Available at

www.ElsevierMathematics.com European Journal
K- L. POWERED BY SCIENCE @DIHECT@ of Combinatorics
ELSEVIER European Journal of Combinatorics 25 (2004) 23-34

www.elsever.com/locate/ejc

Enumerating branched coverings over surfaces
with boundaries

Jin Ho Kwald Alexander Mednykh

aCombinatorial and Computational Mathematics @mPohang University of Science and Technology,
Pohang 790-784, South Korea
binstitute of Mathematics, Novosibirsk State University, 630090 Novosibirsk, Russia

Received 20 March 2003; received in revised form 15 September 2003; accepted 19 September 2003

Abstract

The number of nonisomorphin-fold branched coverings over a given surface with a boundary
is determined by the number of nonisomorphid¢old graph coverings over a suitable bouquet of
circles. A similar enumeration can be done for regular branched coverings. Some explicit formulae
for enumerations are also obtained.
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1. Introduction

Throughout this paper, a (closed) surface means a compact connected 2-manifold
without a boundary and a compact surface with a boundary will be called a bordered
suface. Let us review briefly some known concepts from algebraic topologyl@&lj. [

A continuous mapping : 7 — S from a surfacé onto anothe§ is called éranched
coveringof multiplicity n if there exists a finite subs@ of points inS such tlat the
restriction ofp on7 — p™1(B). pl7_,-18) : T — p~1(B) — S — B, is ann-fold (n-
sheeted) covering projection in the usual sense. The smallest sBbsE which has
this property is called thbranch setf p. A brarched covering : 7 — S is regular if
there exists dfinite) group.4 which acts orZ” with at most finitely many fixed points so
that the surface is homeomorphic to the quotient spacé¢.A, say byd, and thequotient
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map7 — 7 /A is the compositio o p of p and6. We call it simply abranched.A-
covering In this case, the groupl becomes the covering transformation group of the
branched covering : 7 — S. Two brarthed coveringg : 7 — Sandp’ : 7/ — S
areisonorphic (or equivaleny if there exsts a homemorphismp : 7/ — 7 suchthat
p'=pon.

Letp : 7 — S be aegular or irregular branched covering of multiplicitywith branch
setB = {by, ..., br}. At the neighborhood of each pointe p~1(B), theprojectionp is
topologically equivalent to the complex map—> z™ with some nattal numbem. Such
anx is called aramification pointof p, andm is called theorder of x. Denote bysﬁ% the
number of ramification points of order of the mapping in the preimage ~(bk), where
k=1,...,randm=1...,n The(r x n)-matrixoc = (s};) is called theramification
typeof the coeringp.

Let S ando be as above and lgt be the genus of the surface Then, the dassical
Hurwitz enumeration problem cdoe stated in thedllowing way.

Hurwitz enumeration problem. Determine the number of nonisomorphic coverings of
multiplicity n of a surfaceS of genusg with a given ramification type .

In such a generality, applied both to oriahle and nonorientable surfaces, the Hurwitz
problem is still open. Hurwitz 4, 5] constructed a generating function for the number
of nonequivalent coverings over the sphere having only simple branch points except one
specified point and proved that the number of such coverings can be expressed in terms
of irreducible characters of the symmetric groumhR[23] obtained upper and lower
estimates for the number of nonequivalent coverings with a given ramification type. Some
partial solutions of the problem were obtained9a18] and [22]. In particular, the number
of coverings with a given branch set without restriction on the ramification type were
obtained in 11]. The orientable case of the Hurwitnemeration problem was, in principle,
solved completely19]. The solution is gien in terms of irreducible characters of the
symmetric group which makes it very coligated. It was known for just a few cases
[9, 12, 20, 21] when it is possible to avoid characters of symmetric groups for calculating
the number of coverings. A similar work for the nonorientable case with unramified
coverings was done irRp]. For other useful information concerning branched coverings
over closed surfaces we refer also to the survie3] pnd the @per fL3)].

In this paper, we enumerate the set of nonisomorphic branched coverings (regular or
not) over any given bordered surface with a branchBeThe corresponding problem
on a closed surface (orientable or nbas been recently solved by Kwak et dl1]. In
our consideration we suppose the branchBét be prescribed and no restrictions on the
ramification type of the covering are given.

2. A classification of branched coverings over bordered surfaces

By the classification theorem of closed surfaces, a closed swfedeomeomorphic to
one of the following:

S, — the orientable (closed) surface wkhandles itk > 0,
kK= ] the nonorientable (closed) surface with k crosscaps ik < 0.
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For example, the orientable surfacBs andS; are the sphere and the torus, respectively,
and the nonorientable surfacgs; andS_; are the projective plane and the Klein bottle,
respectively. The number of handles for an orientable surface or the number of crosscaps
for a nonorientable surface is called h@usof the surface.

Let D = D; denote the family of nonhomeomorphic bordered (orientable or
nonorientable) surfaces of Euler characterigtie= 1 — r,r > 0. The simplest on®g
consists ofSg with 1 hole, i.e., &-disc. The familyD; consists 05y with 2 holes an&®_1
with 1 hole; andD, consists ofSg with 3 holes,S_1 with 2 holes andS_, with 1 hole.
Also, note thatS is abordered surface of Euler characteristie= 1 — r if and only if the
fundamental group1(S) is the free groug?, of rankr.

For anotational conveniencd), also stands for a surface in that family, that is, an
orientable surfacBy with h = 1+r — 2k holes as boundary components or a nonorientable
surfaceS with h = 1+4r +k holes as boundary components. A regular branched covering
with the covering transformation groug is simply called a branched-coveringin this
paper.

The following lemma is trivial.

Lemma 1. Lettwo coverings over a closed surfa@iebegiven, from which, by cutting off

h digoint disks fromSk and their fibres, one constructs two coverings over a bordered
surface Dy = Sk — {h holeg. Then, two coverings ovethe closed surfac&y are
isormorphic if and only if two coverings over the bordered surfdgeare isomorphic.

A closed sirface Sk (without boundary) can be represented by legbn with
identification dataﬂg:l ashsagtbg? on its boundary ik > 0; bi-gon withidentification
dataaa~! on its boundary ik = 0; and—2k-gon with identification dataﬂsi‘l asas on
its boundary ifk < 0. A similar kind of polygonal representation is also possible for a
bordered surfac®; by cutting off h disjoint disks from the polygonal representation of a
surfaceSk.

Let Dy = Sk — {h holeg be a bordered surface, and Bbe a finite set of points in the
interior Int(D; ). Note that the fundamental growp(D; — B, *) of the punctured surface
Dy — B with the base point € Dy — B can be presented as follows:

k |B] h
<a1,...,ak, bl,...,bk,Cl,...,C|B|,d1,...,dh; Hasbsaglbgll_[ct Hdg = 1>
s=1 t=1 (=1

if k> 0;

K Bl h
<a1,...,a_k,cl,...,c|B|,d1,...,dh; l_[asasl_[ct l_[dg = 1> if kK < 0;
s=1 t=1 (=1

IB| h
<Cl,...,C|B|,d1,...,dh;l_[Ctl_[dg=1> ifk:O,
t=1 (=1
whereh = 1+r —2kif k > 0,andh = 1+r +kif k <0.Foreach =1, 2, ..., |B|+h, we
take a simple closed curve based-dying in the face of the surfacB;, = Sk — {h holeg
so that it represents the horopy class of the generatocs andd,. For conenience, let
ok = 2k if k > 0, anddy = —k if k < 0, so thatoxk +h = 1+ r. Then, it induces a
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2-cell embedding of a bouquet 6f + |B| + h circles, say®B;,+|g/+h, into the surface
Dy — B. This embeding will be simply denoted b8, +8j+h — Dr — B. Note hat the
fundamental group1(Dy — B) of the bordered surfac®, — B is the free groug; g, of

rankr + |B|.

Let G be a finite connected graph with vertex 3&{G) and edge seE(G). We
allow loops and multiple edges. Notice thHatcan be identified with a one-dimensional
CW complex in theEuclidean 3-spac®&?® sothat every graph map is continuous. Every
covering over a grapB can be constructed as follows (s& [ Every edge ofs gives rise
to a pair of oppositely directed edges. By = vu, we mean the reverse edge to a directed
edgee = uv. We deote the set of directed edges®@ty D(G). Each directed edgehas
an initial vertex ¢ and a terminal vertetg. Fdlowing [1], apermutation voltage assignment
¢ onagraplG is amapp : D(G) — S, with the property thap (e~1) = ¢ (e)~1 for each
e € D(G), where§, is the symmetric group on elementdl, ..., n}. The permutation
derived graph @ is defined as followsV (G?) = V(G) x {1, ..., n}, and for each edge
e e D(G)andj € {1,...,n} let therebe an edgée, j) in D(G?) with iej = (e ])
andte j) = (te, #(€)j). Thenatural prgection p : G? — G is a covering. Let4d be a
finite group. Anordinary voltage assignmefur, A-voltage assignmejof G is a function
¢ : D(G) — A with the property that»(e~1) = ¢(e)~! for eache € D(G). The values
of ¢ are calledvoltages and A is called thevoltage group The ordinary derived graph
G x4 A derived from an ordinary voltage assignmegntD(G) — A has asts vertex set
V(G) x Aand as its edge s&(G) x A, so thaan elge(e, g) of G x4 A joins a vertex
(u,9)to (v, ¢(e)g) fore = uv € D(G) andg € A. Inthe (adinary) derived grapfs x 4.4,

a vertex(u, g) is denoted byug, and anedge(e, g) by ey. The first ®ordinate projection
p: G xy A— G, called the natural projection, commutes with the left multiplication
action of theg (e) and the right action ofd on the fibers, which is fleand tranisive, so
that p is a rggular|.A|-fold covering, clled simply anA-covering Gross and Tuckerl]
showed tlat every covering (resp. regular covering) over a grégptan be derived from a
permutation (resp. ordinary) voltage assignmgnt

Let CY(By+igj+h < Dr — B;n) (resp.C1(By 1 ig1th — Dr — B;.A)) denote
the sibset of(S,)*TIBI+N (resp. of(4)%**IBI+N) consiging of all (8 + |B| + h)-tuples
(01, ..., oy+|B]+h) Which satisfy the following three conditions:

(C1) The subgrougosy, ..., os+(Bl+h) generated byoz, ..., oy |Bj+h} IS transitive on
{1,2,...,n} (resp. is the full groupd), and

(C2) (i) ifk = O, then[ Ty oioksio; "oy TTich oaeri [T =1 oacrimiri = 1,

(i) if k <0, then[ T, o161 [T124 0aeti [1)—1 oatiBi+] = 1,
(C3) 0i # 1foreach = ok +1,..., 0+ |B]|.

Here, a(ox+|B|+h)-tuple(oy, . . ., oa+|B|+h) Of permutations ir§, (resp. of elements
in A) can be identified with a permutation (resp. ordinary) voltage assignment of the
bouquet of circlesB,, 1 |gj+h. Also, sucha vdtage asginmenty derives a graph covering
over theB;,1|Bj+h, and ths coveringprojection with the embeddin® s, +8/+h < Sk
extends to a branched surface covering over the suifacsay p, : S¢ — S (see [I] or
[9]). In this case, the condition (C1) guarantees that the covering sufaieconnected,
and the conditions (C2) and (C3) guarantee that th&detthe same as the branch set of
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the braached coveringj, : S¥ — S. By using a snilar method as in9] with Lemma 1
one can obtain the following variant of the Hurwitz existence and classification of branched
coverings theorem for bordered surfaces. Recalldhat |B| +h =r + |B| + 1.

Theorem 1. Every permutation voltage assignment ir“r((BrHB‘H — Dy — B;n)
induces a connecteldranched n-fold covering ove®, with branch set B. Conversely,
every connected branched n-fold covering o&r with branch set B can be derived
from a voltageassignment in (13(‘Br+|B|+1 — Dy — B; n). Moreover, for any given two
permutation voltage assignmenis= (o1, ..., or+Bj+1) andyr = (t1, ..., Tr4B|+1) iN
Cl(SBrHB‘H — Dy — B; n), two branched n-fold surface coveringg : Dr¥ — Dy and
Py : DV — Dy over the bordered surfacB; are isomorphic if and only if there exists a
permutationoe € S, suchthat

T =poipt
fori=1,....,r+|B|+1 O
Similarly, one can have an analogous theorem for regular branched coverings.

Theorem 2. Every ordinary voltage assignmentirt @y g|+1 = Dr —B; A) induces a
connected branched-covering over a bordered surfa@ with branch set B. Conversely,
every connected branched-covering over the bordered surfag®g with branch set B can
be derived from a voltage assignment it(®, 4 gj+1 — Dr — B;.A). Moreover, for
any given two voltage assignmegits= (o1, ..., or4Bj+1) andyr = (11, ..., Tr4|B+1)
in CY(Br 1 gl+1 — Dr — B;.A), two branched.A-coveringsp, : D¢ — D; and
Py : DV — Dy are isomorphic if and only if there exists a group automorphisiof
A suchthat

7 = a(oi)

fori=1,...,r+|B|+1 O

3. Computational formulae; aregular case

In this section, we aim to enumerate nonisomorplagular branched coverings
over a bodered surfaceD,. But, it is suffident to do it for connected branched
A-coverings over the bordered surfaf® with a given branch seB, where A is a
finite group, because of the regularity of the coverings. To do this, we define &a)Aut
action onCl(%rHBHl — D; — B; A) as follows: For anye € Aut(A) and any
(01, ...,0r4B|+1) € Cl(%r+|3|+1 — Dy — B; A), define

a-(01,...,0r4Bl+1) = (2(01), . .., @(0r +|B|+1))-

Then it follows fromTheorem 2that two voltage assignments Ghl(%rHBH-l — Dy —
B; A) derive isomorphic branched-coverngs overD; if and only if they belong to the
same orbit under the Autd)-action. Notice that this Aitd)-adion on Cl(%r+|s|+1 S
Dy — B; A) is free because of the condition (C1). It gives the following lemma.
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Lemma 2. Thenumberlsoc(Dy, B; A) of nonisomorphic connected branchddcover-
ings over bordered surfad®; with branch set B is equal to

ICY(Br 41141 = Dr — B; A)|
IAUt(A)|

Let Isoc(B;; .A) denote the number of nonisomorphic connected regular graph
coverings over the bouqués, of r circles havingA as the covering transformation
group. Sincer1(By) = m1(Dy) = F; thefree group of rank, we havel soc(B;; A) =
Isoc(Dy, ¥; A) and soLemma 2can be used to estimate the numbssc(B;; A) as
well. Moreover, in the cas8 = ¢ there is a one-to-one correspondence between
Cl(*BrHBHl — Dy — B; A) and a set$(A,r) formed byr-tuples (o1, ..., or) of
elements in the groupl, gererating the full groupA. Indeed, sinceD; is a bordered
surface the number of its holds > 1. This means that the elemefit,; = og+h In
(C2) can be uniquely expressed through elements. ., oy and (C1) is equivalent to the
condition that the groupl is generated by, .. ., or. Note that (C3) is redundant in the
caseB = 0.

In turn, the setB(A, r) can be identified with the set K, ; A) of epimorphisms of
thefree group?; onto the groupd. Herce, theLemma 2gives the following.

Corollary 1. The number of nonisomorphic connectddcoverings over the bouques,
is equal to

|Epi(Fr; Al
|Aut(A)|

In this section, we introduce a general formula to enumedateverings over a surface
D, for any finite groupA in terms of the Mbius function defined on the subgroup lattice
of A by Hall [2]. Jones §, 7] used the Mbius function to find a method for counting
normal subgroups of a surface group or a crystallographic group, and applied it to count
regular coverings over a surface. Denote by H#m A) the set ohomomorphisms of the
free group#; into the group4. The s¢ Hom(F;; A) can be naturally identified with the
setA" of r-tuples of elements of the group Herce|Hom(F;, A)| = | A|". Also,we have

Isoc(By; A) =

IHom(F, A)| = ) [Epi(Fr, K)I,
K<A
where the sum is taken over all subgroupsof the group.A. Now, one can inve the
obtained equation to count epimorphisms in terms of homomorphisms, by introducing the
Mobius functionfor A. This asigns an itegeru(K) to each subgroug of A by the
recursive formula

Y wH)=dka=

H>K

1 ifK = A,
0 ifK < A

The equation

Epi(Fr, A)l = D u(K)|Hom(F, K)|
K<A
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is then easily deducetlemma 2gives
|Epi(Fr, A 1

150 A = TR~ AWA)]

> w(K)Hom(Fr, K|
K<A

1
=—— K)IK]".
|Aut(A)|K§A“( K]

As a result, we obtain

Corollary 2. The number of nonisomorphic connected unbrancledoverings over the
bordered surfacé®;, coincides with the number of nonisomorphic connectecbverings
over the bouque®B,, and is given by

. _ _ 1 '
Is0c(Dy: 4, A) = 150c(By, A) = AU EM(H)|H| :

When the group A is Abelian or anydihedral groupD;, of order 2, the number
Isoc(B; A) was eplicitly computed in B] by Burnside’s lemma without using the
Mobius functionu.

The proof of the following theorem is based on the principle of inclusion and exclusion,
and is similar to the proof of Theorem 2 ih]] with Lemma 2

Theorem 3. Let B be a b-gsbset of the interior of a bordered surfa¢®. Then, for any
finite group.4, the number of nonisomorphic connected branchedoverings overD,
with branch set B is

b
Is0c(Dy ., B; A) = Y (1) <lt’>lsoc(%r+bt; A).
t=0

The corresponding enumeration of nonisomorphic connected branched (regular)
coverings over a closed surface was formulated in terms of the nonisomorphic unbranched
(regular) ones and some nonisomorphic (regular) graph coverings over a suitable bouquet
of circles in Theorem 2 in11]. However, in our bordered case, the former terms
have disappeared as shownTiheorem 3and its difference conssfrom a fact that the
fundamental group of a bordered surface is free.

Coroallary 3. For any finite groupA, the number of nonisomorphic connected branched
A-coverings over a bordered surfad® with branch set B|B| = b > 0, is given by
formula

Isoc(Dy, B; A) = Y w(HY(H| = DPHY,

H=<A

where u(H) is the Mobius function for the group4, and the sum is taken over all
subgroups H of the groupt.

_ 1
Aut(A)|

Proof. By Corollay 2 andTheorem 3we get

b
. _ it b) 1 r+b—t
Isoc(Dr, B; A) = ) (=1 (t T Y w(H)IH

t=0 H<A
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b
1 b
e H _1t H b—t HI’
AU HESAM( )(E (=1 <t)| | )I |

t=0
1 b
= H)(HI-DPHI". O
AU > wH)Y(H[ = DPH|
H<A

As an immediate ensequence dCorollary 3, we obtain the number of nonisomorphic
connected branchedl-coverings for the cyclic groupd = Z, and the dihedral
group A = D, of order 22. We note that the cyclic groupd = Z, has a
unique subgroupH{ = Zn for each m dividing n, and has no other subgroups.
We have u(H) = wu(n/m) (u is the Mobius function) and|Aut(A)| = ¢(n)

(¢ is Euler’s totient function).

Corollary 4. The number of nonisomorphic connect&g-coverings over the bordered
surfaceD; with branch set B|B| = b > 0, is given by

1 n br
1S0C(D; . B: Zp) = 2 (m)(m—l) m'.

From here on, we suppose thé’tﬂ lifb=0.
Corollary 5. LetDp be a dihedral group of orde2n, n # 2. Then,

- = _ n\bor _ nbymr—1
Isoc(Dy , B: Dp) ¢(n)2“< )(2m 192" — (m— 1)°m L.

In the case n= 2 wehave
Isoc(Dy, B;Dp) = £(3°- 4" —3.2" +2.0").

Proof. For givenm | n the goup D, has exactly one subgroufy, of orderm with

w(Zm) = —(n/my(n/my andn/m subgroupsDy, with w(Dm) = w(n/m). Moreover,

|Aut(Dp)| = ne(n) if n £ 2. See §] for detals. Forn = 2 thegroupDy = Zy x Z>

and hencdAut(D2)| = 6. The groupgD, contains as a subgrodpy itself, three proper
subgroups isomorphic td,, and the trivial subgrouf.1. From the ddfinition of Mobius
function we getu(D2) = 1, u(Z2) = —1, andu(Z1) = 2. Hence, byTheorem 2 for

n=2

1
Isoc(Dy, B; D 72 H)(IH| — DP[H[
soc(Dr n) = |Aut(1D>n)|H p(H)(AHI =D H|

- n¢(n) ( % (rr:]) (m = 1)°m’

o u( )(2m o))

_i E _ 1\bor by r—1
_¢(n)m|nu(m)[(2m 12" — (m— 1)P|m
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The casen = 2 is mnsidered ira similar way. We obtain
1
Isoc(Dy, B; D) = ————— (H)Y(IH| = DPIH
T AuDy)| H;:)z“

= %(M(Dz) 2304 4 3u(Zy) 1P 20 4 p(Z) - 0P 1)
=i@.4-3.2+2.0". O

4. Computational formulae; a general case

Letlsoc(Bm; n) denote the number of nonisomorphic connectddld graph coverings
over the bouque®B, of mcircles. The following theorem is a parallel versioréieorem 3
for general (regular or not) coverings.

Theorem 4. Let B be a b-gbset of the surfac®;. Then the number of nonisomorphic
connected n-fold branched coverings over the bordered suffaagith branch set B is

b
Isoc(Dy, B; n) = Z(—l)t (?)|soc(%,+bt; n).
t=0

As an application offheorem 4we have the fllowing result.

Theorem 5. Let B be a b-gsbset of the bordered surfacB;. Then he number of
nonisomorphic connected n-fold branched coverings over the suffaeeéth branch set
B is
16D B = = 33 i () AT,
n Ml md

where T,(d) is apolynomial of d defined by

m (_1)k+l
Tm(d)=m)_ D (! d™ gt d™ - 1P
k=1 ng-+-+ng=m
Ny..ung=1

Proof. By Liskovets’ theorem14] we have
1 n
Isoc(Bg; N) = — m — ) dB-Dm+1
g1 nle;Sﬁ( )(;“(md)

where S(m) is the number of subgroups of indem in a free groupFg of rank g,
deternined by Hall 3]. Hence, byTheorem 5

P b
Isoc(Dr, B; n) = ;(—1)t(t)|500(%r+bt; n) = % DD on (%) dTm(d),

m|nd\%

whereTm(d) = Y2 o(—D!(®) S 4ot (m) @™y +o-t-1,
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To find T (d), recall [3] that Ss(m) satisfies the following formal power series identity

Z @wm = log (Z(n!)ﬁ‘—lw“) )

m>1 n>0
Rephkcingw by d?~1w, whereg =r + b — t we get
SM mp-1). m_ M B—1. n
Z—m d w™ =log [ Y “(ntdMF~tu" | .
m>1 n>0

Applying the linear operatar(f) = Z?zo(—l)t (E’) f (t) to both sides of the above
equality we have

Z Tmn:d) U)m — Lt (|Og (Z(n' dn)r+bt1wn)) )

m>1 n>0

Take cefficients ofw™

Tm(d M (—pk+l
md) _ L Z( ) Z (gt d™ .. . p! gy Hb—t=1
m k=1 nq+--+ng=m
ng,..ng=>1

Taking into account thak(x"tP~t-1) = ¥ tbzo(—l)t(lt’)xb*txr*l =x""1(x - 1P we
obtain
m (_1)k+l 1 " b
m\r—
Tm(d) = mkg_l " E ng! - n!d™ T ! el dM =D O

nq+--+ng=m
ng,..ng=1

Note thatTy(d) is a polynomial ond of degreem(r — 1 + b). By exdicit calculations
we get

Ti(d) = d"(d - 1",

To(d) = 2(2d%)"(2d? — 1) — (d?)"(d* - 1)°,

Ta(d) = 3(6d3)" (6d° — 1)° — 3(2d%)" (2d® — 1)° + (d3)*(d® — 1)°,

Ta(d) = 4. (24d*)”(24d* — 1)® — (6d*)"(6d* — 1)° — 2. (4d*)”(4d* — 1)°
+4.2d%Y@2d* — )P — (dH'@d* - )P,

Ts(d) =5-1205—-5-245—-5-125+5-65+5-4,5 —5-2,5 + 1,5,

Te(d) =6-720,6 — 6-120,6 —6- 48,6 — 3- 36,6 + 6 - 24,6 + 12- 12,6
+2-86—-6-66—9-46+6-26—1.6.

For sinplicity we setv = r — 1 andN,x = (Nd¥)"(Nd¥ — 1)°. By applying Theorem 5
we have
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Corollary 6. Let B,|B] = b > 0 be a branch set of the bordered surfat® and
v=r — 1= —x(Dy), wherey (Dy)is the Euler characteristic db,;. Then

Isoc(Dy, B:; 2) = 2-2" — 0P,

Isoc(Dy, B;3) = 6" - 5° + 3" .20 — 2,

Isoc(Dy, B; 4) = 24" . 23 + 8. 7P — 6" . 57,

Isoc(Dy, B; 5) = 120" - 11P — 24" . 23° — 12" . 11P + 6" . 5P + 5V . 4P
TN 1)

Isoc(Dy, B; 6) = 720 - 719 — 120" - 11 — 1 . 36" - 35 + 24" . 2 + 18 . 17
~16" 18 +2-12".11° - 1.9v. 8" 2. g7 . 7P
R R L LR RV R I L B A L

Remark. The above formulae are nontrivial even for a didk= Dg without holes. In this
case we have = —1 and

Isoc(D, B; 2) = 1 — 0P,

Isoc(D,B;S):%.5b+%.2b_%7

Isoc(D, By 4) = &4 -2 + .70~ 1.5°

lsoc(D, B; 5) = 35 119 — L .2 — L1104 Losbp Logh 130 1
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