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Abstract 9 

Recently, there has been an increasing interest in model-based approaches for the statistical 10 

modelling of the joint distribution of multi-species abundances. The Dirichlet-multinomial 11 

distribution has been proposed as a suitable candidate distribution for the joint species distribution 12 

of pin-point plant cover data and is here applied in a model-based ordination framework. Unlike 13 

most model-based ordination methods, both fixed and random effects are in our proposed model 14 

structured as p-dimensional vectors and added to the latent variables before the inner product with 15 

the species-specific coefficients. This changes the interpretation of the parameters, so that the fixed 16 

and random effects now measure the relative displacement of the vegetation by the fixed and 17 

random factors in the p-dimensional latent variable space. This parameterization allows statistical 18 

inference of the effect of fixed and random factors in vector space, and makes it easier for 19 

practitioners to perform inferences on species composition in a multivariate setting. The method 20 

was applied on plant pin-point cover data from dry heathlands that had received different 21 

management treatments (burned, grazed, harvested, unmanaged), and it was found that treatment 22 

have a significant effect on heathland vegetation both when considering plant functional groups or 23 

when the taxonomic resolution was at the species level.  24 

Keywords: Model-based ordination; plant pin-point cover data; statistical inferences on fixed and 25 

random effects; management of dry heathlands. 26 
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Introduction 28 

The statistical treatment of whole communities with multiple species has traditionally relied on 29 

ordination methods that use distance measures to reduce the plot by species abundance matrix into a 30 

low dimensional vector of distances among plots. Traditional methods for ordination, such as Non 31 

Metric Multidimensional scaling (NMDS) or Principal Component Analysis (PCoA), rely on 32 

strictly algorithmic approaches with no underlying statistical model of species abundance (McCune 33 

and Grace 2002). To accommodate potential properties inherent in the data (e.g. a strong mean-34 

variance relationship with count data), these methods may apply a variety of distance measures or 35 

data transformations. However, commonly applied distance metrics, such as Euclidean, Manhattan, 36 

or Bray–Curtis distance, often make implicit assumptions on the mean-variance relationship that 37 

may not be entirely compatible with the data at hand. This can result in potentially incorrect 38 

conclusions, e.g. location effects may be confounded within the dispersion effects (Warton et al. 39 

2012, Warton and Hui 2017).  40 

Recently, a number of ordination techniques, where the distribution of species abundance is 41 

explicitly taken into account, have been developed. Collectively, these new techniques are referred 42 

to as model-based ordination. In univariate statistics, for instance, these issues of mean-variance 43 

relations in the species response have long been addressed with generalized linear models (GLM’s) 44 

and their mixed model counterparts, where the mean-variance relationship is modelled for each 45 

response variable (Bolker et al. 2009). Model-based ordination can thus be regarded as multivariate 46 

extensions of GLM’s. This method offers the possibility of adjusting the distribution family to e.g. 47 

negative binomial distribution for overdispersed count data and the Bernoulli distribution for 48 

presence-absence data to better account for the inherent mean-variance relationship in the species 49 

observations (Hui et al. 2015, Warton et al. 2015). Like GLM’s, model- based ordination methods 50 

further allow for a check of the validity of such model assumptions. Through row/column 51 

standardizations, as incorporated in model-based approaches, each taxon or species contribution to 52 

the sample location in ordination space is accounted for (Hawinkel et al. 2019) as well as potential 53 

clustering of data across different levels of study structure. For instance, hierarchical structures 54 

caused by host-parasite dynamics and reflecting nested design experiments (Björk et al. 2018). 55 

Hence, additions to the model-based ordination literature are continually emerging (e.g. Sohn and 56 

Li 2018, Hawinkel et al. 2019, Niku et al. 2019). 57 
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Arguably, the most popular method of model-based ordination that has emerged is latent variable 58 

modelling, which involves modelling community composition through a small set of underlying 59 

latent variables that reduce the dimension of the species abundance data from the number of species 60 

to the dimension of the latent variables (Hui et al. 2015, Warton et al. 2015, Warton et al. 2016, 61 

Niku et al. 2017). In doing so, the latent variables also express the residual variation owing to 62 

factors beyond those of the measured predictors included in the model, e.g. possible biotic 63 

interactions or phylogenetic relatedness between species. More specifically, in latent variable 64 

modelling the species composition of each plot is described by a vector with dimension p that is 65 

much less than the number of species. These latent variables are then fitted to the species abundance 66 

data using the relevant distribution of species abundance. Since the latent variables are not 67 

observed, they are treated as random effects, meaning that they need to be predicted at the same 68 

time that coefficients associated with them are estimated (often called loadings) along with other 69 

potential site, treatment, and environmental effects. 70 

Ecological multivariate data analyzed using these methods often presents as count data or presence-71 

absence data. Because plants are sessile, they facilitate registration of multiple characteristics 72 

related to vegetation structure and microclimate. The most common way to quantify plant species 73 

abundance in light-open plant communities is to measure the cover, which is the relative area of the 74 

species when projected onto the surface. Unlike plant counts or density, plant cover takes the size of 75 

individuals into account. A relatively objective method for measuring plant cover is the pin-point 76 

(or point-intercept) method in a frame or along a line, which has been widely employed in the field. 77 

This involves vertically inserting a thin pin into the vegetation a number of times in a fixed design, 78 

and the cover of a species is measured by the proportion of the inserted pins that touches the species 79 

(Lindquist 1931, Levy and Madden 1933, Damgaard and Irvine 2019). The pin-point method is not 80 

relevant for measuring the abundance of rare species and has been shown to underestimate species 81 

richness (Bråkenhielm and Qinghong 1995). Importantly, the pin-point method allows unbiased 82 

aggregation of single species cover measures at the pin level into cover data for higher plant taxa, 83 

e.g. the cover of grasses or herbal plants. 84 

Many plant species are spatially aggregated, and it is important to take this spatial aggregation into 85 

account when modelling multi-species pin-point plant cover data. Recently, a reparametrized 86 

Dirichlet-multinomial distribution has been proposed for modelling such cover data (Damgaard 87 

2015, 2018). The Dirichlet distribution is the conjugate prior of the multinomial distribution and a 88 
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multivariate generalization of the beta-binomial distribution, which has previously been used with 89 

success to model pin-point cover data of spatially aggregated plant species (Damgaard 2009, 2013, 90 

Damgaard and Irvine 2019). Moreover, the Dirichlet-multinomial distributed model has been 91 

applied for modelling multi-species vegetation dynamics in e.g. heathland ecosystems (Damgaard 92 

2015, Damgaard et al. 2017, Damgaard 2019). 93 

The aim of this study is two-fold; i) to modify the model-based ordination method previously 94 

suggested by among others Hui et al. (2015) so that it is applicable to multi-species pin-point cover 95 

data, and ii) to reparametrize the underlying latent variable model so that the effect of fixed and 96 

random factors on the species composition may be investigated and tested in the same underlying 97 

multidimensional space as the latent variables characterizing the ordination.  98 

The proposed method will be illustrated on multi-species pin-point cover data from six Danish dry 99 

heathlands, where different nature management practices have been applied and, more specifically, 100 

it will be used to assess whether the form of management has had an effect on heathland vegetation.  101 

Model 102 

The objective of the proposed model is to reduce a plant species abundance matrix with k plots and 103 

n species to a 𝑘𝑘 ∗ 𝑝𝑝 matrix of latent variables, where 𝑝𝑝 < 𝑛𝑛 is the number of latent variables, and the 104 

plant abundance of each species is measured by its cover using the pin-point method. The effects of 105 

observed covariates, including e.g. the experimental unit and design effects on species composition, 106 

may be entered as fixed and/or random effects into the mean structure as well. The inclusion of such 107 

effects means that the latent variables then model the so-called residual correlation between species, 108 

i.e. any covariation that cannot be explained by the observed predictors and experimental design 109 

effects (Warton et al. 2015, Niku et al. 2017). 110 

Partly following Hui et al. (2015) and adopting a Bayesian framework for estimation and inference, 111 

we propose that the mean cover of species j in plot i, denoted here as 𝑞𝑞𝑖𝑖𝑖𝑖, be modelled as follows 112 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑞𝑞𝑖𝑖𝑖𝑖� = �𝜶𝜶𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖] + 𝜸𝜸𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟[𝑖𝑖] + 𝒛𝒛𝑖𝑖�
′
.𝜽𝜽𝑖𝑖 + 𝛽𝛽𝑖𝑖    (1), 113 

where all parameters in bold denote vectors of dimension p.  114 
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In this model, the vector 𝜶𝜶𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖] denotes a fixed effect applied to plot i, for instance a treatment 115 

effect, and are assigned weak prior distributions, e.g.  𝑁𝑁𝑝𝑝(𝟎𝟎, 100 𝐈𝐈), which is a p-dimensional 116 

multivariate normal distribution with zero mean vector and a covariance matrix with a diagonal 117 

matrix with all diagonal elements set to 100. Note that for reasons of parameter identifiability, it is 118 

assumed that these fixed effects are not unique to each plot (which is almost always the case). 119 

Next, the vector 𝜸𝜸𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟[𝑖𝑖] model denotes a random effect applied to plot i, e.g. the location in a 120 

hierarchical experimental design, and are assumed to be drawn from a common multivariate normal 121 

distribution with a zero mean vector and an unstructured p*p covariance matrix, 𝑁𝑁𝑝𝑝(𝟎𝟎,𝚺𝚺). For 122 

example, when 𝑝𝑝 = 2, as is commonly considered for the purposes of ordination, 𝚺𝚺 =123 

� 𝜎𝜎12 𝜌𝜌 𝜎𝜎1 𝜎𝜎2
𝜌𝜌 𝜎𝜎1 𝜎𝜎2 𝜎𝜎22

�. In this case, the standard deviations 𝜎𝜎𝑖𝑖 are assigned a uniform positive prior, 124 

while the correlation coefficient 𝜌𝜌 is assigned a uniform prior between -1 and 1. As with the fixed 125 

effects, the random effects are assumed not to be at plot level for reasons of parameter 126 

identifiability, e.g. in our case study the random effect is at the level of the site, in which multiple 127 

plots are nested. In the above notation (eq. 1), the model is fitted with only one fixed factor and one 128 

random factor, however, the model may be extended to include either more fixed or random effects, 129 

as well as including a spatial correlated random component. Conversely, the model may be 130 

simplified by either omitting the fixed and random effect.  131 

Finally, the vector 𝒛𝒛𝑖𝑖 denotes a vector of 𝑝𝑝 latent variables for plot i and, as is standard, is assumed 132 

to come from a standard normal distribution 𝑁𝑁𝑝𝑝(𝟎𝟎, 𝐈𝐈), where the zero mean vector and identity 133 

covariance matrix are used to avoid location and scale invariance and ensure that the parameters in 134 

the model are identifiable (Hui et al. 2015, Niku et al. 2017).  135 

The vector 𝜽𝜽𝑖𝑖  denotes a 𝑝𝑝-dimensional vector of coefficients or loading for species j (e.g. Hui et al. 136 

2015) and is, similarly to the fixed effects above, assigned a weak prior 𝑁𝑁𝑝𝑝(𝟎𝟎, 100 𝐈𝐈). Note that in 137 

order to ensure that the parameters are identifiable, we further apply a standard constraint of 138 

assuming that the upper triangular portion of the 𝑛𝑛 ∗ 𝑝𝑝 matrix of species-specific coefficients is 139 

constrained to be zero, while the diagonal elements are constrained to be positive (see Hui et al. 140 

2015, Niku et al. 2017). The loadings can be interpreted as quantifying the species responses to the 141 

unmeasured latent variables and can also be plotted in conjunction with the ordinations as a model-142 
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based biplot (e.g. Warton et al. 2015). Finally, the quantities 𝛽𝛽𝑖𝑖 denote a vector of constants chosen 143 

a priori, which are required to ensure that 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑞𝑞𝑖𝑖𝑖𝑖� is a real number.  144 

The main difference between the present method and the original latent variable ordination 145 

approach proposed by, among others, Hui et al. (2015) and Warton et al. (2015) is that both the 146 

fixed and random effects, 𝜶𝜶𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖] and 𝜸𝜸𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟[𝑖𝑖] are vectors of dimension p and are added to the 147 

latent variables prior to their inner product with the species-specific coefficients. This changes the 148 

interpretation of the parameters so that the fixed and random effects now measure the relative 149 

displacement of the vegetation by the fixed and random factors in the p-dimensional latent space. 150 

Consequently, the latent variable 𝒛𝒛𝑖𝑖 may now more properly be referred to as modelling the residual 151 

correlation between species, i.e. the covariation after the fixed and random effects are taken into 152 

account. The scale of the displacement by the fixed and random effects is measured relatively to the 153 

residual latent variables, which are fixed to a unit standard variation for ease of interpretation (and 154 

parameter identifiability). This parameterization of the underlying latent variable model uses the 155 

concepts of fixed and random effects in an analogous way as to how the terms are used 156 

in  generalized linear mixed effects models (Bolker et al. 2009). It is anticipated that this analogy 157 

will make it easier for practitioners to test e.g. treatment effects on species composition in a 158 

multivariate setting. 159 

The underlying motivation for using model-based ordination instead of traditional ordination is to 160 

take the distributional properties of the species abundance sampling into account such that e.g. the 161 

correct mean-variance relationship is used in the modelling (e.g. Warton et al. 2012, Warton and 162 

Hui 2017). In this study, we consider the multi-species pin-point cover data, and it has previously 163 

been demonstrated that a reparametrized Dirichlet-multinomial distribution is a suitable candidate 164 

distribution to model multi-species pin-point cover data (Damgaard 2015, Damgaard et al. 2017, 165 

Damgaard 2019). The advantage of using the reparametrized Dirichlet-multinomial distribution is 166 

that the degree of spatial aggregation in plant communities is taken into account and explicitly 167 

modelled by a parameter 𝛿𝛿 (Damgaard 2018). More specifically, the observed hierarchical multi-168 

species pin-point cover data, Y, is modelled by a mean cover vector of the n-1 first species, 𝑞𝑞𝑖𝑖 , and a 169 

parameter 𝛿𝛿, which measures the degree of intra-specific spatial aggregation, by,  170 

𝑌𝑌~𝑀𝑀𝑛𝑛�∑ 𝑦𝑦𝑖𝑖𝑟𝑟 , (𝑝𝑝1, … ,𝑝𝑝𝑟𝑟−1, 1 − 𝑝𝑝1 −⋯− 𝑝𝑝𝑟𝑟−1)�     (2), 171 
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Λ (𝑝𝑝1, … ,𝑝𝑝𝑟𝑟−1)~𝐷𝐷𝑙𝑙𝐷𝐷 �𝑞𝑞1−𝑞𝑞1𝛿𝛿
 𝛿𝛿

, … , 𝑞𝑞𝑛𝑛−1−𝑞𝑞𝑛𝑛−1 𝛿𝛿
 𝛿𝛿

, 1−𝛿𝛿
𝛿𝛿
− 𝑞𝑞1−𝑞𝑞1𝛿𝛿

 𝛿𝛿
− ⋯− 𝑞𝑞𝑛𝑛−1−𝑞𝑞𝑛𝑛−1 𝛿𝛿

 𝛿𝛿
�   172 

At the limit when 𝛿𝛿 → 0, the reparametrized Dirichlet-multinomial distribution degenerates into the 173 

multinomial distribution. Here, the prior distributions of 𝑞𝑞𝑖𝑖 and 𝛿𝛿 are assumed to be uniformly 174 

distributed between (0, 1) and (0.01, 0.95), respectively. For more details on the properties of the 175 

reparametrized Dirichlet-multinomial distribution, see Damgaard (2018).  176 

Estimation 177 
The proposed latent variable model was estimated using Bayesian Markov Chain Monte Carlo 178 

(MCMC) methods using the Metropolis-Hastings algorithm with normally distributed candidate 179 

distributions. Specifically, we considered a MCMC chain with a burn-in period of 70,000 iterations 180 

followed by 30,000 additional iterations.  181 

Trace plots of the sampling chains of all parameters and latent variables were examined to assess 182 

their mixing properties and convergence of the MCMC chain. Additionally, the overall fitting 183 

properties of the model were checked by examining the regularity and shape of the marginal 184 

distribution of parameters as well as the distribution of the deviance (= −2 𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿(𝑌𝑌|𝜃𝜃)). The 185 

efficiency of the MCMC procedure was assessed by inspecting the evolution in the deviance.  186 

For ordination and when p = 2, we constructed plots of the posterior mean values of 187 

�𝜶𝜶𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖] + 𝜸𝜸𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟[𝑖𝑖] + 𝒛𝒛𝑖𝑖� for each plot along with 95% credibility regions of 𝜶𝜶𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓[𝑖𝑖], noting 188 

that these are p-dimensional regions rather than the unusual one-dimensional credibility intervals 189 

seen in mixed models and the standard latent variable ordination approach. These credibility regions 190 

enabled us to make statistical inferences on the effect of the fixed factors on species composition, 191 

e.g. if the 95% credibility regions of two fixed factors did not overlap. In such cases, we concluded 192 

that there is clear statistical evidence that the effects of the two factors on the species composition 193 

differ substantially. Consequently, the suggested parameterization in equation (1) will allow us to 194 

utilize the model-based ordination framework for testing purposes on the latent space. Furthermore, 195 

posterior means of the species coefficients, 𝜽𝜽𝑖𝑖  for each cover class were also extracted and 196 

superimposed on top of the ordination diagram to visualize the contribution of each cover class 197 

(species) to the location of plots in the diagram, although note that the mean of the last species (𝑞𝑞𝑟𝑟) 198 

is not estimated in eqn. 2.  199 
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All calculations were done using Mathematica (Wolfram 2016). 200 

Case study 201 

To assess the effect of heathland management on plant communities, plant species were registered 202 

using the pin-point method. During the fall of 2018, the cover of heathland plant species was 203 

registered at 6 heathland sites encompassing four different heathland management regimes: 204 

harvesting, grazing, burning and unmanaged, i.e. abandonment of management. At each site several 205 

of the four management regimes were applied. Within each site and management combination, the 206 

pin-point measurements were repeated in each of ten randomly positioned plots (Electronic 207 

Supplement, Appendix A). The pin-point frames had 25 pins within an area of 0.5m x 0.5m. 208 

Pinpoint data were then aggregated at the pin-level into five cover classes: Dwarf shrubs, 209 

graminoids, forbs, mosses and lichens. That is, if e.g. two graminoid species where hit by the same 210 

pin, they were aggregated to a single hit (Fig. 1).   211 

We modelled both the aggregated pin-point data and the underlying single species pin-point data 212 

(number of species: 34) using the proposed latent variable ordination approach formulated above, 213 

where the four different heathland management regimes were assumed to be p-dimensional fixed 214 

effects, i.e. 𝜶𝜶𝑡𝑡𝑟𝑟𝑓𝑓𝑟𝑟𝑡𝑡𝑟𝑟𝑓𝑓𝑟𝑟𝑡𝑡[𝑖𝑖] in equation (1), and the site was assumed to be a p-dimensional random 215 

effect, i.e. 𝜸𝜸𝑠𝑠𝑖𝑖𝑡𝑡𝑓𝑓[𝑖𝑖] in equation (1). For the purpose of visualization, the dimension of the latent 216 

variable model (p) was set to 2. 217 

Results 218 

The MCMC iterations demonstrated fair mixing properties (Electronic supplement, Appendix B), 219 

and the marginal posterior distribution of selected parameters and compound parameters are 220 

summarized in Table 1 and Fig. 2.   221 

The main results are shown in Fig. 2, where the mean of the posterior distribution of (𝜶𝜶𝑖𝑖 + 𝜸𝜸𝑖𝑖 + 𝒛𝒛𝑖𝑖) 222 

vectors are displayed for each plot for the aggregated species classes and all species, respectively. 223 

The distance between plots indicates the difference in the cover of the species, where the scale is 224 

relative to the unit standard deviation of the residual latent variables, i.e. the variation in species 225 

cover among plots that could not be explained by the fixed or random factors.  226 
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The 95% credibility areas of the effect of fixed factors, i.e. the different management regimes, are 227 

shown by colored ovals in Fig. 2. Since no ovals overlap, we concluded that the four different 228 

management regimes lead to characteristic heathland plant communities, which on average were 229 

distinct from each other. In particular, grazing has a large effect on the composition of the heathland 230 

vegetation, whereas the effects of the other three management regimes were comparably more 231 

similar (Fig. 2). This is further demonstrated in Fig. 1, where grazing leads to a shift in vegetation 232 

cover from a high dwarf-shrub dominance towards forb and graminoid covered heathland. Inclusion 233 

of all species in the model still yielded a distinct plant species composition with non-overlapping 234 

credibility intervals. However, the relative positions of burned and harvested plots were shifted, 235 

indicating that inference of management affects species composition depending on the taxonomic 236 

resolution (functional groups vs. all species). Furthermore, increasing the taxonomic resolution 237 

leads to higher within treatment variation in the unmanaged plots compared to the aggregated 238 

dataset (Fig 2b, larger credibility area).  239 

The scale of the random effects, i.e. the effect of site, is shown in Table 1. Given that the scale of 240 

the random effect is relative to the unit standard deviation of the residual latent variables, then we 241 

conclude that the displacement due to sites tended to be significantly larger than the variation 242 

among the residual latent variables (Table 1, σ2 is significantly larger than one for both cases). This 243 

indicated a relatively large influence of site-specific species pools. There was also a significant 244 

positive correlation between the two dimensions of the random effects when all species were 245 

analyzed (Table 1). 246 

In both cases, the estimated posterior distribution of 𝛿𝛿 was dominated by the chosen lower limit of 247 

the prior distribution of the parameter (0.01), and the degree of spatial aggregation could not be 248 

distinguished from zero in a statistical sense, i.e. random expectations.  249 

Discussion 250 

Over the past five years, there has been an increasing interest in model-based approaches for the 251 

statistical modelling of the joint distribution of multi-species abundances (e.g. Clark et al. 2014, 252 

Warton et al. 2015, Warton et al. 2016, Ovaskainen et al. 2017). The current study is an example 253 

reflecting this important trend in community ecology, as the importance of how species abundance 254 

data are distributed, sampled, and driven by a complex interplay of different ecological processes is 255 
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given increasing recognition. Plant species are sedentary, and in many terrestrial ecosystems plants 256 

dominate the ground cover, leaving few bare patches. These characteristic features of plant growth 257 

have important consequences for the joint distribution of plant species cover, such as large spatial 258 

aggregation among single species and relatively strong negative correlation among them. To model 259 

these features, the Dirichlet-multinomial distribution has previously been suggested as a suitable 260 

candidate distribution for the joint species distribution of pin-point plant cover data (Damgaard 261 

2015, Damgaard et al. 2017, Damgaard 2019). The Dirichlet-multinomial distribution has markedly 262 

different distributional properties than both the Bernoulli distribution and the negative binomial 263 

distribution, which till now have typically dominated the development of model-based ordination 264 

methods and software (e.g. Niku et al. 2019).  265 

In the suggested reparametrized Dirichlet-multinomial distribution, the spatial aggregation among 266 

plant species is modelled by the parameter 𝛿𝛿, which increases with the within-site spatial variation 267 

in cover, i.e. the degree of spatial aggregation. In the present case, the degree of spatial aggregation 268 

could not be distinguished from random expectations, and it was concluded that the observed 269 

covariation pattern among the species was adequately modelled by the residual latent variables. 270 

Consequently, we suggest to test whether the more simple multinomial distribution is suitable in 271 

future model-based ordination of pin-point cover data. 272 

Unlike in Hui et al. (2015) and Warton et al. (2015), among others, both the fixed and random 273 

factors are here modelled as p-dimensional vectors and added to the latent variables before the inner 274 

product with the species-specific coefficients. This means that the estimated displacement effects of 275 

management and sites are estimated and statistical inference performed in the same p-dimensional 276 

latent ordination space. When p = 2 in particular, the estimated average displacements of e.g. the 277 

different management regimes may be shown in the plane as ovals of 95% credibility areas. Such 278 

plots, we find, are an illustrative way to show the effects of different treatments on the species 279 

composition. This is in contrast to most latent variable models, which consider the sample scores as 280 

random effects and make prior distributional assumptions on them without incorporating both 281 

random and fixed effects in the same model framework. Naturally, the suggested parameterization 282 

with fixed and random effects may also be applicable for count data or absence-presence data. 283 

Not surprisingly, in our case study the interpretation of the fixed effects is sensitive to taxonomic 284 

resolution of the dataset. This was evident when comparing Fig 2a and b. If data was aggregated 285 
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into functional groups (Fig. 2a), it could be concluded that management abandonment leads to 286 

relatively homogenous plant communities. However, the model based on species level resolution 287 

(Fig. 2b) showed that the variation within the unmanaged plots is high. Regardless of taxonomic 288 

resolution, both models exhibited clear evidence that a varied management regime with different 289 

management methods produces an overall heterogeneous plant species composition. Hence, 290 

interpretation of fixed effects in this model-based framework may provide important information 291 

for heathland conservation at both the level of plant functional groups and at the species level 292 

resolution. 293 

If p >2, then the 95% credibility regions, which illustrate the mean effect of the fixed and random 294 

factors, must be imagined as a p-dimensional ellipsoidal shape. We expect that the statistical power 295 

to separate the effects of the different fixed factors on species composition will increase with the 296 

dimension of the latent variable used in the ordination. However, this preliminary notion needs to 297 

be explored in a more systematic way. Finally, the chosen estimation method is relatively slow, and 298 

in cases with many plots and many species faster estimation procedures may be needed and should 299 

be developed in the future.  300 

Acknowledgements 301 

We thank K. E. Nielsen for field help providing pin-point data. CFD and RRH both acknowledge 302 

the funding provided by Aage V. Jensen foundation. FKCH acknowledges the funding provided by 303 

two grants from the Australian Research Council 304 

  305 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2020. ; https://doi.org/10.1101/2020.03.05.980060doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.980060
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

Tables 306 

Table 1. Marginal credible intervals for the posterior distribution of the parameters in 𝚺𝚺 =307 

� 𝜎𝜎12 𝜌𝜌 𝜎𝜎1 𝜎𝜎2
𝜌𝜌 𝜎𝜎1 𝜎𝜎2 𝜎𝜎22

� 308 

Parameter 2.5% 50% 97.5% 

Aggregated cover classes:  

  𝜎𝜎1 0.828 1.355 1.820 

 𝜎𝜎2 1.044 1.811 2.651 

 𝜌𝜌 -0.710 -0.046 0.563 

All species: 

  𝜎𝜎1 0.356 0.753 1.346 

 𝜎𝜎2 1.270 1.965 3.005 

 𝜌𝜌 0.377 0.870 0.993 

 309 
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Figures 311 

Fig. 1. The cover of the aggregated species at the different management treatments B: burned, G: 312 

grazed, H: harvested, U: unmanaged. 313 

 314 
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Fig. 2. Map of latent variables, posterior means of (𝜶𝜶𝑖𝑖 + 𝜸𝜸𝑖𝑖 + 𝒛𝒛𝑖𝑖) and 95% credibility areas of the 316 

effect of fixed factors (management), brown: burned, light green: harvested, dark brown: 317 

unmanaged, dark green: grazed. Mean species coefficients, 𝜽𝜽𝑖𝑖  for each cover class (species) are 318 

shown. A: four aggregated species classes. B: All species, 1: Eriophorum angustifolium, 2: 319 

Calamagrostis epigejos, 3: Trichophorum cespitosum, 4: Danthonia decumbens, 5: Agrostis 320 

capillaris, 6: Nardus stricta, 7: Festuca ovina, 8: Deschampsia flexuosa, 9: Festuca rubra, 10: 321 

Molinium caerulea, 11: Poa compressa, 12: Carex pilulifera, 13: Carex arenaria, 14: Carex 322 

panacea, 15: Carex nigra, 16: Luzula campestris, 17: Galium saxatile, 18: Hieracium pilosella, 19: 323 

Potentilla erecta, 20: Rumex acetosella, 21: Hypochoeris radicata, 22: Vaccinium vitis-idaea, 23: 324 

Calluna vulgaris, 24: Empetrum nigrum, 25: Genista anglica, 26: Erica tetralix, 27: Dicranum 325 

scoparium, 28: Pseudoscleropodium purum, 29: Pleurozium schreberi, 30: Bryum subsp., 31: 326 

Sphagnum compactum, 32: Campylopus introflexus, 33: Hypnum cupressiforme, 34: Cladonia 327 

rangiferina.  328 

 329 
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Electronic supplements 385 

Appendix A: Details of the case study 386 
A map of Jutland showing the location and size of the heathlands investigated in the study. Inset 387 

figure shows the location of the selected plot within the management parcel. Inset figure shows the 388 

experimental design within each plot. The squares show an example of the randomised locations for 389 

pin-point analyses. 390 

 391 

 392 

An overview of the selected sites and the management carried out in the selected plots. The number 393 

under burn, harvest, and unmanaged is the number of years since the management was last applied. 394 

For grazing, the number is the number of years it has been grazed. Frequency denotes how often the 395 

management is performed. 396 

Site Harvest Grazing Unmanaged Frequency 

10
0 

m

Plot boundary
Vegetation survey plot

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2020. ; https://doi.org/10.1101/2020.03.05.980060doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.980060
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Burn 

(Years) 

(Years) (Years) (Years) 

Harrild 3 2  > 50 10 years 

Kongenshus 1 1  > 50 5 years 

Borris 1 1  > 30 1 year 

Ovstrup  2 > 50 > 50 10 years 

Randboel  2 > 30 > 100 Once 

Noerholm   > 50 > 100 - 

 397 

Appendix B: Mathematica notebook 398 
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