 

from mean values may be misleading, because pairwise resemblance coefficients cannot 57 

account properly for co-occurrence patterns of species in many sites and therefore special 58 

indices are required (Diserud & Ødegaard, 2007; Baselga, 2013). 59 

 60 



Although multiple-site resemblance coefficients have received increasing attention in 61 

contemporary ecology, our knowledge on their relative merits and potential disadvantages is 62 

still limited. A recent review on beta diversity deliberately omitted their discussion (Legendre 63 

& De Cáceres, 2013) while an even more recent study deepened our understanding of 64 

multiple-site overlap measures by providing novel measures and a unified terminology 65 

(Arita, 2017). Unfortunately, however, the increasing number of methods, the application of 66 

different and often overcomplicated mathematical equations, the ambiguous terminology, 67 

as well as the parallel development of similarity and dissimilarity forms impede proper 68 

measurement of multiple-site resemblance. Therefore, for the benefit of practicing 69 

ecologists, we review the methods quantifying multiple-site resemblance that are based on 70 

incidence (presence-absence) data. First, we discuss some basic terms, then we overview 71 

pairwise and multiple-site resemblance coefficients. Specifically, we identify and match 72 

similarity and dissimilarity forms and simplify some equations. Finally, by using artificial and 73 

actual data sets we compare the performance of multiple-site resemblance measures. 74 

 75 

 76 

2. Basic terms 77 

 78 

Originally, pairwise and multiple-site resemblance coefficients have been suggested to 79 

measure the (dis)similarity of two or multiple sites based on the presence-absence of 80 

species. Consequently, sites are the objects of such studies and species are the descriptors 81 

which characterize the objects. Observed data are commonly arranged in matrix X ≡ {xij}, in 82 

which rows represent sites while columns correspond to species (e.g. Legendre & DeCáceres, 83 

2013), a convention followed here as well. Occurrence (of species j in site i) means that 84 

species j is present in site i, coded as xij  = 1. In case of species absence, xij  = 0. The species 85 

richness of site i (ti) is the number of occurrences in the given row (row total, 



T

1j

iji xt , 86 

where T is the number of species). The occurrence frequency of species j (nj) is the number of 87 

sites in which the species is present (called also as range size and calculated as the column 88 

total, 



N

i

ijj xn
1

, where N is the number of sites). Whereas co-occurrence is traditionally 89 



understood as the presence of a pair of species in a given site (Mackenzie et al. 2004, Bell 90 

2005, Pollock et al. 2014 and references therein), Arita and co-workers (Trejo-Barocio & Arita 91 

2013, Arita 2017) termed co-diversity, with a reference to Bell (2005), as the occurrence of a 92 

species in two sites. It follows that the number of co-occurrences in a site is the number of 93 

species pairs present there, while the number of co-diversities is the number of unique site-94 

pair occupancies of a given species. In a more formal way, the number of co-occurrences in 95 

site i can be expressed as  96 










2

it ,           Eq. 1 97 

while the number of co-diversities of species j as: 98 










2

jn .           Eq. 2. 99 

Furthermore, following Schmera (2017) we consider community overlap as a phenomenon 100 

that represents the intersection in the composition of sites, overlapping species as species 101 

with at least two occurrences in a set of sites, overlap size as a quantitative property of 102 

overlapping species that is quantified as the occurrence frequency of the given species 103 

minus one: 104 

1jn ,           Eq. 3. 105 

and total overlap size as a quantitative property of community overlap 106 

Tn
T

j

j 
1

.          Eq. 4. 107 

 108 

 109 

3. Pairwise resemblance coefficients: a short overview 110 

 111 

The literature of numerical ecology abounds in resemblance coefficients (sensu Orlóci 1972) 112 

for comparing pairs of sites based on their species composition. We are concerned here with 113 



similarity (s) and dissimilarity (d) forms which are bounded between 0 and 1, and are 114 

therefore complements (d + s = 1). Presence-absence versions are commonly expressed in 115 

terms of a 2 x 2 contingency table in which a refers to the number of species present in both 116 

sites being compared (shared species, or the number of overlaps in species composition), b 117 

to the number of species present only in the first and c to the number of species in the 118 

second. That is, with respect to a given pair of sites there are b and c species unique to the 119 

first and to the second site, respectively, so that the total number of species in the two sites 120 

equals to a + b + c. We shall focus on three well-known resemblance coefficients, namely the 121 

Jaccard, the Simpson and the Sørensen indices (Table 1, see Koleff et al. 2003 for further 122 

indices). 123 

 124 

 125 

4. A proposal for a unified terminology to classify methods quantifying multiple-site 126 

resemblance 127 

 128 

Here we suggest a unified terminology that allows the classification of methods quantifying 129 

multiple-site resemblance. The multiple-site indices (see next paragraph for details) 130 

mimicking some properties of the original pairwise Jaccard, Simpson and Sørensen indices 131 

(Table 2) are termed as different groups (Legendre 2014), types (Arita 2017) or families 132 

(Baselga, 2012, Baselga & Leprieur, 2015, Podani & Schmera, 2016). This confused 133 

nomenclature, however, does not support the development of the field. We therefore 134 

suggest, following the terminology of the first classifier (Baselga 2012), that classes of 135 

methods mimicking some properties of the original pairwise coefficients should be termed 136 

as families. Accordingly, the methods in question can be classified into Jaccard, Simpson and 137 

the Sørensen families. 138 

 139 

Families, however, do not provide the only way for classifying multiple-site resemblance 140 

measures. The next feature on which further grouping is made depends on the type of 141 

components (mathematical terms) incorporated into the coefficient. Some of the measures 142 



rely only upon pairwise components, some use only general components of the studied 143 

presence-absence matrix such as the total overlap size, others use co-diversity and, finally, 144 

further ones combine general and pairwise components (see next paragraph for details). We 145 

suggest that classes of methods formed according to the components used should be 146 

termed as approaches, and we can distinguish among mean pairwise, general, co-diversity 147 

and mixed components approaches (see below). Finally, as said above, each coefficient can 148 

be expressed as similarity or dissimilarity. We will refer to this property of coefficients as 149 

forms. 150 

 151 

Consequently, we suggest a classification of methods quantifying multiple-site resemblance 152 

according to families, approaches and forms. The terminology becomes even more complex 153 

if we consider that dissimilarity forms (also used as measures of beta diversity) may be 154 

partitioned into additive components to separate the effect of various background factors 155 

influencing dissimilarity. There are two different frameworks for such a partitioning, 156 

intensively discussed and debated in the relevant literature (Baselga, 2010, Carvalho et al., 157 

2013, Cardoso et al., 2014, Ensing & Pither, 2015, Chen, 2016, Podani & Schmera, 2016). 158 

 159 

 160 

5. Multiple-site resemblance: a new classification 161 

 162 

Here we suggest a classification of methods assessing multiple-site resemblance by 163 

considering families, approaches and forms. In this, we do not suggest any hierarchy among 164 

these categories. The classification includes both pairwise and multiple-site coefficients. 165 

Pairwise coefficients are used for quantifying multiple-site resemblance by calculating the 166 

mean of pairwise coefficients, referred here as "mean pairwise approach". 167 

 168 

Multiple-site coefficients express resemblance of more than two sites simultaneously (Table 169 

2). Although the first multiple-site index dates back to the 1950's (Koch 1957, see also Eq. 170 



Tab2/1), further elaboration of such coefficients has started only recently. Some of the new 171 

indices follow the logic of pairwise indices and therefore we categorize them into the 172 

Jaccard, Simpson and Sørensen families (Table 2). However, the coefficients in either family 173 

use different components in quantifying similarity or dissimilarity. In studying the overlap of 174 

multiple sites, for instance, Arita (2017) suggested general overlap indices, which use only 175 

some general components of the incidence matrix, as well as co-diversity indices, which use 176 

the occurrence of two species at a particular site. In other studies, Baselga and co-workers 177 

(Baselga et al. 2007, Baselga 2010, 2012) used both general and pairwise components in 178 

expressing multiple site resemblance or, in other words, they used mixed components. As 179 

said above, we refer to this property of coefficients as approach and distinguish among 180 

mean pairwise (Table 1), general, co-diversity and mixed components approaches (Table 2). 181 

Note that we use the term general instead of general overlap (sensu Arita 2017), because 182 

“general” can reflect both similarity and dissimilarity, whereas “general overlap” intuitively 183 

relates to similarity only. Thus, we can distinguish three families (Jaccard, Simpson and 184 

Sørensen), four approaches (mean pairwise, general, co-diversity and mixed components) 185 

and two forms (similarity and dissimilarity) of methods quantifying multiple site resemblance 186 

(Tables 1 & 2). 187 

 188 

General similarity indices belonging to different families may be formalized in different ways 189 

(Table 2). The observed total overlap size (Eq. 4) may be divided by the maximum number of 190 

total overlap size with N sites and T species (Jaccard family, Eq. Tab2/1), or by the maximum 191 

number of total overlap sizes possible if the sites show a nested design (Simpson family, Eq. 192 

Tab2/3). Thirdly, average overlap size of species may be divided by the average species 193 

richness of sites (Sørensen family, Eq. Tab2/4). 194 

 195 

Baselga and co-workers (Baselga et al. 2007, Baselga 2010, 2012), following Diserud & 196 

Ødegaard (2007), used 
i

i Tt as the "number of shared species" in the multiple-site 197 

situation. Since 


N

i

it
1

=


T

j

jn
1

= G, the grand total of X (see also Arita et al., 2008, 2012; Arita 198 



2017), we can call  
i

i Tt  as total overlap size (Eq. 4). Multiple-site "unique species", 199 

however, were quantified as the sum of unique species for pairs of sites. It follows that it is a 200 

mixed components approach having both pairwise and general constituents. A possible 201 

theoretical problem with this is that total overlap size (from the general approach) and the 202 

number of site pairs in which the same species occur (pairwise component, called also as co-203 

diversity [Arita 2017]) in the data matrix are not the same (Arita 2017), and therefore the 204 

ecological interpretation of these indices is less straightforward. 205 

 206 

Moreover, in addition to general indices, Arita (2017) developed a new approach of multiple-207 

site similarity measures he called the co-diversity indices. These indices, in fact, count the 208 

sum of the two-site occurrences (co-diversity) of species which is divided either by the sum 209 

of the co-diversities when site compositions show a nested design (Simpson family, Eq. 210 

Tab2/10), by the possible number of co-diversities when N sites are occupied with T species 211 

(Jaccard family, Eq. Tab2/9) or, finally, by the sum of average species richness for each pair 212 

of sites (Sørensen family, Eq. Tab2/11). 213 

 214 

 215 

6. Simplification of some equations 216 

 217 

A couple of mixed-component resemblance coefficients have originally been published with 218 

extensive mathematical equations. To make their use easier, we suggest the simplification of 219 

two functions. The mixed component Jaccard dissimilarity (Eq. Tab2/6) suggested by Baselga 220 

(2012) can be simplified to 221 

 




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,        Eq. 5. 222 

while the mixed component Sørensen dissimilarity (Eq. Tab2/8) suggested by Baselga (2010) 223 

reduces to 224 
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        Eq. 6. 225 

 226 

 227 

7. Comparison of methods quantifying multiple-site similarity 228 

 229 

7.1 Methods to compare 230 

Here we compare methods that allow quantification multiple-site resemblance. Although we 231 

use similarity forms, our conclusions are not restricted to similarity because it is 232 

complementary to dissimilarity. Although pairwise coefficients are designed for examining 233 

pairs of sites, the mean values of these coefficients are frequently used for assessing 234 

multiple site similarity. We will refer to this as mean pairwise approach. We examined also 235 

general, mixed components and co-diversity approaches, as well as the Jaccard, Simpson and 236 

Sørensen families. In sum, we define any particular method as the combination of an 237 

approach and a family, and thus compared 12 methods. 238 

 239 

7.2 Artificial data 1 240 

To compare the performance of methods, we examined all possible communities that can be 241 

produced by the co-occurrence of 4 species in 4 sites. In order to calculate the number of 242 

possibilities, we have to first determine how many ways a single species can be distributed in 243 

N sites. Since there are two outcomes for each site (the species is present or absent), the 244 

possible number of occurrence patterns equals 2N. However, this includes the situation 245 

when the species is absent from all sites. Therefore, the number of occurrence patterns 246 

reduces to 2N-1 (for N = 4 we have 15 different patterns). When we have T species, then the 247 

possible number of co-occurrence patterns increases dramatically (2N-1)T (for N = T = 4 we 248 

get 50,625). However, these co-occurrence patterns include empty sites (those without 249 

species) as well. After removing degenerate matrices, the number of meaningful co-250 

occurrence patterns reduces to 41,503 in the example. 251 



 252 

We calculated multiple-site similarities by the different methods (i.e. the combinations of 253 

families and approaches) for each of the 41,503 occurrence patterns. When no similarity 254 

form was given (the Jaccard and Sørensen families of mixed components), we used the 255 

complement of dissimilarity. The resulting scores served as a data set to calculate the 256 

Pearson correlation between different methods, in order to express agreement in trends 257 

among the measures. We transformed the correlations to distances (distance = 1 – 258 

correlation) and analyzed the distance matrix by UPGMA clustering to obtain a dendrogram. 259 

The same distance matrix was analyzed by principal coordinates analysis (PCoA). Thus, in 260 

these multivariate studies, each object represents a given measure. We used the gtools 261 

(Warnes et al. 2014), the betapart (Baselga et al. 2013) packages in R (R Core Team, 2015) 262 

and the SYN-TAX 2000 package (Podani 2001) for computations. 263 

 264 

The dendrogram (Fig. 1) shows that methods belonging to the Simpson family constitute one 265 

group, separated from the methods of the Jaccard and Sørensen families grouped in the 266 

other. Within the latter, general coefficients are well-separated and grouping is more 267 

strongly influenced by the choice of approach than by the family (Fig. 1). The PCoA 268 

ordination of the methodologies (Fig. 2) supports these conclusions. The first axis separates 269 

the Simpson family from the Jaccard and Sørensen families, while the second separates the 270 

general approach from the others. Since these axes account for 44% and 29% of the total 271 

variance, respectively, we can conclude that choice between families had stronger impact on 272 

the results than another decision between the general overlap approach and the others. 273 

 274 

7.3 Artificial data 2 275 

 276 

Artificial data set 1 allowed examining all theoretical possibilities in a matrix with very few 277 

sites and species. To obtain a more realistic picture on the relationships among measures, 278 

we generated a second artificial data set that is closer to actual community data. We 279 

produced 150 sets of 10 sites by 10 species incidence matrices, in which the probability of 280 



the occurrence of a species in a particular site was 0.5. We removed degenerate matrices 281 

(i.e. those with zero row or column totals) and used the first 100 matrices. We followed the 282 

multivariate exploration procedure applied to artificial data set 1. The dendrogram (Fig. 3) 283 

shows that methods belonging to the Simpson family form one group, and methods 284 

belonging to the Jaccard and Sørensen families appear in another. Within the second group, 285 

general coefficients are well-separated. The difference between Figs. 1 and 3 are that Fig. 3 286 

shows larger distances among some groups of methods (the maximum distance is larger 287 

than 0.5) and at the same time smaller distances among similar methods (the behavior of 288 

MC.JAC and MCSOR is similar). The PCoA ordination of the measures (Fig. 4) resulted in 289 

much the same conclusions. The separation of the G.SIM from the other methods is clear. 290 

On the first axis the Simpson family is distinguished from the Jaccard and Sørensen families, 291 

while the second axis separates the general approach from the others. Since these axes 292 

account for 68% and 16% of the total variance, respectively, we can conclude that choice 293 

between families had stronger impact on the results than the decision between the general 294 

overlap approach and the others. We may thus derive the final conclusion from clustering 295 

and ordination that the general indices, especially those belonging to the Simpson family, 296 

present a rather unique way of calculating multiple-site similarities. 297 

 298 

7.4 Actual data set 299 

 300 

Rey (1981) examined the recolonization of islets by arthropods after defaunization by 301 

insecticides. The fauna was recorded every week for more than a year; we took the data 302 

from the 10th, 13th, 20th and 53rd weeks after treatment. These four data matrices, 303 

published in Atmar & Patterson (1995) contain 6 sites and 25, 27, 33 and 33 species, 304 

respectively. An analysis equivalent to the mean pairwise Jaccard method indicated a 305 

monotonic increase of similarity over the study period (Podani & Schmera 2011). 306 

 307 

We found that all methods compared here indicate a monotonically increasing similarity 308 

over time (Fig. 5). Nonetheless, the methods show considerable differences regarding the 309 

multiple site similarity in the four assemblages. For instance, in week 53, the Jaccard family 310 



co-diversity index (CD.JAC) yields a similarity value of 0.131, while the Simpson family 311 

general index (G.SIM) produces 0.698. This suggests that selection of the methodology (i.e. 312 

the choice of the family together with the approach) has significant impact on our inference 313 

about community pattern (here similarity). It is important to note that the traditionally used 314 

mean of pairwise indices (here abbreviated as mean pairwise method) and the other "true" 315 

multiple-site indices produced very different results, suggesting that the pairwise and 316 

multiple-site measures are complementary. 317 

 318 

 319 

8. Conclusions 320 

 321 

We emphasized that understanding and interpreting the multiple-site community patterns 322 

pose relevant methodological issues of contemporary ecology and biogeography. Our review 323 

demonstrated that a wide variety of methods have been available for quantifying multiple-324 

site resemblance patterns. To help the ecologist navigating among them, we suggested a 325 

classification of methodology. Accordingly, a method is a combination of an index family and 326 

an approach. Analyses of simulated and actual data sets revealed that inference drawn on 327 

community pattern strongly depends on the applied method: multiple-site incidence 328 

coefficients quantify different facets of multiple-site community patterns. In particular, we 329 

found that the impact of choosing from original pairwise index families was stronger on 330 

quantifying multiple-site resemblance patterns than the impact of selecting different 331 

approaches. Thus, any methodology used for studying multiple-site community patterns 332 

should be carefully evaluated before use.  333 

 334 
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TABLES 435 

Table 1. The most important properties of three well known pairwise resemblance coefficients 436 

Family Form Equation Eq. n. Interpretation Reference 
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 439 

Table 2: Overview of multiple site resemblance coefficients (N: number of sites, T: total number of 440 
species, ti: number of species at site i, nj: number of sites where species j occurs, o: rank of a species 441 
richness value in the order from the smallest to the largest values, go: the frequency of sites with 442 
species richness of rank o, bkl: number of species unique to site k in pairwise comparison with site l, 443 
blk: number of species unique to site l in pairwise comparison with site k).  444 

Approach Family Form Equation Eq. n. Reference 
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Tab2/3 Arita (2017) 
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FIGURES 449 

 450 

 451 

Fig. 1: UPGMA clustering of methods quantifying multiple-site similarities using 1 – 452 

correlation as distance for 41,503 different data sets with 4 species and 4 sites. 453 

Abbreviations include the combination of an approach and a family, where one or two 454 

letters denote an approach (MP: mean pairwise, G: general, MC: mixed component and CO: 455 

co-diversity) and after a dot three letters denote a family (JAC: Jaccard, SIM: Simpson and 456 

SOR: Sørensen). 457 



 458 

 459 

Fig 2: Principal coordinates analysis of methods quantifying multiple-site similarities using 1 460 

– correlation as distance for 41,503 different data sets with 4 species and 4 sites. For 461 

abbreviations, see caption to Fig. 1. 462 

 463 



 464 

Fig. 3: UPGMA clustering of methods quantifying multiple-site similarities using 1 – 465 

correlation as distance for 100 different data sets with 10 species and 10 sites. For 466 

abbreviations, see caption to Fig. 1. 467 

 468 



 469 

Fig 4: Principal coordinates analysis of methods quantifying multiple-site similarities using 1-470 

correlation as distance for 100 different data sets with 10 species and 10 sites. For 471 

abbreviations, see caption to Fig. 1. 472 

 473 

 474 



 475 

Fig. 5: Change of community similarity over time (in weeks) depicted by 13 multiple-site 476 

similarity indices. For clarity, data points are connected. For abbreviations, see caption to 477 

Fig. 1. 478 
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