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A B S T R A C T

Phenology is a traditional science that investigates the periodic phenomena of plants and animals and their
relations to environmental conditions. Typically plant phenological studies are based on observations made by
phenology experts in the field over time and the correlation with climate data collected by weather sensors.
Although within the visualization community several approaches have been proposed for visualizing data that
vary over time, many of them have a specific purpose and cannot be applied to phenology studies. Besides that,
phenology experts increasingly need tools for managing appropriately long-term time series with many variables
of different data types, as well as to identify cyclical temporal patterns. In this work, we propose a novel ap-
proach to visualize phenological data by combining radial visual structures along with visual rhythms. Radial
visual structures are used to provide contextual insights regarding cyclical phenomena, while the visual rhythm
encoding is used to summarize long-term time series into compact representations. We developed, evaluate, and
validate our proposal with phenology experts using plant phenology direct observational data both at individuals
and species levels.

1. Introduction

Phenology is an important science that investigates the recurrent
life cycles from living beings (plants and animals) and their relations to
the environment (Schwartz, 2003). Traditional phenological studies are
typically based on direct observations made by experts in the field over
time. For example, phenology experts usually monitor several in-
dividuals – from the same or different species – periodically, at monthly
intervals (Morellato et al., 2013; Morellato et al., 2010b).

Generally, in the context of plant phenology, experts need to choose
a sampling method, which defines how individuals and species will be
sampled (spatial distribution) and then, to choose an observation
method for tracking the temporal distribution of events or phenophases,
and for scoring or quantifying the phenological activity over time (d'E
ça Neves and Morellato, 2004; Morellato et al., 2016; Morellato et al.,
2010b). These methodological procedures define how the observations
will be converted into useful data. For example, for each individual,
experts have to observe and take notes about the changes on pheno-
phases such as the appearance of new leaves, development of flowers
and fruits, as well as the leafout (d'E ça Neves and Morellato, 2004;
Talora and Morellato, 2000; Morellato et al., 2010b). One way to record

the changes on phenophases relies on the use of categories represented
by numerical values to estimate intensity of occurrence for each phe-
nophase (d'E ça Neves and Morellato, 2004; Morellato et al., 2010b).
Thus, experts use these numerical values to analyze and to identify
temporal patterns of individuals at the same species, or across species in
a community. Some examples include dates of flowering or fruiting
peaks (Talora and Morellato, 2000) or number of flowers and fruits
produced (Athayde and Morellato, 2014).

Furthermore, phenology studies are usually targeted towards the
investigation of the correlation of phenological phenomena with cli-
mate data. The objective is to answer questions about environmental
changes and their impact on plants (Morellato et al., 2016). In this
scenario, a noticeable challenge faced by phenology experts is how to
organize and to analyze diverse multidimensional cyclical temporal
data (time series), considering different timescales.

A common approach used for data organization relies on the use of
database-oriented solutions, such as relational databases, to store plant
phenology data (Dierenbach et al., 2013; Mariano et al., 2016b). De-
spite their success, the need of visual analytics tools still persists. Al-
though several approaches have been proposed to visualize time series
(Aigner et al., 2011), most of them are not appropriate or applicable to
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phenology data, as they are not able: (i) to handle long-term series with
many variables of different data types and one or more dimensions and
(ii) to identify cyclical temporal patterns and the associated environ-
mental drivers. Furthermore, visualization tools should support data
analysis under different perspectives. For example, a detailed view fo-
cusing on individual and at larger scales, considering data about species
and communities.

In this paper, we address these issues by introducing one suitable
alternative for visualizing data related to phenology studies. Our ap-
proach is based on using a radial layout along with visual rhythms (VR).
The use of a radial structure aims to provide contextual insights re-
garding cyclical temporal phenomena. The use of radial representation
has been successfully applied on phenology studies instead of the linear
representations through the circular statistics analyses (Morellato et al.,
2000; Morellato et al., 2010a). The circular analyses and representation
is a particular way to represent temporal data with no true zero or
starting point (Fisher et al., 1993). Traditionally, VR representations
were proposed to encode temporal change from video data using linear
pixel sampling (Kim et al., 1998; Ngo et al., 1999). In more recent
studies, VR representations have been used to visualize temporal
properties from digital images (Almeida et al., 2016); Leite et al., 2016).
The main advantages of this approach rely on efficiency aspects, as the
compact representations generated are usually less costly in terms of
storage and processing. With this in mind, the main novelty here is on
exploiting the use of VR representations to encode conventional phe-
nological numerical data. To the best of our knowledge, this is the first
initiative dedicated to the use of VR representations to encode con-
ventional numerical data.

In summary, the key contribution of this work is the specification
and the implementation of a visualization approach using radial lay-
outs, along with visual rhythm representations, to explore large vo-
lumes of multidimensional temporal data, usually associated with dif-
ferent types of variables. The objective is to support the detection of
cyclical patterns. We demonstrate the potential use of our tool in the
context of phenology studies using data from the e-phenology project as
a case study (Alberton et al., 2014; Mariano et al., 2016b).

We developed ten prototypes that were separated and validated in
two groups with phenology experts (potential users of our tool), such
as: (i) six prototypes were created to represent phenological data about
individuals – which we call data visualization at detailed level and (ii)
four prototypes were created to represent phenological data about
species – which we call data visualization at summarization level. We also
included two prototypes based on linear bar graphs (one for each level),
which represent the typical visual charts usually created by phenology
experts in their temporal analysis studies. All prototypes encode, vi-
sually, data associated with research questions related to the correlation
among phenology phenomena and climatic conditions. The first results
obtained show that our proposal is able to support the analysis of
phenological data, mainly when the experts are interested in under-
standing the relations among multiple variables associated with plant
life cycle events. Furthermore, we were able to identify the need of
creating interaction mechanisms to support phenology experts in tasks
such as data filtering (i.e., by year, phenophase, and type of data) and
data browsing. The objective is to improve their experience in the un-
derstanding of complex temporal change patterns.

This paper extends the work published in Mariano et al. (2016a). In
that paper, we introduced the idea of combining visual rhythms and
radial structures to encode phenological data. Different from that paper,
we present here a comprehensive formal description of the combination
procedure, concerning the use of both phenological and climate data,
from a database perspective. The objective is to guide researchers and
developers in the creation of novel realizations and extensions of the
proposed approach for managing multidimensional data in different
applications. Lastly, another novelty of this work refers to the de-
scription of user-centered evaluation procedures aiming to validate
different prototypes in the context of real-world phenology studies. To

the best of our knowledge, this is one of the first works in the literature
to describe experiments with phenology experts aiming to validate in-
formation visualization tools in a real scenario setting.

The remainder of this paper is organized as follows. Next section
presents related work. In the following, we present our case study on
the visualization of data produced in the context of the e-phenology
project. Next, we present an overview of our approach, followed by the
discussion upon the usage scenarios and introduce our generic proto-
type proposal. We then present the created prototypes and discuss
about user-centered evaluations performed with phenology experts.
Finally, we offer our conclusions and directions for future work.

2. Related work

Plant phenology studies are based on the observation of individuals
and/or species and the correlation of data related to their life cycle with
climate variables (Morellato et al., 2016; Schwartz, 2003). Recent plant
phenology studies are not only concerned with the analysis of data from
direct plant observations in the field (Morellato et al., 2010b), but also
consider near-remote data derived from sequential vegetation images
taken by digital cameras (Alberton et al., 2014, 2017). We are not
addressing remote phenology in this paper, but the proposal of appro-
priate visualization strategies for this kind of data in the future is of
paramount importance.

There are several approaches to visualize time series as shown in the
seminal book written by Aigner et al. (2011). Most of those initiatives,
however, have limitations to visualize long time series of different types
and domains, i.e., they are not robust enough to visualize multi-
dimensional temporal data. In this sense, researchers have developed
visualization techniques for specific purposes. In Arsenault et al.
(2004), Ferreira et al. (2011), Horn et al. (2009) and Leite et al. (2016),
for example, we found different biodiversity systems with some features
to visualize data varying over time in their context. None of them
combines radial structures with visual rhythm representations at the
same time. The work of Leite et al. (2016), however, takes advantage of
visual rhythms and special color mapping strategies to depict changes
of image-related phenological features over time.

In the following section, we discuss related work upon the use of
visual rhythm representations and radial layouts.

2.1. Visual rhythm

In general, a video can be physically viewed as a set of images
(usually referred to as frames) sequentially ordered over time (Ngo
et al., 1999). Each image that composes a video can be sampled using
different criteria (e.g., based on a vertical, horizontal, or a diagonal
line). Features may be extracted from those samples and later combined
into an image in order to encode video changes over time. The image
generated by this methodology is called Visual Rhythm (Ngo et al.,
1999; Chung et al., 2000). The main objective is to facilitate video
analysis by reducing the storage needs associated with features ex-
tracted from images and speeding up video processing algorithms
(Guimarães et al., 2003).

Formally, a visual rhythm is the simplification of one video V at
domain 2D+ t to domain 1D+ t, as presented in Fig. 1. Each video V
has T frames, where each frame F has the same height and width,
therefore V={Ft}, t ∈ [1, T] (Fig. 1a). Each frame Ft is characterized by
a set of pixels – samples – (x, y) associated with a time instant t, then,
Ft={(x, y, t)}. Ft is also known as a video cut (Chung et al., 2000)
(Fig. 1b).

In order to analyze the video from the temporal point of view, new
cuts can be defined in {Ft} using different sampling strategies (e.g.,
based on vertical, horizontal, or diagonal lines). Fig. 1c illustrates the
use of a horizontal sampling approach. In this example, each Ft is
transformed into a column on a new image, which represents the video
visual rhythm (Fig. 1c). Therefore, the visual rhythm (VR) of a video is
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given by V R={FVR(i, t)}= {Fsampling(x(z), y(z), t)}, i ∈{0, 1, 2, …} and
t ∈ T, where Fsampling(x, y, t) is a spacial reduced version from Ft(x, y, t),
and x(z) and y(z) are functions of one dimension of independent vari-
able z, where z and t refer to vertical and horizontal axis, respectively
(Kim et al., 1998).

The visual rhythm approach has been used with success in different
applications, such as: video cut detection, identification of transitions
and flashes (Guimarães et al., 2003) content-based video retrieval (Ngo
et al., 2003; Valio et al., 2011); social analysis (Hochman and Schwartz,
2012). More recently, some studies have been using visual rhythms in
Biology (Matuszewski et al., 2012; Matuszewski et al., 2013), including
remote phenology (Almeida et al., 2013a, 2013b, 2016) and hyper-
spectral remote sensing image analysis (dos Santos et al., 2014). In this
paper, we construct a visual rhythm representation for time series as-
sociated with numerical data stored in relational tables derived from
traditional direct phenological observation.

2.2. Radial visualization

Radial visualization is the term used to describe a visualization
system that uses circular or elliptical layout to display data. This vi-
sualization layout has been increasingly used for many purposes
(Draper et al., 2009). For temporal data, for example, the radial display
has been widely used to build visualizations, such as spiral graph
(Weber et al., 2001), circle view (Keim et al., 2004), circle segments
(Ankerst et al., 1996), TimeRadarTrees (Burch and Diehl, 2008), and
axes-based visualization (Tominski et al., 2004). In another research
venue, this approach is combined with other techniques. Some ex-
amples include the use of the radial visualization for geoscience ob-
servation data (Li et al., 2015) and of the radial projection for geo-
information (Drocourt et al., 2011). Finally, phenology has used radial
representations instead of the linear representations thorough the cir-
cular statistics analyses (Morellato et al., 2000; Morellato et al., 2010a).
The circular representations is a common way to represent temporal
data with no true zero or starting point (Fisher et al., 1993). Many other
applications of radial visualization are introduced by Draper et al.
(2009).

Inspired by these works, we also use the radial layout to represent
data from phenology studies. Our approach encodes time dimension
using concentric circles (Daassi et al., 2013) and show multivariate data
using a similar concept presented in the circle view (Keim et al., 2004),
and circle segments (Ankerst et al., 1996) approaches. Furthermore, we

also use visual rhythm to summarize a large volume of data, building a
visualization that enables the identification of cyclical patterns related
to phenology data.

According to Draper et al. (2009), many types of radial visualization
exist and they can be combined to produce novel visualizations, such as
the case of Masoodian et al. (2013), which combines radial structure
with pie chart to visualize the proportions of total energy used by one
type of device across a measured period of time. Both Carlis and
Konstan (1998) and Weber et al. (2001) proposed the use of spirals
structures to show the seasonality of data. In our proposal, we also use
the concept of radial structure to organize time-varying phenological
data.

3. Case study: the e-phenology project

3.1. Context

Phenology data are periodically collected from individuals located
in an observation area named site and the data values of observation
vary according to the sampling method used by experts (Morellato
et al., 2010b). In our research, we use data collected in the context of
the long term Cerrado Phenology (Camargo et al., 2011) and the mul-
tidisciplinary e-phenology project (Mariano et al., 2016b; Alberton
et al., 2014, 2017).

The numerical data considered in the context of the e-phenology
project is related to a core study site – a cerrado savanna area – of about
260 ha located at Itirapina, São Paulo State, southeastern Brazil. In the
cerrado core site about 2122 individuals were sampled over 36 trans-
ects, tagged, identified, and are observed monthly for phenology
changes since 2004 up today (Camargo et al., 2011; Vogado et al.,
2016; Alberton et al., 2014). The observers assign a score value that
represents the intensity of plant phenophases (e.g., flower bud, leaf
flush, and fruit). The scores range from 0 to 2 (Morellato et al., 2010b;
Camargo et al., 2011; Vogado et al., 2016), where: 0 means that the
phenophase was not identified; 1 means that the phenophase was
present in up to 50% of the plant, or low presence, and 2 means that
phenophase was present in more than 50% of the plant up to 100% or
high presence. A database model was recently proposed to handle
phenological data, and for more details regarding the data model of the
database designed for the e-Phenology project, readers may refer to
Mariano et al. (2016b). These data (phenophase, date, and values) are
stored into a single table named dataPhenology associated with one

(a)

(b)

(c)

Fig. 1. Visual rhythm examples of a video, a video cut, and a visual rhythm representation.
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individual, i.e., each tuple of this table refers to one phenophase ob-
served for one individual and for each individual we have six tuples in
the table. Furthermore, the database also contains tables to store
weather data for different sensors (table weatherData).

3.2. Data types

Basically, the data managed in the context of the e-phenology pro-
ject can be classified into two types: (i) non-temporal and (ii) temporal
data. These data are stored into conventional databases (Mariano et al.,
2016b). Non-temporal data are related to species taxonomy, location,
and ecological information about species and individuals. These data
are important to contextualize and geographically locate temporal data.

Temporal data, in turn, refer to:

• Phenology data: are obtained from direct on-the-ground observation
of plant's life cycles. These phenological data of events such as
flowering, fruiting, and leafing can be collected daily, fortnightly, or
monthly (as in the case of the e-phenology project), over the years
(Camargo et al., 2011; Vogado et al., 2016; Alberton et al., 2014).
The observer can score the phenophase as: 0 (absence), 1 (between 1
and 50% or low activity) and 2 (above 50% up to 100% or peak of
activity). Fig. 2 shows two examples of numerical time series: (a)
univariate time series and (b) multivariate time series. In these ex-
amples, the data illustrated refer to phenology observations of one
individual of Myrcia guianensis species collected monthly during
2012 in the Cerrado core study site at Itirapina, São Paulo, Brazil

(Vogado et al., 2016). The example in Fig. 2a shows a time series
with only one variable of the set V. This variable is the flower bud
phenophase, whose domain varying over time T are integer numbers
(0, 1, or 2). In turn, Fig. 2b shows a time series with three variables
for the set V: flower bud, anthesis, and leaf flush. In this example, for
each variable from V, the values have the same domain from pre-
vious example and are associated with the same time instant ti in T.

• Climate data: are obtained by weather sensors installed in the site
where the phenology study is performed. The main objective with
these data is to monitor the local information about amount of
rainfall, wind speed, solar radiation, and relative humidity. These
data are usually collected daily in predefined time intervals. In the
case of e-phenology project, the sensors collect data every 5min,
during 24 h a day, every day of year.

3.3. Target analysis problem

Usually, in plant phenology studies experts want to identify cyclical
temporal patterns both, at individual level, as well as at species and
community levels. A critical problem faced relies on the lack of ap-
propriate tools to support these analyses. Although there are many vi-
sualization techniques for exploring time series, there is no standard
tool with which phenology experts may explore their data.
Furthermore, comparative studies involving multiple variables and di-
mensions are even more difficult to be performed (Morellato et al.,
2010a).

For instance, to investigate the climate drivers for plant phenology

(a)

(b)

Fig. 2. Example of (a) univariate and (b) multivariate time series.
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changes, experts have to produce a graphic joint visualization that in-
tegrates both, phenology and climate data. Some examples of typical
graphics used in phenology studies can be found in Staggemeier and
Morellato (2011), Camargo et al. (2011), and Alberton et al. (2014).

In summary, phenology experts spend much time to organize useful
data and to create appropriate graphical representations that might be
used to identify existing temporal relations. According to plant phe-
nology experts, generally, the main problems related to the most
commonly used data visualization approaches are:

1. There is no standard approach or tool with which they can visualize
and analyze temporal data.

2. The graphics used are static and commonly do not support multiple
variables and/or multidimensional analysis.

3. The graphics used are created by using more than one software in
several cases, and frequently have to be combined manually using
graph editors to reach the visualization goal. This is a costly and
time-consuming task as it demands a lot of efforts and training in
many softwares at the same time.

4. Proposed approach

We present a novel approach for visualizing phenological data using
a radial visual structure along with visual rhythms. Our objective is to
support the knowledge discovery process by allowing the analysis of
multidimensional cyclical data.

4.1. Overview

The main objective of this work is to propose a visualization ap-
proach with the objective of supporting the identification of cyclical
temporal patterns from long time series. More specifically, we want to
investigate, for the first time, the use of visual rhythms in the analysis of
conventional numerical, on-the-ground direct observational data used
in phenology studies. In this context, Fig. 3 presents an overview upon
our proposal.

In Fig. 3 component A, we have a representation of temporal data
used in phenology studies and explored in our present proposal. We
consider the analysis of cyclical data associated with numerical (data
related to both direct on-the-ground observations and climatic in-
formation). Once the data are obtained, they are processed and stored
into conventional database (Fig. 3 component B). Next, visual rhythm-
based representations may be extracted from both numerical and cli-
mate data. This step is illustrated by component C in the Fig. 3. The
visual rhythm representation is based on a two-dimensional image,
which is expected to summarize the most important properties of the
multidimensional data. Since our interest is to support the identification
of cyclical temporal patterns, we use a radial visualization structure
(Fig. 3 component D). Finally, as shown in Fig. 3 component E, we
encode the visual rhythm representation into a radial structure.

4.2. Visual rhythms for phenological data

In our proposal, we want to explore the use of visual rhythms for
conventional numerical data. In the following, we detail how to re-
present these data using visual rhythms.

Phenology studies typically are based on the analysis of large vo-
lumes of temporal and cyclical data. For example, those studies often
consider the observation of the life cycles of thousands of plants over
time (Dierenbach et al., 2013). Common research questions addressed
in those studies refer to the analysis of numerical data related, for ex-
ample, to when (time of the year), for how long (duration), and at
which intensity a given event (e.g., leafing or flowering) has occurred at
a specific region (Talora and Morellato, 2000; Morellato et al., 2010b).
The most typical approach to store conventional numerical data asso-
ciated with phenology studies relies on the use of relational databases

(Mariano et al., 2016b; Dierenbach et al., 2013).
In this work, we propose the use of visual rhythm representations to

encode numerical temporal data stored in relational tables. The ob-
jective is to support the identification of cyclical patterns in numerical
data related to phenological studies. In order to represent temporal
changes of numerical data, we use the same idea of original visual
rhythm approach wherein a video is decomposed into multiple images.
Without loss of generality, we assume that it is possible to encode
phenological temporal data into a set of tables ordered in time.

Let R(A0, A1, …, Am, T) be a relation (table), where Ai(0≤ i≤m) is
a numeric attribute and T∈ℕ is an attribute associated with time in-
stants. Without loss of generality, the relation R can be decomposed
into several smaller tables by performing selections based on the values
of the time attribute. For example, Fig. 4 illustrates the decomposition
of relation R based on the selection of tuples (rows of the table) asso-
ciated with different timestamps t (1≤ t≤ n). In the example, relations
Rt refer to the set of tuples whose the value of attribute T is equal to t.
Using the relational algebra notation, Rt= σT=t

R, where σ is the selec-
tion operator.1

Each Rt has its width equal to the number of numerical attributes
(m) and height equal to the number of tuples associated with the same
time instant t. In phenology studies, for example, Ai may refer to the

Fig. 3. Overview of the visualization technique proposed for textual and cli-
mate data.

1 For more details upon the typical relational algebra operators, readers may refer to
Elmasri and Navathe (2010).
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phenophase intensity (e.g., for flower bud or anthesis) observed for
different individuals over time. A specific Rt, in turn, may refer to the
set of the phenophase intensities observed for all individuals at time-
stamp t.

The decomposition of relation based on time information leads to a
set of matrices that can be used to generate visual rhythm representa-
tions. For example, Fig. 5a shows the creation of a visual rhythm re-
presentation based on column information. Following our previous
example, supposing we are interested in studying changes of a parti-
cular phenophase (defined by attribute Ai) over time. In this case,
Rv(t,z)= {πAi

(Rt)}, t ∈ [1, n] and z ∈ [1, H], where n and H are its width
and height, respectively, and π stands for the relational algebra

projection operator that returns a subset of Rt, restricted to the set of
attributes defined by Ai.

Suppose now that we are interested in observing changes on in-
tensities of all phenophases for a particular individual ⟨id⟩. In order to
support this analysis, we can create a visual rhythm representation
based on multiple horizontal selections (one for each relation Rt).
Formally, = = < >R t z π σ R( , ) { ( ( ))}v I id t� , t ∈ [1, n] and z ∈ [1, W], where
� is a set of attributes associated with different phenophases. In this
case, the numerical and time attributes will form y-axis and x-axis,
respectively, into visual rhythm image as shown Fig. 5b.

Another way explored in this paper to build visual rhythms from
relational tables relies on the selection of more than one value for each
attribute and more than one attribute. Thus, in addition to projection
and selection operations we also have to use an aggregation function to
summarize data, such that Rv(t,z)={Ai

}Fagregation(π{Ai
}(σcondition(Rt))), t ∈

[1, W] and z ∈ [1, H], where z on this case is a multidimensional
variable. Typical aggregation functions used include count and average.
Fig. 6 illustrates this example.

5. Implementation details

Fig. 7 shows the basic idea behind our visualization approach for
phenology data. The main objective is to develop a tool that supports
the joint visualization of all variables typically involved in phenology
studies. In Fig. 7, we represent some of them. We are using the idea of
concentric circles divided into segments that are associated with the

Fig. 4. Decomposition of relation R into several relations Rt, where t refers to a timestamp.

(a)

(b)

Fig. 5. Examples of visual rhythm creation based on: (a) projections (vertical
cuts) and (b) selections (horizontal cuts)

Fig. 6. Example of the use of the visual rhythm approach in tabular data using
aggregation operations.
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time instants t ∈ T (1≤ t≤ n). With each segment s, we may associate
one or more attributes, Ai (1≤ i≤m), which may be related to phe-
nological, climate, or image-related data. The amount of segments for
one circle is equal to n×m. We can compute the number of circles
required using the same idea.

The data organization within the prototypes concerning time in-
formation works as follows. Circles are associated with the years, while
segments are used to represent months. Therefore we have 12 segments
that can be subdivided according to the number of attributes con-
sidered. Note that this distribution can be changed according to the user
goals. The numerical attributes are associated with phenology and cli-
mate.

6. Validation

The validation of the proposed visual representation relies on a user-
centered evaluation of prototypes, which encodes on-the-ground direct
observation phenology data.

We carried out experiments with phenology experts aiming to va-
lidate the prototypes created to represent both, detailed and summar-
ized data visualizations, on the context of phenology studies. The ex-
periments aimed at evaluating the effectiveness of the proposed
visualization prototypes using a task-oriented evaluation methodology.

6.1. Target research questions

The data considered in our case study refer to phenology observa-
tions conducted at our core cerrado site of e-phenology project de-
scribed above, from 2005 to 2007. For each individual, researchers
observe six reproductive phases, as follows: (i) flower buds, (ii) open
flowers or anthesis, (iii) unripe fruits, (iv) ripe fruits, and the vegetative
phases of (v) leaf fall and (vi) leaf flush or new leaves, as defined in
Vogado et al. (2016). Recall that to each phenophase, in each ob-
servation, a score from 0 to 2 is assigned. The current implementation
assumes that the target users, phenology experts, are interested in
comparing phenological and climate data only. The climate data con-
sidered in our study refers to the precipitation observed for the same
time period.

Some examples of typical research questions related to phenology

studies that experts try to address using these data are:

1. Is it possible to visualize phenological data (all phenophase in-
tensities) of one specific individual for a specific period of time,
spanning several years?

2. Is it possible to visualize phenological data (all phenophase in-
tensities) of one specific individual combined with climate data for a
period of time, spanning several years?

3. Is it possible to identify the date of peak for a specific phenophase
intensity for one individual?

4. Is it possible to visualize phenological data (all phenophase in-
tensities) for one species, spanning several years?

5. Is it possible to visualize phenological data (all phenophase in-
tensities) of one species combined with climate data for a period of
time, spanning several years?

6. Is it possible to identify the date of peak of phenophase intensities
for one species, spanning several years?

These questions aim to support the understanding of phenological
changes over time and are extremely important in the context of as-
sessing triggers and the impact of climate changes on plant phenology.

6.2. Evaluated prototypes

Based on the research questions presented in Section 6.1, we de-
veloped a generic visual representation using the concept of radial
display and visual rhythm. The use of this representation is dependent
on the kind of question being considered. Two scenarios are studied:

• Detailed visualization: questions that are related to the visualiza-
tion of individual-related data (questions 1 to 3);

• Summarized visualization: questions that are related to the vi-
sualization of species-related data (questions 4 to 6).

6.2.1. Detailed visualization
In order to address questions from 1 to 3 presented in Section 6.1,

we have implemented seven prototypes (see Figs. 8 and 9). All the
prototypes present the phenophases as attributes distributed within the
segments. The phenophases are presented using values 0, 1, or 2, which

Fig. 7. Overview of the visualization proposed for numerical data.
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Fig. 8. Generic prototypes developed to visualize phenological patterns from one individual and climate data using different graphical representations – detailed
visualization level.
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represent the respective observed intensity.
The main difference between them is concerned with how the cli-

mate data is shown and, in the case of Prototype 7, how the pheno-
phases and intensities are represented – in this case, in a linear way
(Fig. 9 – Prototype 7). This is the most common method used by experts
and therefore considered here as our baseline. The prototypes whose
evaluation is close to the evaluation of the baselines will be considered
good candidates for being used in phenology studies.

In the first prototype (Fig. 8 – Prototype 1), the climate data are
shown in the more inner circle in a generic fashion. In all other pro-
totypes (Fig. 8 – Prototypes 2, 3, 4, 5, and 6), in turn, climate data are
placed along with the phenophase data (regions highlighted in blue).

In all prototypes, we consider for each month that the experts want
to visualize all six phenophases. Furthermore, note that in the first,
second, and fourth prototype, we represent the phenophase intensity
values equal to 0 in gray, while in the other prototypes, in white. We
also change the way a phenophase is represented: gray scale (Fig. 8 –
Prototype 2), icons (Fig. 8 – Prototype 3), letters (Fig. 8 – Prototypes 4
and 5), and numbers (Fig. 8 – Prototype 6). With these seven re-
presentations, we want to support the visualization of cyclical data with
the objective of allowing the identification of patterns and relations
among the different variables. In the considered examples, relations
among phenophase intensities and precipitation are considered. All
prototypes also allow the identification of peaks in the intensity values
(bright green cells).

6.2.2. Summarized visualization
With regard to questions from 4 to 6 presented in Section 6.1, five

other prototypes were designed. All prototypes implemented for this
step (see Figs. 10 and 11) consider data about one single species. We are
using data about the species Myrcia guianensis (Vogado et al., 2016).

The main difference here is that data about one species include
records associated with one or more individuals, which demands the
use a summarization approach. In this case, we applied our approach
based on the visual rhythm representation. To determine the pheno-
phase data to be presented, we computed the visual rhythm using an
aggregation function. Thus, instead of presenting values of intensity,
here we calculate how many individuals of a particular species present
the phenophase value different from zero. For instance, for phenophase
flower bud, we count how many individuals presented 1 or 2 in the time
period considered in the study. Therefore, the values associated with
phenophase segments that we present in our visualization refer to the
relative percentage of individuals with phenophase intensity value
different from zero or just the presence of phenological activity.
Similarly to the prototypes of individuals, all prototypes have six phe-
nophases and the fifth prototype is our baseline linear visualization
(Fig. 10 – Prototype 5). Besides that, to identify each phenophase, we
use different strategies: gray-level scale (Fig. 10 – Prototype 1), icons
(Fig. 10 – Prototype 2), letters (Fig. 10 – Prototype 3), and numbers
(Fig. 10 – Prototype 4).

6.3. Experimental setup

6.3.1. User profiles
Eleven phenology experts were recruited by email to take part in the

evaluation of the prototypes – six active researchers (Ph.D.), five Ph.D.
candidates. One of the Ph.D. candidates did not fill out the evaluation
form related to prototypes of species. The key selection requirement
relied on their expertise in plant phenology domain. Subjects of any age
(over 18 years) or gender were accepted in the study.

Fig. 9. Generic prototypes developed to visualize phenological patterns from one individual and climate data using different graphical representations – detailed
visualization level. Example using liner graph.
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6.3.2. Task
Before any procedures the research plan and forms were submitted

for approval in the Unicamp humans ethical committee. We created two
types of forms – one used to evaluate prototypes representing in-
dividuals data and another to evaluate those that manage species data.
In both forms, the evaluators were asked to identify peaks of flowering
and fruiting in specific dates and if they could identify a relationship
between leaf flush and precipitation.

6.3.3. Procedure
All evaluators were asked to evaluate all prototypes.
Each prototype was associated with a different evaluation form. All

recruited evaluators filled out the form about individuals' prototypes
and only ten filled out the form about species' prototypes. For each
question of the forms, the user should indicate, in a Likert scale (from 1
to 5), whether it was easy to identify the required standards on issues.
In the scale: 1 means that the user totally disagrees; 2, disagrees; 3,
neither agrees or disagrees; 4, agrees; 5, totally agrees.

6.3.4. Opening questionnaire
Evaluators were asked to fill out a questionnaire concerning their

familiarity with computers and visualization techniques, as well as,
their expertise with tools to visualize phenological data. Only one
participant indicated to know the information visualization area and
reported to have used the package ggplot2 from language R to represent
data of interest.

6.4. Results

Fig. 12 shows the results with regard to the satisfaction of users
concerning how easy is the identification of phenophase intensities over
years considering all prototypes evaluated. Fig. 12a shows the results of
prototypes that represent phenological data at detailed level (Proto-
types 1, 2, 3, 4, 5, 6, and 7 from Figs. 8 and 9), i.e. using data ob-
servations about individuals, while Fig. 12b shows the results of pro-
totypes that represent phenological data in a summarized level
(Prototypes 1, 2, 3, 4, and 5 from Figs. 10 and 11), i.e., using data from
species. In general, higher scores were observed for Prototype 3 related
to data of individuals, i.e., this is the prototype whose evaluation is

Fig. 10. Generic prototypes developed to visualize phenological patterns from one species and climate data using different graphical representations – summarized
visualization level.
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closer to the baseline (Prototype 7 for individuals). Regarding species
data (Fig. 12b), Prototypes 2, 3, and 4 have similar results. As it was
expected, in all situations the baseline has the best scores, due to the
familiarity of phenology experts in using the data representations em-
ployed by them.

Fig. 13 shows the results with regard to the satisfaction of users
concerning how easy is the task of relating the production of flowers
with the production of flower bud. In this case, we aim to assess

whether it was understandable and easy for users to relate two phe-
nophases. There is no clear winner with regard to prototypes for in-
dividuals (Fig. 13a), but for the baseline. Prototype 3 (for individuals)
has the highest average score. All the prototypes for species data
yielded similar results (Fig. 13b), Prototype 3 with a slightly better
mean.

Fig. 14 shows the results with regard to the satisfaction of users
concerning how easy is the identification of peaks of flowering for both

Fig. 11. Generic prototypes developed to visualize phenological patterns from one species and climate data using different graphical representations – summarized
visualization level. Example using linear graph.

(a) Prototypes for individuals-related data (b) Prototypes for species-related data

Fig. 12. How easy is the identification of phenophase intensities over time.

G.C. Mariano et al. Ecological Informatics 46 (2018) 19–35

29



individuals and species. Here, we aim to assess whether the users are
able to identify when flowering occurs. Again, Prototype 3 for in-
dividuals (Fig. 14a) and Prototypes 2 and 3 for species (Fig. 14b) were
those which had the best scores.

Fig. 15 shows the results with regard to the satisfaction of users
concerning how easy is the identification of peaks of fruiting for both
individuals and species. Here, we aim to assess whether the users are
able to identify when fruiting occurs. Again, Prototype 3 for individuals
(Fig. 15a) and Prototypes 2 and 3 (Fig. 15b) for species were those
which had the best scores.

Finally, we investigated how easy is for users to correlate climatic
data (rainfall) with leaf flush phenophase. Fig. 16 shows the results. In
this task, no prototype achieved outstanding scores. Even the baseline
for individual data (Prototype 7, Fig. 16a) was not well evaluated. A
slightly better mean is observed for Prototype 3 when dealing with
individual's data. These results demonstrate how challenging is the task
of providing appropriate visualization approaches for supporting the
identification of correlation among complex variables.

The evaluators also provided their feedback upon all prototypes in a
text field. We have selected the most relevant positive and negative

comments provided. In general, the evaluators commented that the use
of a radial structure is a good strategy for displaying multivariate
temporal data into a single representation. They believe, however, that
at the same time, too much information is encoded in the representa-
tion, which hampers the analysis process. For example, in several stu-
dies, they are not interested in analyzing all phenophases altogether.
Usually studies focus on specific stages of the plant life cycle (e.g., the
reproductive phenology related to the flower bud and flower pheno-
phases). One suitable alternative to address this issue would be the
support of the use of filtering options (e.g., based on years, pheno-
phases, or data types) with which users may select and analyze more
easily data of interest.

The evaluators believe that the approach of encoding information
about wet and dry seasons in the inner ring as used in Prototype 1 (for
both species and individuals) is a suitable alternative to analyze the
impact of environmental conditions on plants. Except for Prototype 1,
climate data is encoded as a variable, which was welcome by the eva-
luators. On the other side, the evaluators commented that this strategy
makes difficult to establish correlations among climate and phenolo-
gical data. In some situations (e.g., Prototypes 4 and 5 for species), the

(b) Prototypes for species-related data(a) Prototypes for individuals-related data

Fig. 13. How easy is the identification of the relation between the production of flowers and the production of flower bud.

(a) Prototypes for individuals-related data (b) Prototypes for species-related data

Fig. 14. How easy is the identification of flowering.
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provided color information made the correlation identification process
even more difficult. Allowing users to change the type of chart utilized
for represent climatic data based on their specific interests would ad-
dress this issue.

The different prototypes use different strategies to support the
identification of phenophases. For example, for individuals (see Fig. 8),
it is used gray-level colors (Prototypes 1 and 2), icons (Prototype 3),
letters (Prototypes 4 and 5), and numbers (Prototype 6). The evaluators,
in general, preferred letters to numbers, and icons to letters. They be-
lieve, however, that the used icon-based representation should be
avoided in scientific reports. To facilitate the identification of years or
phenophases, customized controls for highlighting specific rings, seg-
ments, or cells could be provided.

Furthermore, prototypes (e.g., 3, 5, and 6 for individuals) with
white background (usually used to encode phenophases with intensity
equal to zero) are preferred to the ones with gray-level colors, because
the evaluators were able to identify more easily the intensity and the
peak of phenophases. We believe that the existence of customized
controls to support the definition of different colors for specific data
(segments) would be useful.

Another positive aspect of the radial structure emphasized by eva-
luators refers to the possibility of presenting data about multiple years
into a single representation. In fact, this is the most commented
drawback of the baselines (Prototype 7 of individuals and Prototype 5
for species). On the other side, according to the evaluators, the inner
segments, which refer to data observed in year 2005, are too small. One
alternative to address this issue would be the existence of customized
controls for zooming in and zooming out (overview and detail levels).
This approach would be useful also in the context of the use of the
radial structures for representing long-term (multiple years) temporal
data.

6.5. Discussion

Phenology studies rely on the analysis of the life cycle of living
beings and its relationship with weather variables. Usually, performed
analyses rely on the use of different kinds of data, typically handled
through multiple tools. Therefore, scientists concerned with phenology
studies usually seek support from a large set of information systems.
This, of course, brings about all kinds of interoperability problems due

(a) Prototypes for individuals-related data (b) Prototypes for species-related data

Fig. 15. How easy is the identification of fruiting.

(a) Prototypes for individuals-related data (b) Prototypes for species-related data

Fig. 16. How easy is the identification of impact of rainfall to leaf flush.
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to system mismatch, data diversity, and variety of user profiles
(Mariano et al., 2016b). Our approach is based on the possibility of
using one single technique to visualize and manage different kinds of
data, including multiple phenophases and environmental information
in a comparative way, an especially important situation where a large
number of temporal data has to be analyzed.

In the performed evaluations, we wanted to investigate what is the
perception of users about visualizing multiple variables at the same
time. In our evaluation, we opted for interface mockups associated with
worst-case scenarios for the visualization. In this context, we presented
data about all phenophases at the same time with the goal of assessing
if, for the possible users, it would be possible to identify correlations
between plant phenophases and climate data, and also to identify useful
information regarding the whole life cycle of individuals or species.
Note also that the considered scenarios, involving multiple pheno-
phases, are useful for intraspecific comparison of individuals of the
same species (Soares and Morellato, 2018; Vogado et al., 2016; Mariano
et al., 2017).

In summary, Prototype 3 for individuals and Prototypes 2 and 3 for
species were the most promising ones to be used to support complex
phenology studies, mainly related to the analysis of multidimensional
data over several years. The use of icons as exploited in Prototype 3 (for
individuals) and Prototype 2 (for species) seems more appropriate for
data presentation in non-scientific purposes or in scenarios involving
less experienced users (such those related to citizen science actions).

Also, the performed evaluation suggests the need of the im-
plementation of interaction mechanisms. We noticed that the users
would perform the proposed tasks more easily, possibly with the as-
sistance of customization tools (e.g., interaction facilities such as se-
lection or filtering features) to reduce and increase the amount of data
presented in the proposed visual structure according to user con-
venience. In particular, we noticed that these kinds of interactions are
important mainly when phenology experts want to compare individuals
from the same species or individuals from the same species but from
different locations.

In fact, from the lessons learned from this study, we have conceived
and have been implementing a complete visualization information

system where the user can interact and control what the users will see
and explore from the existing datasets. For example, users may select
the number of phenophases and the color with which phenological data
will be presented. Some screenshots are presented below.

Recall Prototype 4 (see Fig. 10d), which was used to depict the
pheno-phase intensity for one species during the years of 2005, 2006,
and 2007. In Fig. 17, we present the screenshot of the information
system being conceived to represent the same data considered in Pro-
totype 4. Suppose now that the user of the system is interested in
studying only the reproductive cycle of individuals of this species. In
this case, the user may select phenophases flower bud, flower, unripe
fruit, and fruit, indicating the interest in visualizing their intensity
scores. Fig. 18a presents the radial structure layout after the selection of
reproduction-related phenophases. Similarly, the user may be inter-
ested in comparing the intensity scores only for two phenophases.
Fig. 18b shows an example using the radial layout structure after the
selection of only flowering-related phenophases (e.g., flower and flower
bud).

In this tool, both naive and experienced users will be able to vi-
sualize collections of temporal multidimensional data. More experi-
enced users may be interested in narrowing down data analysis, by
taking advantage of selection and filtering options available in the tool
interface. By using those features, the user may, for example, select
specific phenophases (e.g., those related to reproductive cycle as illu-
strated before), individuals (e.g., those of a single region), and years
(e.g., aiming to identify changes over specific time periods). Also,
customization tools may be used, for example, to select and define
different colors to represent the intensity of particular phenophase.

Another usage scenario refers to the possibility of using the pro-
posed visualization approach for depicting monthly data related to
vegetation indices extracted from sequences of images (Alberton et al.,
2017, 2014). In this case, the daily changes can be observed and
compared for different individuals (represented as regions within the
image) of interest. Figs. 19 presents an example of daily image taken by
digital cameras associated with a region of interest. Using the region of
interest, we can process the daily images to obtain the temporal fea-
tures, such as the gcc variation (Alberton et al., 2017), which can be

Fig. 17. Screenshot of the information system developed based on the evaluations. All phenophases and the variation of precipitation are presented from 2004 to
2007 (same data showed for Prototype 4 at summarization level).
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visualized using the proposed visual structure. Fig. 20 shows the results
for the gcc variation over 2014, 2015, and 2016, associated with an
individual of species Caryocar brasiliensis.

7. Conclusions

In traditional phenology studies, collected data refer to the ob-
servation of phenology made by experts in the field and usually are
correlated with climate data obtained by weather sensors (Mariano
et al., 2016b; Morellato et al., 2016). Since the phenology studies are
based on short to long-term time series and different types of data, the
experts often face the challenge of understanding relations among dif-
ferent data types over time.

This paper has introduced a novel visualization approach for

presenting cyclical multidimensional temporal data associated with
phenology studies. Our proposal combines a radial visualization with
the visual rhythm approach, which are applied in numerical and cli-
mate data. The use of radial layouts aims at providing contextual in-
formation about multiple variables varying over time. The visual
rhythm approach, in turn, is used to summarize large volumes of
multidimensional data into a more compact and easy-to-process re-
presentation. That sort of representation has not been found on phe-
nology studies, even on those using circular approaches (Morellato
et al., 2010a).

We also discuss different usage scenarios of the proposed visuali-
zation approach, demonstrating its potential in the target application.
We created 12 prototypes for on-the-ground, traditional direct phe-
nology observation data and performed evaluations with phenology

Fig. 18. Screenshots of the information system developed based on the evaluations. In (a), data from Fig. 17 are filtered based on the selection of reproduction-
related phenophases. In (b), data from Fig. 17 are filtered based on the selection of two phenophases (flower bud and flower).
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experts. Based on the users' evaluations, we conclude that different
strategies for presenting phenological data using both, the radial dis-
play and the visual rhythm approach, are promising in the identifica-
tion of phenological patterns and their correlation with weather data. In
the case of weather data, we noticed that we have to offer different
options for presentation, depending on the research questions the
phenology experts may want to address. Another point is that we have
to offer interaction mechanisms to the user choose and change colors to
select and represent data of interest.

Similar strategies may be used to present image-related near-remote
phenology data collected with cameras of phenocams (Alberton et al.,
2017), for example, the variation, over time, of color histograms asso-
ciated with regions of interest containing particular plant individuals.

These data could also be displayed along with climate data such as
precipitation. Future work will also be dedicated to the creation of tools
based on the different prototypes considered in our study. One pro-
mising venue is to integrate the visualization possibilities with features
to support circular statistic analyses (Morellato et al., 2010b). Besides
that, we plan to use the prototypes to visualize the results produced by
the proposed Change Frequency Heatmap approach to visualize tem-
poral changes in phenological data (Mariano et al., 2017) and also in-
tegrate the prototypes with recently proposed tool to manage phe-
nology data (Mariano et al., 2016b), both of them in the context of the
e-phenology project.
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