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ABSTRACT 

Correlative species distribution models (SDMs) are widely used to predict species distributions and 

assemblages, with many fundamental and applied uses. Different factors were shown to affect SDM 

prediction accuracy. However, real data cannot give unambiguous answers on these issues, and for this 

reason, artificial data have been increasingly used in recent years. Here, we move one step further by 

assessing how different factors can affect the prediction accuracy of virtual assemblages obtained by 

stacking individual SDM predictions (stacked SDMs, S-SDM). We modelled 100 virtual species in a 

real study area, testing five different factors: sample size (200-800-3200), sampling method (nested, 

non-nested), sampling prevalence (25%, 50%, 75% and species true prevalence), modelling technique 

(GAM, GLM, BRT and RF) and thresholding method (ROC, MaxTSS, and MaxKappa). We showed 

that the accuracy of S-SDM predictions is mostly affected by modelling technique followed by sample 

size. Models fitted by GAM/GLM had a higher accuracy and lower variance than BRT/RF. Model 

accuracy increased with sample size and a sampling strategy reflecting the true prevalence of the species 

was most successful. However, even with sample sizes as high as >3000 sites, residual uncertainty 

remained in the predictions, potentially reflecting a bias introduced by creating and/or resampling the 

virtual species. Therefore, when evaluating the accuracy of predictions from S-SDMs fitted with real 

field data, one can hardly expect reaching perfect accuracy, and reasonably high values of similarity or 

predictive success can already be seen as valuable predictions. We recommend the use of a ‘plot-like’ 

sampling method (best approximation of the species’ true prevalence) and not simply increasing the 

number of presences-absences of species. As presented here, virtual simulations might be used more 

systematically in future studies to inform about the best accuracy level that one could expect given the 

characteristics of the data and the methods used to fit and stack SDMs.  
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INTRODUCTION  

Important species co-existence questions have been raised in the field of community ecology over the 

past years (e.g. Gotzenberger et al., 2012; Munkemuller et al., 2014; Mittelbach & Schemske, 2015), 

with particular focus given to understanding what drives the distribution of assemblages (i.e. 

communities, sometimes used interchangeably here) and why and how their composition and richness 

can change in space and time. Additionally, with the increasing impacts caused by global changes (e.g. 

habitat fragmentation, biological invasions, climate and land-use change), it becomes critical to develop 

methods and tools that allow predicting the spatial distribution of species assemblages (D'Amen et al., 

2015b). 

Species distribution models (SDMs; also called habitat suitability or ecological niche models; see 

Guisan et al., 2017), which statistically relate species observations, usually obtained through field 

observations or databases with environmental data (Guisan & Zimmermann, 2000), are useful tools in 

this regard as they can be stacked to predict the distribution and composition of species assemblages 

(e.g. Ferrier & Guisan, 2006; Dubuis et al., 2011; D'Amen et al., 2015b). When dealing with species 

richness (SR), the simplest and most common method consists in modelling the distribution of all 

individual species in a pool and then summing their predictions to obtain assemblages (stacked-SDM, 

S-SDM; Ferrier & Guisan, 2006; Dubuis et al., 2011). However, this method has some limitations, such 

as over-predicting species richness per site (Guisan & Rahbek, 2011) or being sensitive to 

methodological biases (Calabrese et al., 2014; Scherrer et al., 2018a). Additionally, while single species 

models are useful, numerous factors (e.g. sample size, sampling prevalence, sampling design, modelling 

techniques, imperfect detection of species or the choice of environmental variables) can lead to an 

increase in the uncertainty of their predictions (e.g. Kadmon et al., 2003; Barry & Elith, 2006; Guisan 

et al., 2007b; Beale & Lennon, 2012), potentially propagating into the predictions of species 

assemblages. Until now the majority of studies used real species data to assess the effects of different 

factors on SDM performance at the individual species level. A recent study (Thibaud et al., 2014) 

proposed the use of virtual or simulated data (Hirzel et al., 2001; Zurell et al., 2010) to assess how a set 

of factors affect the predictive performance of single species models. With the use of virtual data instead 

of real species, the “true” distribution of the species is completely known (Hirzel et al., 2001) as well 

as the predictors that influence that distribution. Contrary, when using real species data, biological 

assembly rules or dispersal limitations might prevent species from coexisting even when adequate 

conditions exist. Other sources of uncertainty might also occur (e.g. missing environmental variables 

or stochasticity), making real data more difficult to use to test the relative importance of various factors. 

Using virtual species, whose distributions are solely determined by a set of environmental factors, 

ensures that the suitability of all species in each site is strictly determined by those factors with no 

additional biotic (e.g. competition) or dispersal restrictions. By simulating virtual sampling of these 

distributions with various effects (see above) and then refitting the models, one can compare the initial 
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“true distribution” with the predicted distributions with and without ‘effects’ and in this way determine 

which factors affect models the most (Zurell et al., 2010). This is still rarely done at the assemblage 

level, likely because there is yet no unanimous method on how to correctly predict species assemblages, 

or because the data and computational requirements to predict assemblages remained relatively 

intensive. 

Here, we aimed at filling this gap by assessing how different factors affect the prediction accuracy of 

virtual species assemblages (obtained through S-SDMs). Specifically, we wanted to analyse the effects 

of five different factors - sample size, sampling method, sampling prevalence (i.e. the proportion of 

samples in which one found the species; not to be confused with species prevalence, the number of 

places occupied by a species out of the total number of places available), thresholding method and 

modelling technique -both separately and nested within each other- to determine: (i) what overall 

accuracy can be expected when sampling the known distributions in various ways (i.e. nested/non-

nested, different prevalences), and (ii) which factors most affect S-SDMs performance. As a direct 

corollary, this should allow us to estimate the best achievable accuracy in a given modelling context 

where multiple factors affect the models, an aspect rarely if ever assessed in S-SDM studies (assemblage 

models). 

 

METHODS 

Study area 

To apply our approach, we used a real landscape located in the Western Alps of Switzerland 

(http://rechalp.unil.ch), covering an area of approximately 700 km2. Our analyses were conducted on 

762133 sites corresponding to open, non-woody vegetation (i.e. grassland, meadow, rock, and scree). 

This is an intensively sampled region where many high locational accuracy biological data and high-

resolution environmental data is available, providing a realistic set of species observations and 

predictors at very high resolution (25 meters).  

 

Analytical framework 

We followed six main steps of a virtual species simulation framework (see Figure 1), to assess how 

multiple factors affect the prediction accuracy of species assemblages, obtained with binary stacked 

species distribution models (bS-SDM). To ensure ecological realism, we defined the distributions of 

our virtual species based on predictions of models fitted on real data in the same study area (see section 

2.2.1 below; as done in Thibaud et al., 2014). 
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FIGURE 1 Framework of the analytical steps followed in the study (in bold the tested effects: sample size, 

sampling prevalence, modelling technique and thresholding method). Step 1 – creating virtual species: from a set 

of real species presence-absence data, 100 virtual species were created by fitting GLMs. Step 2 – stacking virtual 

species distribution maps: the created distribution maps were stacked together, and the resulting map was 

considered as the “true” assemblage distribution map. Step 3 – sampling procedure: the occurrence of all the 

virtual species present in the true assemblages were sampled using different sample sizes (200, 800 and 3200) and 

two different occurrence sampling methods: i) sampling plots (random nested or non-nested sampling); ii) 

sampling species (four different prevalence classes: 25%; 50%; 75% and a value based on the true prevalence of 

each species). Step 4 – modelling procedure: all single species models (using the occurrence data sampled in the 

previous step) were fitted using generalized linear models (GLM), generalized additive models (GAM), boosted 

regression trees (BRT) or random forests (RF). The projected species distributions were converted into binary 

presence/absence data using three threshold methods: ROC, MaxKappa and MaxTSS. Step 5 – stacked-SDMs of 

predicted assemblages: the binary projections created in the previous step were stacked together to create a 

predicted assemblage distribution map for each sample size, sampling strategy, modelling technique and 

thresholding method. Step 6 – comparison and evaluation of predicted assemblages: all the outputs resulting from 

the different predicted assemblages were compared with the observed true assemblage and several indices of 

accuracy of assemblage predictions were calculated. 
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Creation of virtual species  

We generated presence-absence maps for 100 virtual species from a set of real species presence-absence 

data previously sampled in the study area. The species were randomly chosen from a set containing 

more than 1088 species (Dubuis et al., 2011; Pottier et al., 2013), but only selecting from those with 

more than 30 occurrences (around 627; see Appendix A for more information on the original dataset). 

We did this by fitting generalized linear models (GLMs; McCullagh & Nelder, 1989) to the species data 

as a function of five environmental predictors: summer mean monthly temperature (2 to 19° C), sum of 

winter precipitation (65 to 282 mm), annual sum of potential solar radiation (KJ), slope (°), and 

topographic position (unit-less, indicating ridges and valleys). We then used these models – in binary 

form – to predict the 100 species distributions across the study area. The binary presence-absence 

information was obtained by transforming the predicted probabilities using the threshold corresponding 

to the point on the receiver operating characteristic (ROC; Hanley & McNeil, 1982; Swets, 1988) plot 

- sensitivity against 1-specificity across successive thresholds - with the shortest distance to the top-left 

corner of the plot (Cantor et al., 1999). We considered these binary predictions as the “true 

distributions”. All the initial environmental and species data used in this study were available at 25 m 

resolution. Diverging results have been observed when different resolutions or extents were used (e.g. 

Thuiller et al., 2004; Guisan et al., 2007a), demonstrating that scale parameters can have an important 

influence on model predictions. This can be a result of the scale dependency of the environmental 

predictors (Vicente et al., 2014) or the spatial stochastic effects at smaller spatial scales (Steinmann et 

al., 2011; Scherrer et al., 2018b).  

Furthermore, dispersal and biotic factors can also play an important role interacting with scale (Soberon 

& Nakamura, 2009), with the distribution of real species not being fully explained by abiotic predictors 

alone. We avoid all these issues in our work by using virtual species and the same predictors to create 

the species and fit their distribution models, ensuring that the initial species distributions are fully 

explained by the chosen predictors at the study scale (extent and resolution, and using the same 

technique). With this approach, we tended to guarantee that the virtual species presented realistic 

response curves for our landscape, resulting in realistic species assemblages. The resolution should thus 

not matter in our study and should not affect our findings. However, we acknowledge that in real 

ecosystems the explanatory power of abiotic environmental factors (as used in this study) on single 

species distributions and assemblages (i.e. assembly rules) might strongly depend on the spatial 

resolution of the study, and other factors such as dispersal limitations and biotic interactions might 

modify the abiotic responses and interact with scale. All models were run in the R software version 

3.3.3 (R Core Team, 2017), using biomod2 (Thuiller et al., 2009) default settings for sake of simplicity 

and comparability. 
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Stacking virtual species distribution maps 

The binary predictions for each species were then stacked to create species assemblages (i.e. binary 

stacked SDMs, bS-SDMs), providing both species richness and composition for each pixel in the study 

area. In this simplified theoretic approach, the assemblages resulting from this stacking of binary SDMs 

are then considered our “true” assemblages (i.e. S-SDM), meaning that all species stacked into these 

“true” assemblages can coexist based on the abiotic factors only, without biotic or dispersal restrictions 

further excluding some of them from an assemblage. This is the power and appeal of simulations, since 

one can restrict the niche to known factors only (in our case abiotic environment), and this way facilitate 

the assessment of factors affecting S-SDMs through the sampling of virtual observation sites. 

 

Sampling procedure 

Presences and absences were sampled for all species using increasing sample sizes (n=200, 800 and 

3200) and according to two schemes representing the dominating types of data available to fit SDMs: 

1) simulating the sampling of “vegetation plots”, to reproduce real datasets obtained in field surveys 

where all species were sampled in the same plots (i.e. in a ‘plot-like’ fashion), using a nested (i.e. plots 

sampled in the smaller sample sizes are included in the larger sample sizes) or a non-nested random 

sampling strategy; here, the species prevalence cannot be controlled: and 2) simulating occurrence data 

as typically available in biodiversity databases where species are sampled individually from each other, 

but here with absences also available. In this case, we used four different sampling prevalence values: 

25%; 50%; 75% and the true prevalence of each species. The complete sampling procedure was 

repeated three times for each of the 100 virtual/simulated species. This case can also be considered as 

a simulation of a situation where presence-only data is available, with pseudo-absences weighted to 25, 

50 or 75%. 

 

Modelling procedure 

To test the effects of different modelling techniques, single species models were fitted with four 

techniques (see Guisan et al., 2017 for an overview): generalized linear models (GLM; McCullagh & 

Nelder, 1989) , generalized additive models (GAMs; Hastie & Tibshirani, 1990), boosted regression 

trees (BRTs; Friedman et al., 2000) and random forests (RFs; Breiman, 2001), all commonly used in 

SDMs (e.g. Guisan et al., 2002; Prasad et al., 2006; Elith et al., 2008). We used the same five 

environmental variables to calibrate the models as previously used to create the virtual species, all at a 

25-meter resolution: summer mean monthly temperature, the sum of winter precipitation, the annual 

sum of potential solar radiation, slope, and topographic position. Each individual model was calibrated 

using 80% of the available data and evaluated on the remaining 20%. This cross-validation procedure 
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was repeated 20 times and averaged using an ensemble approach (i.e. mean probabilities across 

predictions). The models were evaluated on the evaluation dataset using ROC (receiver operating 

characteristic; Hanley & McNeil, 1982; Swets, 1988), MaxKappa (Guisan et al., 1998; Huntley et al., 

2004) and MaxTSS (i.e. equivalent to the sensitivity-specificity sum maximization described in  Liu et 

al., 2005) (see Guisan et al., 2017 for details on maximization approaches). Finally, the projected 

species distributions were converted into binary presence/absence using the same approach as described 

in section 2.2.1 (ROC plot). In parallel, we also used two other thresholding methods to transform 

probability distributions into presence-absence data: selecting the thresholds maximizing Kappa 

(MaxKappa) or maximizing TSS (MaxTSS) as presented above. The whole approach was implemented 

in version 3.3.3 of the open-source software R (R Core Team, 2017). 

 

Stacked-SDMs of predicted communities 

Species binary predictions were stacked together to predict assemblages for each sample size, sampling 

method, threshold method, and modelling technique. With these predicted assemblage maps, we 

simultaneously obtained information on species richness and composition for each modelled site across 

the whole study area. We also made three repetitions of the sampling procedure (i.e. turns; T1, T2 and 

T3) of different sample sizes (200, 800 and 3200), different sampling prevalences (nested or non-nested 

sampling of random plots and four different sampling prevalence types), three thresholding methods 

(ROC, MaxKappa and MaxTSS) and four different modelling techniques (GLM, GAM, BRT and RF). 

Consequently, we ended up with a final set of more than 64 000 models. 

 

Comparison and evaluation of predicted communities 

Composition outputs and species richness resulting from the differently predicted assemblages (for each 

site) obtained through the previous steps were compared and evaluated to our observed assemblages 

(i.e. “true” assemblage map). We calculated three main indices of assemblage prediction accuracy by 

using the ecospat.SSDMeval function available in the “ecospat” R package (see Table A.1 for details 

on all the indices; Di Cola et al., 2017): (i) species richness error (i.e. difference between predicted and 

observed species richness); (ii) the assemblage prediction success (i.e. proportion of species correctly 

predicted as present or absent); and (iii) a widely used metric of assemblages similarity, the Sørensen 

index (Sørensen, 1948). We calculated six additional indices to complement our analyses: (iv) 

community TSS (here measured for a site across all species, rather than for a species across all sites as 

in single SDM evaluation; Pottier et al., 2013) and (v) community Kappa (same as for previous metric, 

for a site across species; Pottier et al., 2013), (vi) over-prediction; (vii) under-prediction; (viii) 

sensitivity (i.e. the proportion of species correctly predicted as present); and (ix) specificity (i.e. the 

proportion of species correctly predicted as absent). Finally, some of those indices were used to assess 
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the importance of the different studied factors following a procedure similar to the one proposed by 

Thibaud et al. (2014). However, contrary to the latter study, here we were not only interested to measure 

model accuracy for individual species models, but mainly to assess the predictive accuracy of species 

assemblages. To assess the importance of the studied factors, we analysed the variation of the previously 

mentioned indices via a linear mixed-effects model, adapting codes from Thibaud et al. (2014). To 

examine the relative importance of factors in the linear models, we calculated the marginal and 

conditional coefficients of determination (R2; Nakagawa & Schielzeth, 2013). The R package nlme 

(Pinheiro et al., 2017) was used to fit these linear mixed-effects models, with each factor and all its 

interactions being excluded and compared using marginal R2 (i.e. calculating the proportion of variance 

that is explained by fixed effects compared to that of the full model). By excluding one factor at a time, 

we can measure its contribution to the full model, and therefore its contribution to improve the 

predictive accuracy of SDMs (i.e. the lower the value of R2 when compared with the full model, the 

greater the effect of the excluded factor). 

 

RESULTS  

The SDMs used to create the virtual species had scores ranging between 0.626 and 0.967 when 

evaluated by ROC (mean = 0.86 ± SD = 0.13) and between 0.1/0.73 and 0.2/0.9 when evaluated 

respectively by MaxKappa (0.35 ± 0.14) and MaxTSS (0.6 ± 0.14). The prevalence values for the virtual 

species’ presence-absence distributions ranged between 0.02 and 0.74 (0.35 ± 0.17). The virtual species 

SDMs (i.e. fitted using virtual species sampled data) had very high evaluation scores (ROC: 0.999 ± 

0.002; MaxKappa: 0.99 ± 0.02; MaxTSS: 0.99 ± 0.02).  

Results from the SDMs based on a random sampling of 100 000 plots from the virtual species 

distribution maps (Fig. 2, MaxKappa; see Appendix A for the other thresholding methods results) 

revealed that modelling technique and sample size were the factors with the largest effect on prediction 

accuracy of our assemblages when all the factors are taking into account in a nested manner (Fig. 2 and 

3). This can also be observed in the values of marginal and conditional R2, calculated through a linear 

mixed-effects model to quantify our visual impressions from the previous mentioned figures (Table 1; 

i.e. the partial models when modelling technique or sample size are excluded have the lowest values of 

R2 when compared with the full model, indicating the important effects of these factors). Independently 

of the calculated indices and taking into account the reduction in marginal R2, modelling technique is 

more important than sample size (e.g. when Sørensen was used, marginal R2 gets reduced from 0.913 

in the full model to 0.366 when modelling technique is excluded and to 0.526 when sample size is 

excluded). However, the effects of the different factors can also be important when analysed separately. 

Models fitted with GAM and GLM provided the most accurate predictions on average (i.e. highest 

similarity of observed/predicted assemblages – Sørensen above 0.95 – and prediction success, also 

always above 0.95 on average; the values for the two techniques are similar, followed by BRT and RF 
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(on average below 0.95 both for Sørensen and prediction success; Fig.2b, c). It’s also noticeable that 

models fitted by BRT or RF presented higher variance for the different calculated metrics. Within each 

modelling technique, higher sample sizes decreased the difference between predicted and observed SR 

(i.e. species richness error; Fig. 2a). Higher sample sizes also increased prediction success (Fig. 2b) and 

assemblage similarity (i.e. Sørensen index; Fig. 2c). Additionally, both over- and under-prediction 

decreased with increasing sample size (Fig. 3a, b), while sensitivity (Fig. 3c) and specificity (Fig. 3d) 

increased with increasing sample size.  

The level of sampling prevalence appeared to individually (i.e. taking into account one factor at a time) 

influence the accuracy of predicted assemblage models (Fig. 2 and 3), not being important when all 

factors are taking into account (see Table 1). Models calibrated with higher levels of sampling 

prevalence (i.e. 75%) presented higher species richness error (Fig. 2a), with a higher number of species 

predicted than those observed (Fig. 3a, b; over-prediction larger than under-prediction; plus 3 species 

on average) and a higher sensitivity than specificity (Fig. 3c, d). On the other hand, levels of sampling 

prevalence of 25% presented the inverse pattern, with a lower species richness error (Fig.2a) and a 

lower number of species predicted than observed (Fig. 3a and b; under-prediction larger than over-

prediction; minus 1 species on average). When considering over- and under-prediction as well as 

sensitivity and specificity, similar patterns were observed with the true prevalence sampling method or 

when using the “plot-like” sampling methods (i.e. nested and non-nested random sampling). These three 

methods presented very similar results and more accurate predictions (i.e. higher values of predictions 

success and the same number of species predicted as observed, on average). Models calibrated with 

high sampling prevalence (75%) also appeared to have lower values of assemblage predictive success 

(Fig. 2b; 0.96 on average) and assemblage similarity (Sørensen, Fig. 2c, 0.94 on average), yet with 

relatively small differences when compared with other sampling prevalences (Sørensen around 0.95, 

depending on sample size and modelling technique). Furthermore, based on the calculated R2 (Table 1), 

the nested importance, considering the other factors at once, of sampling prevalence was negligible (i.e. 

for each calculated index, the R2 actually increased when compared with the full model). However, it 

could still be important when analysing individual cases (e.g. when species have values of sampling 

prevalence above 75%). The method employed to transform our probability distributions into presence-

absence data (i.e. thresholding method) was also not an important factor influencing assemblages’ 

prediction success, with the same patterns being observed in the three tested methods (see Appendix A) 

and with calculated R2 not suffering any reduction when this factor was removed (i.e. indicating that it 

was not important in the overall model; see Table 1). 
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FIGURE 2 Boxplots of different indices of assemblage prediction (S-SDM) accuracy (i.e. species richness error, 

prediction success and Sørensen) for all the simulated species and for all the sampling strategies (based on plots 

(nested or not) or prevalence (25%, 50%, 75% or true) sampling; in abscissa). Each box shows the variation across 

all virtual species in a random subset of the study area (100 000 plots) for the binary predictions obtained using 

MaxKappa as thresholding technique, averaged from the three sampling turns. For each prevalence sampling, four 

sets of three boxplots are displayed, corresponding to models fitted using either GLMs (yellow), GAMs (blue), 

BRTs (green) or RFs (red), with increasing values of sample size (200, 800 and 3200). 
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FIGURE 3 Boxplots of different indices of assemblage prediction (S-SDM) accuracy (i.e. over and 

underprediction, sensitivity and specificity) for all the simulated species and for all the sampling strategies (based 

on plots (nested or not) or prevalence (25%, 50%, 75% or true) sampling; in abscissa). Each box shows the 

variation across all virtual species in a random subset of the study area (100 000 plots) for the binary predictions 

obtained using MaxKappa as thresholding technique, averaged from the three sampling turns. For each prevalence 

sampling, four sets of three boxplots are displayed, corresponding to models fitted using either GLMs (yellow), 

GAMs (blue), BRTs (green) or RFs (red), with increasing values of sample size (200, 800 and 3200). 
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TABLE 1. Marginal and conditional R2 for the five calculated indices used to evaluate our assemblage prediction 

(S-SDM) accuracy. Marginal and conditional R2 are reported for each index, containing information for the full 

model (all factors together) and the submodels for each factor (and all its interactions with the other factors) 

excluded at a time. The lower the R2 value when compared with the full model, the greater the effect of the 

excluded factor.  

 
Calculated indices Model Marginal R2 Conditional R2  

Sørensen 

Full model 0.913              0.985  

Prevalence 0.918  0.985           

Sampling procedure 0.915            0.984             

Modelling technique 0.366             0.388              

Sample size 0.526           0.974              

Thresholding method 0.914  0.986              

Predictive Success 

Full model 0.895               0.982  

Prevalence 0.901              0.982   

Sampling procedure 0.898             0.981  

Modelling technique 0.332               0.368  

Sample size 0.540              0.967  

Thresholding method 0.895  0.983  

Community TSS 

Full model 0.942            0.988              

Prevalence 0.943           0.987  

Sampling procedure 0.943  0.987  

Modelling technique 0.347  0.347  

Sample size 0.567  0.973  

Thresholding method 0.943  0.989  

Community Kappa 

Full model 0.880            0.977              

Prevalence 0.887  0.978  

Sampling procedure 0.884  0.977   

Modelling technique 0.324  0.371  

Sample size 0.532  0.959  

Thresholding method 0.881  0.979  

 

 

DISCUSSION  

In this paper, we used a virtual ecologist approach to test the effects and importance of five factors – 

modelling techniques, sample size, sampling method, sampling prevalence and prediction thresholding 

- on the predictive accuracy of stacked binary predictions (bS-SDM) of species distribution models 

(SDMs). Our framework takes inspiration on the methodology first proposed by Thibaud et al. (2014), 

following a nested approach to test the relative effects of various factors on SDMs, but differing 

markedly from the latter by focusing here mainly on species assemblage models (S-SDMs). 

Furthermore, we used a much greater number of virtual species (n=100) and additionally assessed the 

importance of effects like sampling nestedness and prevalence on the accuracy of assemblage 

predictions. However, unlike Thibaud et al. (2014), we did not assess the effects of sampling bias and 

spatial autocorrelation. We took this decision because the previously mentioned paper reported that 

sample size and modelling technique were the factors that contributed most to the variation in prediction 

accuracy, while sampling bias and spatial autocorrelation had smaller and negligible effects 

respectively. To our knowledge, the present study is the first to use a virtual ecology framework to 

assess and report cumulative effects of different factors on species assemblage predictions (S-SDMs). 



13 
 

We found that modelling technique and sample size were the most important factors, relative to the 

others tested (i.e. taking into account the importance of all factors at once), affecting the accuracy of 

SDMs and - most importantly here - of their assemblage predictions. Additionally, we found that the 

overall accuracy that can be expected from the S-SDMs depended on the options made when fitting 

models (e.g. the choice of technique, sample size, how to sample), with inaccurate assemblage 

predictions being obtained after simulated sampling even when the initial distribution of the species and 

the environmental factors determining them are completely known.  

 

Which methodological factors most affect the performance of S-SDM? 

Modelling technique 

The importance of modelling technique and the fact that different algorithms can provide different 

predictions and predictive performances is something widely reported (e.g. Guisan et al., 2007b; 

Graham et al., 2008; Elith & Graham, 2009; Marmion et al., 2009a), but the nested framework used 

here allowed to further discuss these differences in the light of (i.e. relative to) other factors: sample 

size, sampling design, thresholding criteria and sampling prevalence. Our findings partly confirmed the 

results obtained by Thibaud et al. (2014) for single SDMs, but here applied to species assemblage 

predictions (S-SDMs). However, we observed that modelling technique had a larger impact than sample 

size in affecting assemblage prediction accuracy (see Table 1), contrary to the previously mentioned 

study for single SDMs. Also, while the main results reported here derived from virtual species created 

using a GLM, the models obtained through this technique were not better than models fitted by GAM. 

This was contrary to the pattern observed in the aforementioned study, where GLMs clearly presented 

the best results when the virtual species were also created using that technique. Additionally, models 

fitted here both by BRT and RF presented results with higher variance and lower predictive success. 

This is contrary to some SDM studies (e.g. Elith et al., 2006; Guisan et al., 2007a; Graham et al., 2008; 

Williams et al., 2009), which found that these techniques performed better than GLM or GAM, while 

other studies showed no major difference in the performance of models fitted by the different techniques 

(e.g. Elith & Graham, 2009; Roura-Pascual et al., 2009). These differences might result from the fact 

that in our study the virtual species’ distributions were created using a regression model (GLM) and 

were then resampled to fit models with various techniques, whereas in other studies the same technique 

was always used to both create a virtual species and then fit the models and assess the effect of the 

different factors on it. BRT and RF would thus be good at finding a signal in the training data, but less 

good at predicting to independent data (i.e., in this case, the random subset of the study area -100 000 

plots - used to calculate the different indices). Another reason for the discrepancy among studies might 

be that, in our study, the virtual species were fully explained by the predictors used and, since they were 

created by GLMs, showed clearly defined unimodal response curves. However, these response curves 
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can be much more complex when real species are used, especially due to interactions between species 

and the environment and among themselves. More complex techniques like GAM, RF or BRT would 

fit these more complex curves better, but at the cost of then predicting worse to independent data. This 

had been shown already for single SDMs (e.g. Randin et al., 2006) and discussed elsewhere (e.g. Merow 

et al., 2014), but had never been shown so far for S-SDMs. 

 

Sample size 

The well-known impact of sample size on single SDMs (e.g. Stockwell & Peterson, 2002; Wisz et al., 

2008; Mitchell et al., 2017) is in large part explained by the fact that a greater number of presence-

absence data provides a larger amount of information about the occupied multi-dimensional 

environmental space, allowing to fit more reliable species response curves along all the considered 

environmental gradients, improving the species’ niche quantification and associated predictions. 

However, we showed here that even when using a large amount of sampled data (>3000 sites) we can 

still obtain some inaccuracy in assemblage predictions, depending on the modelling and sampling 

technique used. However, if these other factors – modelling and sampling - are taken into account, one 

can achieve relatively high or very acceptable values of prediction success and assemblage similarity 

(Sørensen index) even with the smallest sample size assessed here (200 sites).  

 

Sampling prevalence 

Species prevalence is often a key factor affecting model performance (e.g. Manel et al., 2001; Jiménez-

Valverde et al., 2009; Santika, 2011; Lawson et al., 2014). Here, we showed that sampled prevalence 

also has an effect in some components of the assemblage evaluation, with higher sampling prevalence 

(here 75%) causing species richness over-prediction and favouring sensitivity, whereas lower sampling 

prevalence (here 25%) causes species richness under-prediction and favors specificity. Yet, it did not 

affect greatly our assemblage predictions (prediction success and Sørensen index) in our nested analysis 

taking into account simultaneously for the other methodological factors (see Table 1). However, if we 

consider the patterns observed in the different sample prevalence groups, assemblage prediction 

accuracy increased slightly (i.e. close to 1 at large sample sizes, around 0.95 at smaller sizes) when 

sampled prevalence reflected the true prevalence of the species (i.e. species prevalence) in the study 

area. The same occurred when low sampling prevalences were used or when the sampling was done in 

a ‘plot-like’ fashion – nested or non-nested random sampling – (Fig. 2 and 3). We observed high 

prediction success when using the species true prevalence mainly because, when using those values, the 

information given to the SDMs (presence-absence) allows unbiased estimates of species richness 

(Calabrese et al., 2014). It can thus be expected that, if one obtains individual SDMs reflecting true 

prevalence, one should also get more accurate S-SDM predictions of species richness. By sampling 

prevalences of 25, 50 or 75%, one wrongly defines the initial level of SR in the model. As the virtual 

species’ true prevalence was between 25 and 50% (35% on average), this then explains why we under-
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predict models when sampling at the 25% prevalence level and over-predict at the 50% and 75% 

prevalence levels. 

Previous studies like the one of Jiménez-Valverde et al. (2009) on single SDMs further showed that 

species prevalence strongly interacts with sample size, with the distribution of species being over-

predicted when sample sizes are small and species prevalences high. These patterns were also observed 

in our data but at the assemblage level (Fig. 2 and 3). The authors of the previously mentioned study 

additionally showed that when the sampled presence-absences cover the entire environmental gradient, 

high or low species prevalences have less or no effect on model accuracy. In our study, this 

representative sample of the entire environmental gradient was best reflected by the true prevalence 

sampling method (if perfect conditions were possible), which simulated the most correct distribution of 

the species (considering also that the sites were randomly sampled), reducing the probability of 

sampling all the presences (or absences) in a reduced part of the environmental gradients. Accordingly, 

one should obtain minimal or no error in predicted species richness, as we observed. However, in real-

world conditions where sampling the true species prevalence is impossible, the most appropriate method 

appears to be to randomly (or random-stratified) sample in a ‘plot-like’ fashion (i.e. similar results to 

true species prevalence; Fig.2 and 3), an approach used in many studies with real data (e.g. Dubuis et 

al., 2011; Pottier et al., 2013; D'Amen et al., 2015a).  

 

Sampling strategies 

We also observed that the different sampling strategies (i.e. between sampling information in a ‘plot-

like’ fashion - inventorying all species in each plot as sampling unit - and sampling species individually 

and independently of each other) is not one of the most important factors affecting assemblage 

predictions (i.e. considering all factors at once - i.e. relative effects; Table 1). Nevertheless, when 

analysing specific cases (like the individual sampling prevalence groups), we can say that sample 

prevalence is important to take into account, thus sampling plots is preferable to single occurrences as 

it is the best approximation to true species prevalence sampling (see above).  

 

Thresholding methods 

While the effects of different thresholding methods on species distribution predictions were widely 

studied for single SDMs (see e.g. Liu et al., 2005; Lobo et al., 2008; Lawson et al., 2014; Vale et al., 

2014), our results for S-SDMs showed that this factor had negligible importance on the prediction 

success of our assemblages, with different methods presenting the same patterns (see Appendix A). 

This was surprising because, as showed by Nenzén and Araújo (2011), the choice of the threshold 

explained 25% of the variability in their results (with modelling technique explaining 35% and their 

interaction 19%). The fact that the thresholding method had no effect on the predictive success of our 

modelled species and assemblages might be associated with the values of the selected thresholds. In our 
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case, these were always below 0.5 (and often <0.4), independent of the thresholding method (thus not 

showing a great variation in threshold values).   

 

What overall accuracy can be expected when perfectly known species distributions are 

sampled? 

We showed clearly here that, even with complete initial knowledge of the distribution of the species 

and assemblages and of the environmental factors determining those, fitting the models on samples of 

the data (of varying size) quickly brings some error in assemblage predictions, even with quite large 

samples (>3000 sites) and even if models with high evaluation values (e.g. ROC or MaxKappa > 0.9) 

were still obtained. This means that even if our individual species models present very high evaluation 

scores (i.e. on average close to 1 for the three metrics), we are unable to fully recover the initial 

assemblages, based on the stacking of all virtual species’ distributions. This could be caused by the fact 

that even when one is able to obtain accurate individual species (i.e. SDMs), small errors (i.e. falsely 

predicted presences or absences) can occur in each of them. These errors can then accumulate and 

prevent us from getting accurate assemblage predictions (i.e. S-SDMs). If this is the case with virtual 

species, one can expect an equivalent or likely higher error accumulation with real species. Therefore, 

obtaining inaccurate community predictions using real species data might also occur due to 

methodological problems (e.g. Calabrese et al., 2014) and not only because of missing dispersal or 

biotic constraints (e.g. Guisan & Rahbek, 2011). Similar tests could also be performed when using more 

mechanistic or process-based methods to determine if the same patterns are observed. Nevertheless, 

despite not being able to completely predict species assemblages, depending on the factors used to 

model these distributions (i.e. modelling technique, sample size or sampling method), one can still yield 

valuable accurate predictions (e.g. assemblage prediction success around or above 0.95). More 

particularly, we showed that one can obtain very good assemblage predictive success (i.e. predicted 

assemblages very similar to the observed ones across the whole area; Fig. 1) particularly when large 

sample sizes are available, when GLMs or GAMs are used (rather than more complex techniques like 

RF or BRT) to fit the models and when the sampling prevalence reflects either the true prevalence 

(possible with artificial data) or a ‘plot-like’ sampling of the species (realistic method that samples an 

approximation of the species true prevalence). Large sample sizes as the one used here (3200 plots) 

might be difficult to obtain for the majority of species and taxonomic groups, but we showed that even 

with smaller samples (200) we are still able to obtain very good assemblage predictions (e.g. prediction 

success and Sørensen similarity index above 0.95) when GLM or GAMs were used. So, more effort 

should be put into getting a representative sample of species distributions in a certain area using a ‘plot-

like’ sampling method, and not simply increasing the number of presences or absences for some species. 

This will guarantee that the sampled data would potentially cover all the spatial and environmental 
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gradients in a certain area while also reflecting the species true prevalence (or a very close 

approximation).  

 

A critical assessment of our framework and how to go forward  

Our framework, combined with the use of realistic virtual species can be used in future studies to test 

an even larger number of factors that might affect the accuracy of models, with the choice of those 

factors depending on the availability of computational power that is necessary in order to perform all 

the required steps. A more complex nested approach could include factors like the extent of the study 

area, different spatial scales, a larger set of available modelling techniques, the use of different 

environmental variables to create virtual species and fit the models (i.e. missing covariates), sampling 

bias (e.g. random, clustered, close to roads, stratified), spatial autocorrelation, the effect of using 

presence-absence data or only presences or the effects of different methods to create pseudo-absences.  

We also recognize that the method used to create our virtual species might be considered simplistic and 

that other methods (threshold vs probabilistic approach; see Meynard & Kaplan, 2013) and different 

packages (e.g. SDMvspecies, NicheLim or virtualspecies -  Duan et al., 2015; Huang et al., 2016; Leroy 

et al., 2016) could be used to create the virtual species. This might be another opportunity to test if the 

same conclusions can be obtained when virtual species are created by different methods and further 

contribute to refine a specific methodological choice or approach. Even larger sample sizes might also 

be investigated to assess how large samples would need to be to reach near perfect predictions. 

The majority of experimental studies are by essence oversimplifications of the real world, and alike our 

objective was to use a simplified and controlled artificial reality instead of simulations on real 

community data. Our goal was to assess the effects of a set of methodological factors on species 

assemblage modelling (S-SDMs when assembly rules are purely determined by abiotic constraints, thus 

ruling out effects from biotic interactions and dispersal limitations. While this is of course ecologically 

not fully realistic, it allowed us to test a scenario that was simple and with (nearly perfectly) known 

abiotic assembly rules.  Considering that this study was performed to determine the influence of certain 

methodological factors on assemblage predictions, one can reasonably think that if the methods used 

were not good enough to correctly predict assemblages given such simplistic environmental drivers, 

then adding other factors (not considered here; e.g. dispersal limitations, biotic interactions, sampling 

bias or wrongly parameterized techniques) can only reduce the chances of obtaining accurate 

predictions. 

We showed one illustration of how the use of virtual species can be helpful in spatial modelling of 

species assemblages, but it can also prove useful in numerous other situations in ecology. For SDMs, 

virtual species were already used in several instances (see Miller, 2014 for examples of recent 

applications) to validate proposed methods (e.g. Zurell et al., 2016; Guisande et al., 2017; Hattab et al., 
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2017), but also to test the effects of observation errors on model performance and the efficiency of 

currently used evaluation metrics (Fernandes et al., in press), to test different approaches to sample 

species data (Hirzel & Guisan, 2002), to test different downscaling methods (Bombi & D'Amen, 2012) 

or to assess the effectiveness of different hierarchical modelling frameworks when compared to more 

traditional methods (Fernandes et al., unplub.). Other potential uses worth exploring might include the 

testing of methods or software used for spatial conservation planning (e.g. ConsNet, Zonation or 

Marxan - Ciarleglio et al., 2009; Watts et al., 2009; Moilanen et al., 2014), to determine their real 

effectiveness in defining prioritization areas and identify strengths and weaknesses of different 

alternative approaches. 

 

CONCLUSION AND MAIN MESSAGES 

With this paper, we wished (i) to contribute to the ongoing discussion on the usefulness and validity of 

stacking species distribution models (SDMs) to predict species assemblages (S-SDMs), and (ii) to 

propose a way (taken from single SDMs; Thibaud et al., 2014) to analyse the relative effects and 

behaviour of different methodological factors potentially affecting S-SDM predictive success. We also 

discussed different features and potentialities that can help virtual species and simulations become a 

more useful tool in ecological or evolutionary research, e.g. to test the efficiency of alternative 

modelling frameworks in a fully controlled abiotic environment.  

The main conclusions for factors affecting S-SDMs, based on our findings and given our study settings, 

are: 

1) even when starting with the full knowledge of the species (i.e. all abiotic factors influencing its 

distribution being known) and sampling a large number of sites (>3000), “perfect” predictions of 

assemblage are difficult to attain, but very good predictions are reachable; 

2) modelling technique and sample size were the most important factors, relative to the others tested 

(i.e. accounting for the importance of all factors at once); 

3) contrary to previous studies on single SDMs, we showed that the choice of the modelling technique 

used to fit the models had a larger impact than sample size on S-SDM prediction success; 

4) accuracy increases with sample size, but depending on the modelling technique (GLM or GAM) 

and sampling method (sampling ‘plot-like’ methods), accurate predictions could already be 

obtained with relatively small sample sizes (200 sites); 

5) sampling species data using a ‘plot-like’ method is more desirable than sampling species 

individually, as it proves a better approximation of the true species prevalence and provides more 

accurate assemblage predictions. 
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Supplementary material 
 

Appendix A 

 

Table A.1. Community evaluation metrics used in this study (see Di Cola et al., 2017 for details) 
Metric Definition Description References 

    

Species 

Richness 

Error 𝑆𝑅𝑒 = 𝑛𝑝𝑟𝑒𝑑 − 𝑛𝑜𝑏𝑠 
Difference between predicted and observed 

species richness 

(Pottier et al., 

2013) 

    

Prediction 

Success 

 
𝑃𝑟𝑒𝑑𝑆𝑢𝑐 =

(𝑇𝑃 + 𝑇𝐴)

𝑁
 

Proportion of species correctly predicted as 

present or absent 

(Pottier et al., 

2013) 

 

Sensitivity 

 
𝑆𝑒𝑛𝑠 =

𝑇𝑃

𝑇𝑃 + 𝐹𝐴
 

The proportion of species correctly predicted as 

present 

(Pottier et al., 

2013) 

 

Specificity 

 

 

𝑆𝑝𝑒𝑐 =
𝑇𝐴

𝑇𝐴 + 𝐹𝑃
 

The proportion of species correctly predicted as 

absent 

(Pottier et al., 

2013) 

    

Over-

prediction 

 
𝑂𝑣𝑒𝑟𝑃𝑟𝑒𝑑 =

𝐹𝑃

𝐹𝑃 + 𝑇𝐴
 

 

The proportion of species predicted as present 

but not observed among the species 

predicted as present 

 

(Pottier et al., 

2013) 

 

Under-

prediction 

 

 

𝑈𝑛𝑑𝑒𝑟𝑃𝑟𝑒𝑑 =
𝐹𝐴

𝑇𝑃 + 𝐹𝐴
 

The proportion of species predicted as absent but 

observed among the species 

observed as present 

(Pottier et al., 

2013) 

 

Community 

TSS 

 

 

𝑇𝑆𝑆 = 𝑆𝑒𝑛𝑠 + 𝑆𝑝𝑒𝑐 − 1 

Same as TSS but measured for a site across all 

species, rather than for a species across all sites 

(Pottier et al., 

2013) 

 

Community 

Kappa 

 

 

𝐾 =
𝐴𝑐𝑐 − 𝑝𝑒

1 − 𝑝𝑒

 
Same as Kappa but measured for a site across all 

species, rather than for a species across all sites 

(Pottier et al., 

2013) 

    

Sørensen 

 

𝑆 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝐴
 

 

Similarity index (compares similarity between 

observed and predicted assemblages) 

(Sørensen, 

1948) 



27 
 

Original dataset information 

To obtain the full information about the original plant data, two datasets where combined (Dubuis et al., 

2011; Pottier et al., 2013). The first one with 912 vegetation plots of 4 m2 were selected following a random-

stratified sampling design and the presence-absence of each species was recorded in each plot. Only 

vascular species in open and non-woody vegetation were sampled. This dataset consisted of 795 species. 

The second dataset with 3076 vegetation plots, from a grid of 400 m over all of the study area; therefore, a 

point was recorded every 400 m. If a point was falling into a forest, a field sampling was made. The field 

sampling was done in a circle with center at the coordinates of the point and with a radius of 10 m. All 

vascular plant species were recorded. This dataset consisted of 667 species. The final dataset of plants has 

3967 plots composed by 1088 species (627 after removing the species with less than 30 occurrences).  
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Fig. A.1 Boxplots of different indices of community prediction (S-SDM) accuracy (i.e. species richness error, 

prediction success and Sørensen) for all the simulated species and for all the sampling strategies (based on plots (nested 

or not) or prevalence (25%, 50%, 75% or true) sampling; in abscissa). Each box shows the variation across all virtual 

species in a random subset of the study area (100 000 plots) for the binary predictions obtained using ROC as 

thresholding technique, averaged from the three sampling turns. For each prevalence sampling, four sets of three 

boxplots are displayed, corresponding to models fitted using either GLMs (yellow), GAMs (blue), BRTs (green) or 

RFs (red), with increasing values of sample size (200, 800 and 3200). 
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Fig. A.2 Boxplots of different indices of community prediction (S-SDM) accuracy (i.e. over and underprediction, 

sensitivity and specificity) for all the simulated species and for all the sampling strategies (based on plots (nested or 

not) or prevalence (25%, 50%, 75% or true) sampling; in abscissa). Each box shows the variation across all virtual 

species in a random subset of the study area (100 000 plots) for the binary predictions obtained using ROC as 

thresholding technique, averaged from the three sampling turns. For each prevalence sampling, four sets of three 

boxplots are displayed, corresponding to models fitted using either GLMs (yellow), GAMs (blue), BRTs (green) or 

RFs (red), with increasing values of sample size (200, 800 and 3200). 
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Fig. A.3 Boxplots of different indices of community prediction (S-SDM) accuracy (i.e. species richness error, 

prediction success and Sørensen) for all the simulated species and for all the sampling strategies (based on plots (nested 

or not) or prevalence (25%, 50%, 75% or true) sampling; in abscissa). Each box shows the variation across all virtual 

species in a random subset of the study area (100 000 plots) for the binary predictions obtained using MaxTSS as 

thresholding technique, averaged from the three sampling turns. For each prevalence sampling, four sets of three 

boxplots are displayed, corresponding to models fitted using either GLMs (yellow), GAMs (blue), BRTs (green) or 

RFs (red), with increasing values of sample size (200, 800 and 3200). 
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Fig. A.4 Boxplots of different indices of community prediction (S-SDM) accuracy (i.e. over and underprediction, 

sensitivity and specificity) for all the simulated species and for all the sampling strategies (based on plots (nested or 

not) or prevalence (25%, 50%, 75% or true) sampling; in abscissa). Each box shows the variation across all virtual 

species in a random subset of the study area (100 000 plots) for the binary predictions obtained using MaxTSS as 

thresholding technique, averaged from the three sampling turns. For each prevalence sampling, four sets of three 

boxplots are displayed, corresponding to models fitted using either GLMs (yellow), GAMs (blue), BRTs (green) or 

RFs (red), with increasing values of sample size (200, 800 and 3200). 

 


