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ARTICLE INFO ABSTRACT

Detailed data on individual animals are critical to ecological and evolutionary studies, but attaching identifying
marks can alter individual fates and behavior leading to biases in parameter estimates and ethical issues.
Individual-recognition software has been developed to assist in identifying many species from non-invasive
photographic data. These programs utilize algorithms to find unique individual characteristics and compare
images to a catalogue of known individuals. Currently, all applications for individual identification require
manual processing to crop images so only the area of interest remains, or the area of interest must be manually
delineated in each image. Thus, one of the main bottlenecks in processing data from photographic capture-
recapture surveys is in cropping to an area of interest so that matching algorithms can identify the individual.
Here, we describe the development and testing of an automated cropping program. The methods and techniques
we describe are broadly applicable to any system where raw photos must be cropped down to a specific area of
interest before pattern recognition software can be used for individual identification. We developed and tested
the program for use with identification photos of wild giraffes.
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1. Introduction

Computer vision applications have become important tools for
ecological research (Weinstein, 2017). The proliferation of digital still
and video camera traps (Burton et al., 2015; Rowcliffe and Carbone,
2008), and the use of digital photography as a primary source of in-
dividual-based data (Bolger et al., 2012; Moya et al., 2015) have greatly
increased sampling, but our ability to process images remains a bot-
tleneck in turning these data into ecological information (Weinstein,
2017). Several options exist for automated processing of camera trap
data because the fixed-position mounting of camera traps allows com-
puter vision applications to take advantage of the relatively unchanging
background that occurs in every frame (Bradski, 2000; Price Tack et al.,
2016; Swinnen et al., 2014; Weinstein, 2015). However, we are aware
of no existing applications for processing data from photographic cap-
ture-recapture surveys where identification pictures are taken by an
observer and the background of every image is different (but see
Sherley et al., 2010).

Detailed data on individual animals from capture-recapture surveys
are used in ecological and evolutionary studies to estimate demo-
graphic parameters such as rates of survival, reproduction, and move-
ment (Lebreton et al., 1992; Williams et al., 2001). A common method
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for individual recognition of the animals is to apply a mark to the an-
imal body in the form of a tag or other device with a unique code.
However, attaching tags and other marks can alter individual fates and
behavior leading to biases in the parameter estimates (McCarthy and
Parris, 2004; Petersen et al., 2005; Wilson and McMahon, 2006), and
creating ethical issues (Cuthill, 1991; May, 2004; Minteer and Collins,
2005). Consequently, there is increasing interest in using non-invasive
methods for individual recognition such as photography of unique
natural marks. Simultaneously, digital photography has led to sub-
stantial increases in sampling and a growing demand for automated
procedures of photo-identification. Most photo-identification proce-
dures require three steps. The first step is manual selection and/or
cropping of an area of interest on the animal within the image; the
second is an automated algorithmic comparison between the sample
and a library of images which scores candidates by matching prob-
ability; and the final step is visual comparison of sample-candidate
pairs to confirm positive matches.

Individual-recognition software has been developed to assist in
identifying a diverse suite of species such as cheetahs (Kelly, 2001),
elephants (Ardovini et al., 2008), tigers (Raj et al., 2015), salamanders
(Gamble et al., 2008), fishes (Arzoumanian et al., 2005; Van Tienhoven
et al., 2007), penguins (Sherley et al., 2010), and marine mammals
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(Adams et al., 2006; Gope et al., 2005). Flexible individual identifica-
tion tools applicable to a wide range of species are also available
(Bolger et al., 2012; Moya et al., 2015). These programs utilize algo-
rithms to find unique individual characteristics and compare images to
a catalogue of known individuals. Currently, all applications for in-
dividual identification require manual processing to crop images so
only the area of interest remains (Arzoumanian et al., 2005; Bolger
et al., 2012; Raj et al., 2015), or the area of interest must be manually
delineated in each image (Kelly, 2001; Moya et al., 2015; Van
Tienhoven et al., 2007). Thus, the main bottleneck in processing data
from photographic capture-recapture surveys is in object detection for
cropping or delineating an area of interest so that matching algorithms
can identify the individual. Here, we describe the development and
testing of an automated cropping program. The methods and techniques
we describe are broadly applicable to any system where raw photos
such as those obtained from field workers or citizen scientists must be
cropped down to a specific area of interest before pattern recognition
software is used for individual recognition. We developed and tested
the program for use with identification photos of wild giraffes (Giraffa
camelopardalis).

2. Material and methods
2.1. Object detection approach

We base our work on the well-known Histogram of Oriented
Gradients (HOG) feature for object detection (Dalal and Triggs, 2005).
HOG features capture both boundary edges and internal texture, and
the contrast normalization they employ accounts for variation in
lighting (see Fig. 1 for an example). Detecting objects in images has
been attracting a lot of attention in the Computer Vision community.
Commonly employed approaches are based on (i) Convolutional Neural
Networks which automatically learn how to represent an object, and on
(ii) approaches which use a hand-designed object representation. While
deep-learned approaches have received increased attention ever since
the popular AlexNet paper was published (Krizhevsky et al., 2012), it is
worth pointing out that traditional methods such as HOG or SIFT (scale
invariant feature transformation; Lowe, 1999) have been improved
over many years and shown to work well on tasks such as people de-
tection (Dalal et al., 2006; Dalal and Triggs, 2005), or as we show in
this work, giraffe torso detection. These approaches are efficient to train
and evaluate, do not require dedicated hardware such as an expensive
graphics processing unit (GPU), and provide more insights into what
the model learned.

There are similarities between HOG and the widely used SIFT de-
scriptor. In both cases, orientation histograms are computed for an
image grid to represent local image patches. The main difference is that
HOG describes the whole image in a dense grid and at some particular
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scales, whereas SIFT computes multiple local image descriptors cen-
tered on automatically detected interest points. These interest points
define not only a position in the image, but also a scale and an or-
ientation which is typically used to make SIFT invariant to these
transformations. Both HOG and SIFT perform normalization on the grid
of histograms for an image patch (in HOG, this is based on blocks; in
SIFT, it is performed for the whole grid) to improve invariance to
changes in illumination.
The main steps to build our object detector were:

1) Collect a large set of images (see Section 3.1) and manually annotate
each object-of-interest using a bounding box. These images are used
for training and testing of the detection system.

2) Create crops of all annotated objects given by the bounding boxes
from step 1; these are used as positive examples. In addition, create
crops from image regions which do not show the object; these are
used as negative examples (see Fig. 2).

3) Compute the HOG descriptor for each extracted crop. These serve as
representations of the positive and negative crops.

4) Train a Support Vector Machine (SVM) classifier using the positive

and negative HOG descriptors, as well as hard-negatives mined

using an Active Learning approach. The trained SVM takes a single

HOG descriptor of an arbitrary image region as input, and outputs a

detection score which indicates if the region contains the object-of-

interest.

Use the trained SVM to find (possibly none or multiple) occurrences

of the object in new images. This is implemented by sliding a rec-

tangular window over the image (typically left to right, top to
bottom) and by evaluating the trained SVM at each window position

to find all objects (see Section 2.3).

5)

Details for model training (steps 2—4) are given in Section 2.2, and
for model scoring (step 5) are given in Section 2.3.

2.2. Model training

As is the case for all supervised machine learning approaches, we
require a set of training images to be provided where, in each image, all
objects-of-interest are annotated. For object detection, these annota-
tions are typically in the form of rectangles which are manually drawn
around the objects. Given such annotations, our model can then be
trained by following the steps 2-5 in the previous section. We will now
provide more detail for each of these steps.

Step 2 — crop generation: We create crops of all objects given by the
manually annotated bounding boxes from step 1; these are used as
positive examples during model training and model evaluation.
Negative examples are collected by (i) creating random crops from the
same images, which do not overlap with any of the annotated objects,

Fig. 1. Visualization of a Histogram of Gradients (HOG) object detector (right) for a given image (left). HOG captures the dominant gradients of the image (e.g. the

bicycle) while ignoring near uniform areas (e.g. the area in the foreground).
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Fig. 2. Positive (left) and negative (right) examples used to train our giraffe detector.

and by (ii) creating random crops from out-of-domain images which are
known not to contain the object-of-interest. See Fig. 2 for positive and
negative crops.

Step 3 — HOG computation: In this step, the HOG descriptor is
computed for each crop individually. In our implementation, this is a
4356-floating point vector. These vectors serve as representations of the
crops which are shown to be more robust against imaging effects such
as illumination or variations in background compared to the raw pixel
values. The crops after computing the respective HOG descriptors are
not needed anymore and can be discarded.

Step 4 — Support Vector Machine (SVM) training: We use a binary
SVM to classify whether a crop contains the object-of-interest. The SVM
takes the HOG descriptor of a crop as input, and outputs a detection
score. To train the SVM, the positive and negative descriptors from step
3 are used.

Once trained, we noticed that the model could successfully localize
the object in previously unseen images, however it often also misfired
on unrelated regions. We therefore employed an Active Learning ap-
proach to iteratively find such misdetections, add them to the training
set, and retrain the SVM. This approach to mine so-called hard nega-
tives can be done fully automatically by using a large dataset of images
which do not contain the object-of-interest, and hence all detections are
guaranteed to be mistakes. With hard negatives added to the training
set, the accuracy of the final model improved significantly (see Section
3.3).

2.3. Model scoring

Given the trained model from step 4, we can now build a system
which finds (possibly multiple or none) objects in a given image. We
use a sliding window approach for this task, where a rectangular region
with fixed width and height is moved over the image, starting from the
top left corner, to the bottom right (see Fig. 3). At each window loca-
tion, the trained SVM is evaluated to obtain a score of the window
containing the object-of-interest. All locations with scores above a
certain threshold (by default this threshold is 0) are then used as object
detections. In Fig. 3, only the green detection window (left) highlighted
by the white arrow (right) is above this threshold.

This sliding is done independently at multiple scales since the re-
lative size of the object in the image is typically unknown. Furthermore,
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instead of computing the HOG descriptor at each sliding window lo-
cation, we use an efficient modification where the HOG descriptor is
only computed once per image. The actual sliding is perform in the
HOG space, by moving the window to the right or down with a stride
length of one cell (see Section 2.4 for an explanation of a “cell”, and
Section 2.5 for a popular computer vision library which implements this
efficient search).

2.4. Histogram of oriented gradients descriptor

This section describes the HOG descriptor in more detail and ex-
plains how the descriptor is computed. Given an image, HOG computes
local gradient orientation histograms, and then contrast-normalizes
these local histograms over larger spatial regions, capturing not only
boundary edges but also internal edges. The basic idea is that the ap-
pearance of an object can be characterized by the distribution of local
intensity gradients and edge directions.

Fig. 4 shows the multiple stages required to compute a HOG de-
scriptor (adapted from Dalal et al., 2006).

The first stage applies an optional global image normalization which
is designed to reduce the influence of illumination effects. In practice,
each pixel (r,g,b) and each color channel is normalized independently
by computing the square root of its red, green, and blue color channels.

The second stage computes image gradients and orientations. This
captures silhouette and texture information.

The third stage pools gradient orientation information by dividing
the image into small spatial regions, called “cells”. For each cell a local
1-D histogram of gradient orientations, and of gradient magnitude, is
built by accumulating the gradients of all the pixels in the cell.

The fourth stage takes local groups of cells and normalizes their
associated orientation histograms. This step is introduced to achieve
better invariance to illumination, shadowing, and edge contrast.
Normalization is performed by measuring local histogram energy over
groups of cells, referred to as “blocks”. This measure is then used to
normalize the orientation histogram of each cell in the block. Typically,
each individual cell is shared between several blocks, but its normal-
izations are block dependent and thus different. The cell thus appears
several times in the final output vector with different normalizations.
While this may seem redundant, it was shown quantitatively to improve
performance (Dalal and Triggs, 2005).
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Fig. 3. Object detection using a sliding window approach. Input image (left), with a small subset of the sliding window positions illustrated by blue dotted rectangles,
and the highest scoring window shown in green. Note that the classifier finds the giraffe torso accurately, even though the legs are cut off, and the back of the giraffe
is occluded. Output of the Support Vector Machine classifier at each window position (right). Blue colors indicate locations where the classifier is most certain that
the window contains the object (in this example, the torso of a giraffe). The white arrow highlights the center location of the window with highest detection score.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Overview of HOG feature extraction. Given an input image or image
patch, for each pixel the gradient magnitude and orientation is computed. The
image is then divided into small spatial regions, called “cells”. For each cell an
orientation histogram is computed by accumulating the gradient orientation
over all the pixels in the cell. These histograms are then further clustered into
“blocks” and normalized to achieve better invariance to illumination, sha-
dowing, and edge contrast. Finally, the HOG descriptor for the whole image is
defined as the concatenation of all block responses.

Image adapted from Dalal et al. (2006).

The final step collects the histograms descriptors from all blocks of a
dense overlapping grid of blocks.

This collection of histograms in our work consists of 4356 floating
point values, and is used to train our object vs. background Support
Vector Machine classifier (see Sections 2.1 and 2.2).

2.5. Implementation details

All our work is implemented in Python, and is deployed as a REST
API to Azure using the Flask framework. We rely heavily on OpenCV,
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which is a popular library for real-time computer vision and contains
the efficient implementation for HOG sliding window object detection
introduced at the end of Section 2.4.

3. Data and results
3.1. Giraffe photographic capture-recapture study

We used data from a photographic capture-recapture study of in-
dividually identified, wild, free-ranging Masai giraffes in the Tarangire
Ecosystem of Tanzania to train the automated cropping program, and to
test its accuracy. Project GIRAFFE (http://www.wildnatureinstitute.
org/giraffe.html) is a long-term, individual-based study examining
giraffe demography (births, deaths, and movements) with the aim of
estimating population size, reproduction, survival, and movements in
an ecosystem with a range of anthropogenic effects on the landscape
(Lee et al., 2016; Lee and Bolger, 2017).

We collected photographic data during daytime systematic road
transect sampling. We sampled giraffes three times per year around 1
February, 1 June, and 1 October near the end of every precipitation
season (short rains, long rains, and dry, respectively) by driving a
network of fixed-route transects on single-lane dirt tracks in the study
area. During sampling events, the entire study area was surveyed and a
sample of individuals were encountered and approached so we could
photograph the animal's right side at a perpendicular angle (Canon 40D
and Rebel T2i cameras with Canon Ultrasonic IS 100-400 mm lens,
Canon U.S.A., Inc., One Canon Park, Melville, New York, 11,747, USA).
We attempted to photograph the right side of every giraffe encountered,
and recorded sex and age class based on physical characteristics (Lee
et al.,, 2016). We manually cropped all photos to include our area of
interest, the torso from the lower neck to just below the belly or penile
sheath and from chest to tail (Fig. 1). We collected 1800 photographs
before and after cropping where the giraffe was in near-perfect profile
to use as training data for the automatic cropping program.

3.2. Dataset

Our training dataset consisted of: (i) 500 annotated test images from
February 2014, September 2014, and February 2015, where each image
contained exactly one giraffe; (ii) 1300 annotated training images from
other months; and (iii) 12,000 negative images which did not contain
giraffes. These datasets were used to train the classifier, and to make
parameter and design decisions.

3.3. Accuracy testing

We used the finished automated cropping program to crop 3518 raw
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Fig. 5. Randomly selected giraffe torso detection results. Note that even giraffes which are small in the image (upper, left), or giraffes which are partly occluded by

bushes, are found successfully.

data photos from three surveys in 2017 to assess the accuracy of the
program. Raw data photos were unfiltered, and included high-quality
images consisting of one animal in near perfect profile that nearly filled
the frame, as well as low-quality images such as where the subject
giraffe was very far away and thus very small, tilted in relation to the
camera, and/or partially obscured by vegetation. Some images also
included more than one giraffe, with the focal animal centered in the
image. We ran the automated cropping program, then manually as-
sessed the number of ‘failures’ where the cropping program did not
accurately crop the complete torso area of interest of the focal animal.

Accuracy testing from 2017 surveys documented mean failure rate
for all photos was 0.109, and mean failure rate for high-quality photos
was 0.006. Most failures were extremely tilted and/or obscured by
vegetation. High-quality photos of an unobscured giraffe in near perfect
profile almost never failed to be cropped accurately by the program. We
found that the system is very robust to scale changes, and can detect
giraffes at very different positions and zooms (see Fig. 5, top right de-
tection vs. the bottom right detection). Furthermore, the detector even
finds the giraffe in environments where the giraffe seems to merge with
the background.

All images used to train the giraffe detector are from 2014 and 2015
while the images for the testing were taken in 2017. Hence, the giraffe
detection accuracy reported above reflects the true performance when
applying the system to previously unseen images and in potentially new
imaging conditions (e.g. different times of the day).

4. Discussion

Most photo-identification procedures require multiple processing
steps, where all but the first step of selecting and cropping an area of
interest to be matched have been automated to some degree. Our work
here has demonstrated that a HOG descriptor and SVM model can ef-
ficiently identify and crop giraffe torso photos and remove a time-
consuming step in processes aimed at fully automatic animal identifi-
cation. The program developed here has been used successfully as part
of an automated process to document wild, free-ranging giraffe demo-
graphic parameters that provide data-driven conservation re-
commendations for this vulnerable species (Lee et al., 2016; Lee and
Bolger, 2017; Lee and Bond, 2016).

Using our HOG-detector we were able to obtain near perfect results.
We not only found the object-of-interest, but only at a specific pose
(side-facing) and did so with a tight detection rectangle. This is im-
portant, since the down-stream giraffe detection component relies on
such tight and specific detections. HOG focuses on edges in the image,
where each detection has to tightly match the expected HOG gradients.

In comparison, Deep Learning represents a semantic classifier (espe-
cially in deeper layers), which is great for finding objects in all con-
figurations and angles in an image, but less suitable for firing only on
objects in a specific pose. Furthermore, Deep Learned classifiers tend to
over-fire around an object, which is why non-maxima suppression gets
performed in a post-processing step to merge (or discard) multiple de-
tections into one. This step can introduce errors (e.g. pick less tightly
fitting detections) and is of much less importance with HOG based
detectors. To summarize, Deep Learning has been shown to work well
on a wide range of scenarios, in part due to its ability to recognize an
object independent of its pose, color, etc. In this work however, we
were able to achieve near-perfect recognition results using a detection
approach based on HOG descriptors. We can do so without expensive
hardware requirements (a dedicated GPU). In addition, we only fire on
the object-of-interest in an exact specified pose, and with a tight
bounding box detection.

Computer vision-based automation is an essential process for
turning digital images into useful data for ecological studies (Weinstein,
2017). The creation of images intended for ecological data analyses has
outpaced the development of tools for automated processing (Swanson
et al., 2015; Van Horn et al., 2017). We believe the automated cropping
procedure we outlined here will greatly assist research programs
seeking to turn images into data by removing one of the primary bot-
tlenecks in the processing workflow. This program was developed and
tested for use with giraffe images from a large, long-term demography
study. Future work in this area should test this type of object detection
for additional species and under different conditions, e.g. under dense
forest canopy or under water.
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