
 

Signal processing basics applied to Ecoacoustics 

Ignacio Sanchez-Gendriza* 

aFederal University of Rio Grande do Norte, Natal - Brazil 
* Correspondence Author: ignaciogendriz@gmail.com 

 

Abstract 

Ecoacoustics is a research field that has attracted attention of researchers from areas as diverse as ecology, biology, 
engineering, and human sciences, to cite a few. Ecoacoustics studies the sounds that emanates from the environments, by 
gaining insights of landscape dynamics from acoustic patterns and particularities at different places. With recent advance in 
technology, it is common to obtain sound datasets recorded 24-h a day for several months. The analysis of these long-term 
sound recordings represents several challenges. Investigators already involved in acoustic are familiar with signal processing 
methods, which are essential tools for sound analysis. However, in general beginners interested in Ecoacoustics do not share 
this background formation. The present work illustrates basic topics of digital signal processing in a comprehensible style, 
and an effective pipeline for long-term sound explorative data analysis (EDA) is presented. Finally, the described signal 

processing fundamentals are applied for EDA of 1-month underwater acoustic data recorded in a Brazilian marine protected 
area. The Matlab codes used for the analysis will be available as supplementary material. 

 
Keywords: Digital Signal Processing, Ecoacoustics, Soundscape, Long-term sound recordings, Passive Acoustic Monitoring 

1. Introduction 

Ecoacoustics considers soundscape [1], [2] or sounds that emanates from environments as a key ecological 

attribute [3]. Sounds can give insights on dynamics of environments and it is recognized as an indicator of 

ecological processes [4]. Recent technological advance allows to collect sounds 24-h continuously for several 

months, which represents an opportunity for new discoveries, but also it is a challenge to overcome from the 

analysis point of view. The main objective of the present work is to illustrate how Digital Signal Processing 

(DSP) basics can be useful in the context of Ecoacoustics analysis. 

Here we describe a framework that can be implemented for Explorative Data Analysis (EDA) of long-term 

sound recordings. The presented EDA framework is applied for 1-month underwater sound dataset. 

The paper was structured as follows. Section 2 describes basic DSP concepts, exemplified by using simulated 

or real sound signals; at the end of the section the framework for EDA of long-term sound recordings is 

presented. In section 3 the application of the proposed framework is used for the analysis of 1 month of 

continuous underwater sound recordings. Section 4 discusses the applicability and possible extensions of the 

illustrated framework. The Matlab codes used for generating all the figures as well as for implementing the 

presented analysis will be available as supplementary material. 

2. Methods  

For beginners in areas like Ecoacoustics that deals with sound signal analysis, there are several new terms 

and concepts than need to be understood. A word cloud representation could be used to illustrate the feeling of 

overload when newcomers read technical papers for the first time, see Figure 1A. However, the concepts 
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explained using a certain sequence and aiming to support a specific analysis could contribute to understanding 

and practical applications, see Figure 1B as an illustrative example. 

 

Figure 1. Representation of terms, concepts and topics that can be found in Ecoacoustics literature. A) Word cloud from the present 

manuscript. B) Some of the principal concepts covered in Methods section. 

Methods here described are divided into five subsections, which deal respectively with signal fundamentals, 

frequency domain methods, filtering basics, some measurements relevant for acoustic analysis and finally the 

description about the proposed framework for EDA of long-term sound recordings. 

2.1.  Signal fundamentals: continuous, discrete, and sampling, period and frequency 

The concept of signal as used in the present text, will refer to the sequence of values related to the magnitude 

of a physical variable measured by a sensor. Specifically, sound signal refers to the signal captured by a 

microphone (or hydrophone in case of underwater recordings). Physical variables in the nature are continuous 

(analog signals), they can be evaluated at every time instant, thus resulting in infinite possible values for a finite 

time interval measurement  

Furthermore, a signal 𝑥(𝑡) can be classified based on its periodicity as periodic or aperiodic. Periodic signals 

repeat its values every 𝑇 time intervals, which can be formally written as 𝑥(𝑡) = 𝑥(𝑡 + 𝑇). An example of a 

continuous periodic signal is illustrated in Figure 2A; for sinusoidal signals like this, the frequency of the signal 

(f) is the rate of cycles/sec (Hz), and the relation 𝑇 =  1 𝑓⁄  is valid. 

Computers cannot manage infinite sequence of values; therefore, continuous signals must be sampled to be 

stored and analyzed. After the sampling process, finite precision values measured at specific time instants are 

obtained, i.e. a digital signal, see Figure 2B for a representation of a digital signal. The sampling process implies 

that not all signal values are stored, so it is correct to think that sampling could imply some loss of information, 

thus some precautions must be considered. The sampling frequency (𝑓𝑠) parameter defines the number of 

samples taken every second. The Nyquist theorem states that to perform a sampling without loss of information 

the sampling frequency must be selected to be superior to 2 times the highest frequency in the continuous signal 

being sampled [5]. Figure 2B shows a signal sampled in accordance with the sampling theorem. It can be 

.CC-BY-NC-ND 4.0 International licensethe preprint in perpetuity. It is made available under a
for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display 

The copyright holderthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.01.26.428328doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.26.428328
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Ignacio Sánchez-Gendriz/ bioRxiv 2021 3 

observed from Figure 2B that the underlying (continuous) signal it is well represented by samples. In contrast, 

Figure 2C represent a sampling with a 𝑓𝑠 below the ideal limit establish by the Nyquist theorem. For this case, 

the samples do not represent exclusively the frequency of the original signal, thus the Figure 2C  illustrates a 

phenomena know as aliasing, where the frequency of the original signal is falsely presented as another 

frequency of lower value. 

 

 

Figure 2. Representation of continuous and discrete periodic sinusoidal signals. A) Continuous sinusoidal signal, one cycle of the signal is 

highlighted in dark blue, the duration of each cycle of the signal is measured by the parameter T, which denotes the period of the signal; 

the number of cycles in 1 sec is the frequency (f = 10 Hz) of the signal. B) Discrete signal sampled in accordance with Nyquist's theorem 

(fs > 2f), each point represents a sample from original continuous signal (dashed line). C) Discrete signal sampled not complying Nyquist’s 

criterium (fs < 2f). 

Obtaining the frequency for sinusoidal sequences it is not a complex task, however, for dealing with sound 

signals a more elaborated mathematical tools such as Discrete Fourier Transform (DFT) needs to be used. 

2.2. DFT, signals from another perspective: the frequency domain 

The time domain representation of a given signal illustrates how its amplitude changes over time, this 

representation was used in Figure 2.  Based on the fact that signals can be represented as a sum of sine and 

cosines [6][7], if we know the amplitude and frequency of the sinusoidal ‘units’ that compose a signal, we can 

then represent it in another perspective: the frequency domain. Figure 3 shows the time and frequency 

representation for a signal x(t), obtained by the sum of five sinusoidal signals (Eq.  1).   

𝑥(𝑡) =
4

𝜋
∑ 1

𝑘⁄ sin(2𝜋𝑘𝑓𝑡) , 𝑜𝑑𝑑 =  1, 3, 5,7, 9

𝑘=𝑜𝑑𝑑

 
Eq.  1  
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Specifically, the spectrum in frequency domain illustrates the amplitude and frequency for sinusoidals that 

composes a given signal. One way to transform from time domain to frequency domain and vice versa is by 

means of Fourier Analysis, which have been applied in ecological studies [8], [9]. Particularly for discrete 

signals Discrete Fourier Transform (DFT) and inverse DFT (iDFT) can be used, both DFT and IDFT are part 

of the Fourier Analysis methods. It is worth noting that signals in time or frequency domain contain the same 

information, the difference is only related with mathematical representation (just as 2+2+2 is the same as 3*2). 

In general terms, DFT returns complex values, the magnitude and phase of those complex numbers are defined 

as Magnitude and Phase spectrums, respectively. In the manuscript, the term Spectrum (without any other 

indication) refers to the Magnitude Spectrum, as it is the most common term used in Ecoacoustics analysis.   

 

Figure 3. Time and frequency domain view of a signal composed by the sum of basic sinusoidal signals. DFT can be used to transform 

from time domain to frequency domain, in contrast inverse DFT (iDFT) allows to convert from frequency domain to time domain.  

For a given discrete signal the 𝑥[𝑛] with N samples, the DFT of 𝑥[𝑛] denoted by 𝑋[𝑘], can be written as in 

Eq.  2, and the iDFT formulation can be written as in Eq.  3, where 𝑊𝑛 is a complex number see [6]. It can be 

observed that the DFT and the iDFT of discrete signals can be computed through a straightforward formulation. 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

 

Eq.  2  

𝑥[𝑛] =
1

𝑁
∑ 𝑥[𝑛]𝑊𝑁

−𝑘𝑛

𝑁−1

𝑛=0

 

Eq.  3  

The implementation of DFT directly from its mathematical definition is computationally inefficient. For 

DFT to be used for practical applications, principally for massive data analysis, computational efficiency is one 

of the main requirements to be met. The methods designed for efficient computation of DFT are referenced in 

the literature as Fast Fourier Transform (FFT) algorithms [6], [10]. Thus, several software packages such as 

Matlab, Python and R will compute DFT by calling FFT inbuilt functions.  

As we saw up to this point, DFT allows to get the frequency content for a signal. Nevertheless, when signals 

change frequency content over time, the DFT will not allow to distinguish the frequency variation in time. In 

cases that it is necessary to compute the frequency variation of signals over time, methods in time-frequency 

domain such as Short Time Fourier Transform (STFT) should be used [11]. 
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2.2.1. STFT and Spectrogram 

The STFT of a signal is processed by sliding sections of the signal and calculating the DFT for the respective 

windows, thus STFT computation can be represented as an iterative process. For more details see the steps for 

STFT computation in [11]. Figure 4 illustrates the STFT computation process for a simulated signal (chirp) that 

changes its frequency over time, from 5 Hz to 15 Hz. Consecutive sliding windows allow time overlap between 

them and for each step the selected signal slice is multiplied by a window function. At each step, the 

multiplication between the sliding window and the window function produces a signal segment (windowed 

signal). The multiplication by the window function diminishes possible discontinuities between beginning and 

ending of the windowed signals, since DFT assumes that analyzed signals are periodic.  This intermediary step 

minimizes an undesired phenomenon known as spectral leakage [6], characterized by an ‘energy leakage’ to 

frequencies which are not present at the original signal [12].  

For the example illustrated in Figure 4 each sliding window have 1 sec duration, consecutive segments have 

20 % overlap (0.2 sec), and the Hamming* function was selected as the window function. This setup generates 

12 windowed signals and 12 spectrums, see Figure 4B and Figure 4C, respectively. The visualization of the 

amplitude of the spectrums that compose the STFT is known as the spectrogram, see Figure 4D. The 

spectrogram represents time along the x-axis, frequency along y-axis and amplitude of the time-frequency bins 

as gradient of colors, as can be observed in Figure 4D. 

2.2.2. Parameters and considerations about practical computation of STFT 

Time vs frequency resolution trade off (Uncertainty principle) 

When calculating DFT for each windowed signal, the frequency resolution for the respective spectrum is 

inversely proportional to window duration [12]. For the example shown in Figure 4B, where the length of the 

windows represents 1 second, the frequency resolution is 1 Hz, which means that frequency components 

separated by less than 1 Hz cannot be differentiated. In order to improve frequency resolution the window 

duration should be increased, thus decreasing time resolution. That is, there is a compromise between frequency 

resolution and temporal resolution. If we improve the resolution in one domain, we get worse in the other. A 

processing trick that can be used to improve the visualization of time resolution without a necessary detriment 

of frequency discrimination is by allowing overlaps between consecutive windows. 

Visualization in dB scale 

Decibel (dB) is a logarithmic scale that is commonly employed for quantifying a physical variable with large 

dynamic range, such is the case of sound [13]. For visualization purposes the logarithmic transformation 

20log (𝑋) could be employed for illustrating the spectrogram obtained from STFT computation. Also, for 

quantifying acoustic metrics it is common practice to represent it as a dB level relative to a reference pressure, 

𝑃ref; for underwater measurements 𝑃ref = 1𝜇𝑃𝑎, and for terrestrial applications 𝑃ref = 20𝜇𝑃𝑎 [14]. 

As we saw up to this point, signals can be characterized by its spectral content, next we will illustrate how 

to select desired spectral components for a given signal, while suppressing undesired frequency components. 

The procedure that allows such spectral separation is known as filtering. 

 

 
* Hamming function (as well as Hanning, Bartlett and others possible windows) has values close to zero at the extremes and close to 

one at the middle. This justifies why the multiplication by the window function diminishes possible discontinuities between beginning and 

ending of the windowed signals. 
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Figure 4. Representation of the procedure of windowing, STFT computation and Spectrogram visualization for a chirp signal with frequency 

varying from 5 Hz to 15 Hz. A) Nonstationary signal changing frequency content over time, a sliding window and the Hamming function 

are highlighted. B) Windowing procedure used to compute the STFT. C) The spectrums magnitude for each sliding window, all the 

computed spectrums compose the STFT for the analysed signal. D)  Spectrogram for the presented signal. 

2.3. Filtering basics 

Filtering is an operation that produces an output signal based on the input signal. In principle, filters can be 

used to suppress some unwanted frequency components while maintains desired spectral content. For some 

researchers the filtering operation is as a black box, in which they feed a signal 𝑥[𝑛] to the input and get a signal 

𝑦[𝑛] as the result. In this section we are going to clear up some "mysteries" of the filtering procedure's black 

box. Since we are dealing with digital signals in the present manuscript, we will describe digital filters, thus 

when referring to filtering process we will be referring to numerical operations performed on digital samples.  

2.3.1. FIR and IIR filters 

The Eq.  4 illustrates the filtering operation, the output at the current sample can be computed from a linear 

combination of current and past input samples, and past output samples. The numbers 𝑎𝑖 and 𝑏𝑗 are known as 

filter coefficients. The filter order is the maximum value between N and M, where N and M indicate the number 

of input and output past samples that can be used for computing the current output, respectively.   

𝑦[𝑛] = ∑ 𝑎𝑖𝑥[𝑛 − 𝑖]

𝑁

𝑖=0

− ∑ 𝑏𝑗𝑦[𝑛 − 𝑗]

𝑀

𝑗=1

 
Eq.  4  
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If all the 𝑏𝑗(𝑗 = 1,2, … , 𝑀) coefficients are zero, then the filter is classified as Finite Impulse Response 

(FIR), and the output at the current sample only depends on current and past inputs 𝑥[𝑛]. On the other case, if 

at least one value of 𝑏𝑗 is different from zero the filter is classified as Infinite Impulse Response (IIR), and the 

process include also past samples from the output.  

Frequency response is one of the most important criteria for designing digital filters. Frequency response 

indicates how the filter select (whether it attenuates or not) specific spectral components contained in the signal 

x[n]. Filters can be classified based on frequency response characteristics, and the four most common categories 

are Low-Pass, High-Pass, Band-Pass and Band-Reject [15].  

 

 

Figure 5. Exemplification of the filtering process. Top panel represents a signal composed by the sum of sinusoids and its spectral content. 

Middle panel illustrates the result of low-pass filtering, the frequency response allows the pass of spectral components below 10 Hz and 

attenuates spectral components above 25 Hz. The bottom panel shows the result of high-pass filtering, spectral components below 75 Hz 

are attenuated, since frequencies greater than or equal to 90 Hz are practically unchanged.  

Figure 5 exemplifies a low-pass and hig-pass filtering on simulated signal composed by the sum of 

sinusoidals with frequencies at 10 Hz, 30 Hz, 50 Hz, 70 Hz and 90 Hz. Since filters selects which spectral 

components pass or are attenuated, they can be easily understood on frequency domain. When a signal is 

filtered, basically its spectrum is multiplied by the filter frequency response. See Figure 5 for an illustration of 

filtering functioning, for example, when a low-pass is applied on the signal, low-frequencies in the pass band 

are multiplied for values near one, thus spectral content of the pass band is practically unchanged. On the other 

hand, high-frequency components in the stop band are multiplied by values near to zero, therefore higher 

frequencies are almost eliminated after low-pass filtering. 
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2.3.2. Moving Average filters 

Moving average filters can be considered as special cases of FIR filters, for that case the Eq.  5 represents 

the formulation of a moving average filter. If we compare Eq.  4 and Eq.  5, can be observed that filter 

coefficients 𝑎𝑖 = 1/𝑁 and 𝑏𝑖 are zero. Moving average filters are simple for implementation and an effective 

choice for smoothing signals and for removing random noise, while maintaining signal trends [16][15].   

𝑦[𝑛] =
1

𝑁 + 1
∑ 𝑥[𝑛 − 𝑖]

𝑁

𝑖=0

 
Eq.  5  

Figure 6 shows the application of moving average filter on sinusoidal signal containing random noise.  After 

moving average filter, the resulting signal is similar to the original signal without noise, see Figure 6 B). 

 

Figure 6. Application of moving average filter for smoothing a sinusoidal signal contained random noise. A) Noisy signal and original 

sinusoidal signal, noisy signal contains abrupt oscillations generated by random noise. B) Smoothed signal and original sinusoidal signal, 

smoothed signal after moving average filtering it is close to the original sinusoidal signal. 

2.4. Parseval relation, Power Spectral Density and Sound Pressure Level 

The Parseval’s relation states that the energy of a signal 𝑥[𝑛] with N samples can be computed from the 

Fourier Transform. Specifically, if 𝑋[𝑘] is the DFT of 𝑥[𝑛], then the Parseval’s  relation [6] can be written as 

in Eq.  6:  

∑|𝑥[𝑛]|2

𝑁−1

𝑛=0

=  
1

𝑁
∑|𝑋[𝑘]|2

𝑁−1

𝑛=0

 
Eq.  6  

The Parseval’s relation is helpful in Ecoacoustics, since it can be used to compute energy variations in time 

signal through the frequency domain. Measurements related to signal energy variations could be used for 

acoustic events detection. Here we illustrate how to compute signal energy variation from frequency domain, 

but the main goal is not to detail the complete procedure to obtain calibrated measurements, for a more detailed 

explanation see [14].  

The Mean Square Pressure (MSP) is related to the mean square value of a sound pressure signal 𝑥[𝑛], and 

can be computed as in Eq.  7:  
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𝑀𝑆𝑃 =  
1

𝑁
∑|𝑥[𝑛]|2

𝑁

𝑛=1

 
Eq.  7  

 Power Spectral Density (PSD) is the contribution of power per unit of bandwidth [12], and the power in 

selected frequency bands can be used to estimated the contribution of specific spectral components. PSD can 

be computed as the magnitude square of DFT 𝑋[𝑘] [17], thus it is derived from the Eq.  6 that we can compute 

energy from PSD based on Parseval´s relation.  

Figure 7 exemplifies the use of Parseval relation to compute MSP from frequency domain, in that way we 

can compute broadband MSP or MSP in selected frequency bands. Figure 7 shows that computing MSP from 

time domain or frequency domain results in the same quantity.  

 

Figure 7. Testing the Parseval’s relation. A) Simulated signal composed by the sum of several sinusoidal waveforms. B) Spectral 

representation for the simulated signal, selected Frequency Bands (FB), named FB1, FB2 and FB3 are represented. C) The MSP is computed 

from the simulated signal (Full FB), and from the time signals representing the pure sinusoids in the respective frequency bands (FB1, FB2 

and FB3). For example, to compute the MSP for the FB2: in time domain were used both the sinusoidal signals with 30 Hz and 50 Hz; 

from the frequency domain was summed the PSD values corresponding to spectral components comprised in FB2. 

A useful application of Parseval´s relation is that we can compute energy or power in selected frequency 

bands, without the need to do the calculations with the signal in the time domain. Sound Pressure Level (SPL) 

is a common metric used in acoustics analyses [14], SPL can be expressed as in Eq.  8. This metric can also be 

computed from frequency domain, once calculated PSD matrices. The calculation and usefulness of PSD 

matrices will be illustrated in following sections. 

𝑆𝑃𝐿 = 10𝑙𝑜𝑔
𝑀𝑆𝑃

𝑃ref
2  [𝑑𝐵 𝑟𝑒 1𝜇𝑃𝑎2] 

Eq.  8  

2.5. Pipeline for 24-h EDA  

The procedure used to calculate daily PSD matrices, named here as Pxx matrices, are explained below and 

exemplified in Figure 8. For each wav file, recorded for the day j (j varying from February 4th to March 4th) a 
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respective pxx† matrix was computed, by means of the Welch method [18], with 1-s Hamming window, 1025 

frequency points, 50 % of overlap, and with 60-s temporal signal segments. Then, all pxx matrices referents to 

day j were merge in to a daily Pxx matrix and, finally, by visualizing Pxx matrices the 24-h spectrograms were 

obtained. Based on the system record settings, the numbers of recorded wav files by days, was N = 96. Aiming 

to analyses the whole collected dataset, 24-h spectrograms were constructed for each monitored day. These 24-

h spectrograms were obtained by visualization of daily Pxx matrices. 

 

Figure 8. Flowchart for presented pipeline. 

3. Some applications for 1-month underwater sound data  

Here we describe as a case study 1 month of continuous underwater sound recorded at Xixová-Japuí State 

Park (XJSP), located on the SW of Santos Estuarine System (São Paulo State, Brazil), see Figure 9. This area 

has a rich daily soundscape, but it is also affected by urbanization, industrial and port activities [19]. Fish 

choruses with daily periodicities were the most important contributor for the XJSP soundscape [19], [20]. The 

location for the monitored place is represented in Figure 9. Underwater acoustic data was recorded by means of 

an autonomous passive monitoring system [21]. The acoustic signals were acquired at 11.025 kHz sample rate, 

with 16-bit resolution; individual sound files of 15 min duration were continuously stored in a SD card.  

 

 
† pxx matrix refer to PSD matrix computed for individual sound files, while Pxx matrix refers to daily period, thus Pxx for specific day 

is obtained by merging all pxx matrices for that day. 
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Figure 9. Monitored point located at Xixova marine park. 

3.1. 24-h Spectrogram and 24-h SPL 

24-h spectrograms are valuable for visualizing daily soundscape variations for a given monitored area. 

Averaging 24-h spectrogram also can be used for summarizing soundscapes [19][22] for representative periods, 

as for example 1 month. Dily 24-h spectrograms for complete four weeks are illustrated in Figure 10. It is worth 

nothing that acoustic events seem to occur every day with a precise time-spectral patters. For summarizing 

sound data recorded for 1 month was computed the mean 24-h Spectrogram, illustrated in Figure 11. From 24-

h mean spectrogram, four main acoustic events can be noticed, these acoustic events are originated by fish 

choruses and are denoted as Ch1, Ch2, Ch3 and Ch4. 

SPL computed within the Low-Frequency Band (Low-FB) and High-Frequency Band (Hig-FB) were also 

used for studying sound levels variations. For the analysis was selected a Low-FB that comprises frequencies 

form 150 Hz to 1.2 kHz and Hig-FB that includes frequencies from 1.5 kHz to 2.0 kHz. Figure 12 shows four-

week Low-FB SPL time series and Figure 13 represent four-week Hig-FB SPL time series.  
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Figure 10. Four weeks spectrograms. The weekly spectrograms allow to identify acoustic events that suggest a daily pattern.  

 

Figure 11. Mean average for 24-h spectrograms between February 04 to March 04. 
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Figure 12. For week Low-FB SPL, each panel represents one week, respectively.  

 

Figure 13. For week Hig-FB SPL, each panel represents one week, respectively. 

3.2. Finding soundscape periodicities  

The auto-covariance and the spectral estimation of the SPL time series were used for quantifying perceptible 

periodicities in the analyzed data. Figure 14 shows the auto-covariance and the spectrum Low-FB SPL and Hig-

FB SPL, respectively. For the purposes of this work were defined strong periodicities and weak periodicities as 
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principal peak and secondary peaks detected on PSD curve. The strong periodicities are annotated in red and 

weak ones are annotated with green markers, both in time domain (auto-covariance) and in frequency domain 

(spectral content illustrated trough the PSD). For estimating periodicity values trough time domain analysis, 

was determined the mean inter-interval between peaks (in minutes). By computing the ratio between the number 

of minutes for one day (1440 = 24h*60min) and the mean inter-interval was finally estimated the periodicities 

implicit in SPL time series. On the other hand, in frequency domain finding periodicities can be done in a simple 

way, by detecting the prominent spectral peaks.  

 

Figure 14. Auto-covariance and the spectrum of Low-FB SPL and High-FB SPL. Peaks in red markers indicates strong periodicities and 

green markers point out week periodicities. A cut-off line indicates the minimum value for strong periodicity peak in auto-covariance.  

For the case of Low-FB SPL both the strong periodicities and weak periodicities computed from time domain 

(auto-covariance) or from frequency domain (by means of PSD) results in almost the same value, 1 cycle/day 

and 3 cycles/day, respectively. Thus, for Low-FB SPL the computed strong periodicity is related to a daily 

cycle, which agrees with the repetitive 24-h patterns that can be visually detected in Figure 10. For the case of 

weak periodicity detected as 3 cycles/day, we can see from mean 24-h spectrogram (Figure 11) that in Low-FB 

(150 Hz – 2.0 kHz) there are 3 different major acoustic events, which can explain the occurrence of that weak 

periodicity.  

For the case of Hig-FB SPL the strong periodicity computed from time domain or spectral estimation is the 

same, but this is not the case for computed weak periodicity.  The weak periodicity computed from time domain 

was approximately 4.1 cycles/day, which does not agree with the value computed from frequency domain (see 

Figure 14, bottom panels). The weak periodicity quantified for Hig-FB SPL could be related to weak events in 

this frequency band or also by the incidence of remaining spectral components for the 3 major events quantified 

in Low-FB.  
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3.3. SPL-gram 

The SPL-gram representation allows to visualize the SPL variations for long-term acoustic monitoring [23]. 

By using the SPL-gram for selected frequency bands a "picture" of the temporal structure of the soundscape 

can be obtained. To obtain the SPL-gram, daily SPL for specific frequency band is smoothed, thus removing 

transient oscillations as for example ship noise, while preserving lasting events, such as fish choruses. Once 

daily smoothed SPL are obtained, the time series are converted to color bars. Finally, by merging color bars in 

chronological order the SPL-gram representation is obtained. Figure 15 shows the procedure for obtaining SPL 

color bars for the case of Low-FB SPL and Hig-FB SPL for a specific day.  

 

Figure 15. SPL-gram construction. Each 24-h SPL is converted to colorbar, then colorbars for each consecutive day are chronologically 

stacked. Left panel shows the spectrogram for February 25. Right panels represent Low-FB SPL (top panel) and High-FB SPL (botton 

panel). 

Figure 16 shows the SPL-gram for Low-FB SPL and Hig-FB SPL. By plotting on the graph events 

occurrence such as sunrise and sunset we can obtain a temporal relation between soundscape variation and these 

events. For example, for the case of Low-FB SPL-gram, the occurrence of sound level increase around the time 

interval from 19 h – 21 h (UTC time) ends before sunset. This fact is related to the occurrence of Ch4 (see 

annotation in Figure 11), which seems to decrease its activity shortly before sunset. Another soundscape trend 

that can be observed for Low-FB SPL is that the period between 06 h – 18 h appears without substantial lasting 

acoustic events. 

Also, mean values for daily SPL could be used for summarizing daily trends in the studied place. Figure 17 

represents the mean of SPL time series, both in conventional plot (top panels) as in polar form (bottom panels). 

For Low-FB SPL can be observed two significant deviations from the baseline levels. Between 02 h - 05 h the 

first increase in Low-FB is noted, which in turn can be divided into two different events, one achieving the 

acoustic peak between 02 h – 03 h, and the other attaining the maximum level between 04 h - 05 h. The later 

deviation in Low-FB SPL it is reached between 20 h – 21 h. For the case of Hig-FB SPL one major deviation 

from baseline levels appears between 05 h – 06 h. These acoustic peaks agree with the visual information 

illustrated in mean 24-h spectrogram and the events annotated as Ch1, Ch2, Ch3 and Ch4 (Figure 11). 
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Figure 16. SPL-gram for continuous underwater sound recordings collected in Xixova State park, black dashed lines represent sunrise and 

sunset.  

 

Figure 17. Polar plot representation for normalized mean Low-FB SPL and Hig-FB SPL. Top panels represent the normalized mean SPL, 

both for Low-FB and Hig-FB in the conventional amplitude vs time plot. Bottom panels illustrate the same information as top panels, but 

in polar plot. 
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4. Conclusion 

Results showed that basic concepts of the field of digital signal processing are valuable tools for Ecoacoustic 

researchers. To name a few, understanding basic concepts such as filtering, spectral analysis, and visualizations 

such as spectrogram can be particularly useful for explorative data analysis in Ecoacoustics. Thus, the 

comprehension of those concepts and the knowledge about how to use it in real applications could contribute 

to the field.  

The concepts presented in the present manuscript are explained in more detail in technical books and papers 

[6][7]. However, the main objective of this work was to present the concepts in a comprehensible way, be means 

of visualizations and straightforward explanations focused for the specific area of Ecoacoustics. The concepts 

presented were used for application on real sound data, composed by 1-month underwater recordings. Here was 

demonstrated the utility of tools such as 24-h spectrograms and mean 24-h spectrogram por visualizing daily 

variations and for summarizing soundscape patterns. Also, the use of metrics such as SPL results useful for 

quantifying periodicities that could be visually perceived on spectrogram representations. The SPL-gram 

evidenced to be useful as soundscape visualization tool, allowing a graphical representation for acoustic patterns 

summarization. Finally, normalized SPL an its representation in polar form showed to complement the 

comprehension and insights obtained from 24-h mean spectrogram and SPL-gram. 
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