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Abstract

The number of nonisomorphicn-fold branched coverings over a given surface with a boundary
is determined by the number of nonisomorphicn-fold graph coverings over a suitable bouquet of
circles. A similar enumeration can be done for regular branched coverings. Some explicit formulae
for enumerations are also obtained.
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1. Introduction

Throughout this paper, a (closed) surface means a compact connected 2-manifold
without a boundary and a compact surface with a boundary will be called a bordered
surface. Let us review briefly some known concepts from algebraic topology (cf. [15]).

A continuous mappingρ : T → S from a surfaceT onto anotherS is called abranched
coveringof multiplicity n if there exists a finite subsetB of points inS such that the
restriction ofρ on T − ρ−1(B), ρ|T −ρ−1(B) : T − ρ−1(B) → S − B, is ann-fold (n-
sheeted) covering projection in the usual sense. The smallest subsetB of T which has
this property is called thebranch setof ρ. A branched coveringρ : T → S is regular if
there exists a(finite) groupA which acts onT with at most finitely many fixed points so
that the surfaceS is homeomorphic to the quotient spaceT /A, say byθ , and thequotient
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mapT → T /A is the compositionθ ◦ ρ of ρ andθ . We call it simply abranchedA-
covering. In this case, the groupA becomes the covering transformation group of the
branched coveringρ : T → S. Two branched coveringsρ : T → S andρ′ : T ′ → S
are isomorphic (or equivalent) if there exists a homeomorphismη : T ′ → T suchthat
ρ′ = ρ ◦ η.

Letρ : T → S be a regular or irregular branched covering of multiplicityn with branch
setB = {b1, . . . ,br }. At the neighborhood of each pointx ∈ ρ−1(B), theprojectionρ is
topologically equivalent to the complex mapz �→ zm with some natural numberm. Such
an x is called aramification pointof ρ, andm is called theorder of x. Denote bysk

m the
number of ramification points of orderm of the mappingρ in the preimageρ−1(bk), where
k = 1, . . . , r andm = 1, . . . ,n. The(r × n)-matrix σ = (sk

m) is called theramification
typeof the coveringρ.

Let S andσ be as above and letg be the genus of the surfaceS. Then, the classical
Hurwitz enumeration problem canbe stated in the following way.

Hurwitz enumeration problem. Determine the number of nonisomorphic coverings of
multiplicity n of a surfaceS of genusg with a given ramification typeσ .

In such a generality, applied both to orientable and nonorientable surfaces, the Hurwitz
problem is still open. Hurwitz [4, 5] constructed a generating function for the number
of nonequivalent coverings over the sphere having only simple branch points except one
specified point and proved that the number of such coverings can be expressed in terms
of irreducible characters of the symmetric group. R¨ohrl [23] obtained upper and lower
estimates for the number of nonequivalent coverings with a given ramification type. Some
partial solutions of the problem were obtained in [9–18] and [22]. In particular, the number
of coverings with a given branch set without restriction on the ramification type were
obtained in [11]. The orientable case of the Hurwitz enumeration problem was, in principle,
solved completely [19]. The solution is given in terms of irreducible characters of the
symmetric group which makes it very complicated. It was known for just a few cases
[9, 12, 20, 21] when it is possible to avoid characters of symmetric groups for calculating
the number of coverings. A similar work for the nonorientable case with unramified
coverings was done in [22]. For other useful information concerning branched coverings
over closed surfaces we refer also to the survey [12] and the paper [13].

In this paper, we enumerate the set of nonisomorphic branched coverings (regular or
not) over any given bordered surface with a branch setB. The corresponding problem
on a closed surface (orientable or not) has been recently solved by Kwak et al. [11]. In
our consideration we suppose the branch setB to be prescribed and no restrictions on the
ramification type of the covering are given.

2. A classification of branched coverings over bordered surfaces

By the classification theorem of closed surfaces, a closed surfaceS is homeomorphic to
one of the following:

Sk =
{

the orientable (closed) surface withk handles ifk ≥ 0,
thenonorientable (closed) surface with− k crosscaps ifk < 0.
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For example, the orientable surfacesS0 andS1 are the sphere and the torus, respectively,
and the nonorientable surfacesS−1 andS−2 are the projective plane and the Klein bottle,
respectively. The number of handles for an orientable surface or the number of crosscaps
for a nonorientable surface is called thegenusof the surface.

Let D = Dr denote the family of nonhomeomorphic bordered (orientable or
nonorientable) surfaces of Euler characteristicχ = 1 − r, r ≥ 0. The simplest oneD0
consists ofS0 with 1 hole, i.e., a2-disc. The familyD1 consists ofS0 with 2 holes andS−1
with 1 hole; andD2 consists ofS0 with 3 holes,S−1 with 2 holes andS−2 with 1 hole.
Also, note thatS is abordered surface of Euler characteristicχ = 1 − r if andonly if the
fundamental groupπ1(S) is the free groupFr of rankr .

For a notational convenience,Dr also stands for a surface in that family, that is, an
orientable surfaceSk with h = 1+r −2k holes as boundary components or a nonorientable
surfaceSk with h = 1+r +k holes as boundary components. A regular branched covering
with the covering transformation groupA is simply called a branchedA-coveringin this
paper.

The following lemma is trivial.

Lemma 1. Let two coverings over a closed surfaceSk begiven, from which, by cutting off
h disjoint disks fromSk and their fibres, one constructs two coverings over a bordered
surfaceDr = Sk − {h holes}. Then, two coverings overthe closed surfaceSk are
isomorphic if and only if two coverings over the bordered surfaceDr are isomorphic.

A closed surface Sk (without boundary) can be represented by a 4k-gon with
identification data

∏k
s=1 asbsa−1

s b−1
s on its boundary ifk > 0; bi-gon withidentification

dataaa−1 on its boundary ifk = 0; and−2k-gon with identification data
∏−k

s=1 asas on
its boundary ifk < 0. A similar kind of polygonal representation is also possible for a
bordered surfaceDr by cutting off h disjoint disks from the polygonal representation of a
surfaceSk.

LetDr = Sk − {h holes} be a bordered surface, and letB be a finite set of points in the
interior Int(Dr ). Note that the fundamental groupπ1(Dr − B, ∗) of the punctured surface
Dr − B with the base point∗ ∈ Dr − B can be presented as follows:〈

a1, . . . ,ak,b1, . . . ,bk, c1, . . . , c|B|,d1, . . . ,dh;
k∏

s=1

asbsa
−1
s b−1

s

|B|∏
t=1

ct

h∏
�=1

d� = 1

〉

if k > 0;〈
a1, . . . ,a−k, c1, . . . , c|B|,d1, . . . ,dh;

−k∏
s=1

asas

|B|∏
t=1

ct

h∏
�=1

d� = 1

〉
if k < 0;

〈
c1, . . . , c|B|,d1, . . . ,dh;

|B|∏
t=1

ct

h∏
�=1

d� = 1

〉
if k = 0,

whereh = 1+r −2k if k ≥ 0, andh = 1+r +k if k ≤ 0. For eacht = 1,2, . . . , |B|+h, we
take a simple closed curve based at∗ lying in the face of the surfaceDr = Sk − {h holes}
so that it represents the homotopy class of the generatorsct andd�. For convenience, let
∂k = 2k if k ≥ 0, and∂k = −k if k < 0, so that∂k + h = 1 + r. Then, it induces a
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2-cell embedding of a bouquet of∂k + |B| + h circles, sayB∂k+|B|+h, into the surface
Dr − B. This embedding will be simply denoted byB∂k+|B|+h ↪→ Dr − B. Note that the
fundamental groupπ1(Dr − B) of the bordered surfaceDr − B is the free groupFr+|B| of
rankr + |B|.

Let G be a finite connected graph with vertex setV(G) and edge setE(G). We
allow loops and multiple edges. Notice thatG can be identified with a one-dimensional
CW complex in theEuclidean 3-spaceR3 so that every graph map is continuous. Every
covering over a graphG can be constructed as follows (see [1]). Every edge ofG gives rise
to a pair of oppositely directed edges. Bye−1 = vu, we mean the reverse edge to a directed
edgee = uv. We denote the set of directed edges ofG by D(G). Each directed edgee has
an initial vertexi e and a terminal vertexte. Following [1], apermutation voltage assignment
φ on a graphG is a mapφ : D(G) → Sn with the property thatφ(e−1) = φ(e)−1 for each
e ∈ D(G), whereSn is the symmetric group onn elements{1, . . . ,n}. Thepermutation
derived graph Gφ is defined as follows:V(Gφ) = V(G) × {1, . . . ,n}, and for each edge
e ∈ D(G) and j ∈ {1, . . . ,n} let therebe an edge(e, j ) in D(Gφ) with i (e, j ) = (i e, j )
and t(e, j ) = (te, φ(e) j ). Thenatural projection p : Gφ → G is a covering. LetA be a
finite group. Anordinary voltage assignment(or,A-voltage assignment) of G is a function
φ : D(G) → A with the property thatφ(e−1) = φ(e)−1 for eache ∈ D(G). The values
of φ are calledvoltages, andA is called thevoltage group. Theordinary derived graph
G ×φ A derived from an ordinary voltage assignmentφ : D(G) → A has asits vertex set
V(G)× A and as its edge setE(G)× A, so that an edge(e, g) of G ×φ A joins a vertex
(u, g) to (v, φ(e)g) for e = uv ∈ D(G) andg ∈ A. In the (ordinary) derived graphG×φA,
a vertex(u, g) is denoted byug, and anedge(e, g) by eg. The first coordinate projection
p : G ×φ A → G, called the natural projection, commutes with the left multiplication
action of theφ(e) and the right action ofA on the fibers, which is free and transitive, so
that p is a regular |A|-fold covering, called simply anA-covering. Gross and Tucker [1]
showed that every covering (resp. regular covering) over a graphG can be derived from a
permutation (resp. ordinary) voltage assignmentφ.

Let C1(B∂k+|B|+h ↪→ Dr − B; n) (resp.C1(B∂k+|B|+h ↪→ Dr − B;A)) denote
the subset of(Sn)

∂k+|B|+h (resp. of(A)∂k+|B|+h) consisting of all (∂k + |B| + h)-tuples
(σ1, . . . , σ∂k+|B|+h) which satisfy the following three conditions:

(C1) The subgroup〈σ1, . . . , σ∂k+|B|+h〉 generated by{σ1, . . . , σ∂k+|B|+h} is transitive on
{1,2, . . . ,n} (resp. is the full groupA), and

(C2) (i) if k ≥ 0, then
∏k

i=1 σiσk+i σ
−1
i σ−1

k+i

∏|B|
i=1 σ∂k+i

∏h
j =1 σ∂k+|B|+ j = 1,

(ii) if k < 0, then
∏−k

i=1 σi σi
∏|B|

i=1 σ∂k+i
∏h

j =1 σ∂k+|B|+ j = 1,
(C3) σi �= 1 for eachi = ∂k + 1, . . . , ∂k + |B|.

Here, a(∂k+|B|+h)-tuple(σ1, . . . , σ∂k+|B|+h) of permutations inSn (resp. of elements
in A) can be identified with a permutation (resp. ordinary) voltage assignment of the
bouquet of circlesB∂k+|B|+h. Also, sucha voltage assignmentϕ derives a graph covering
over theB∂k+|B|+h, and this coveringprojection with the embeddingB∂k+|B|+h ↪→ Sk

extends to a branched surface covering over the surfaceSk, say p̃ϕ : Sϕ → S (see [1] or
[9]). In this case, the condition (C1) guarantees that the covering surfaceSϕ is connected,
and the conditions (C2) and (C3) guarantee that the setB is the same as the branch set of



J.H. Kwak, A. Mednykh / European Journal of Combinatorics 25 (2004) 23–34 27

the branched covering̃pϕ : Sϕ → S. By using a similar method as in [9] with Lemma 1,
one can obtain the following variant of the Hurwitz existence and classification of branched
coverings theorem for bordered surfaces. Recall that∂k + |B| + h = r + |B| + 1.

Theorem 1. Every permutation voltage assignment in C1(Br+|B|+1 ↪→ Dr − B; n)
induces a connectedbranched n-fold covering overDr with branch set B. Conversely,
every connected branched n-fold covering overDr with branch set B can be derived
from a voltageassignment in C1(Br+|B|+1 ↪→ Dr − B; n). Moreover, for any given two
permutation voltage assignmentsϕ = (σ1, . . . , σr+|B|+1) andψ = (τ1, . . . , τr+|B|+1) in
C1(Br+|B|+1 ↪→ Dr − B; n), two branched n-fold surface coveringsp̃ϕ : Dr

ϕ → Dr and
p̃ψ : Dr

ψ → Dr over the bordered surfaceDr are isomorphic if and only if there exists a
permutationρ ∈ Sn suchthat

τi = ρσi ρ
−1

for i = 1, . . . , r + |B| + 1. �

Similarly, one can have an analogous theorem for regular branched coverings.

Theorem 2. Every ordinary voltage assignment in C1(Br+|B|+1 ↪→ Dr −B;A) induces a
connected branchedA-covering over a bordered surfaceDr with branch set B. Conversely,
every connected branchedA-covering over the bordered surfaceDr with branch set B can
be derived from a voltage assignment in C1(Br+|B|+1 ↪→ Dr − B;A). Moreover, for
any given two voltage assignmentsϕ = (σ1, . . . , σr+|B|+1) andψ = (τ1, . . . , τr+|B|+1)

in C1(Br+|B|+1 ↪→ Dr − B;A), two branchedA-coverings p̃ϕ : Dr
ϕ → Dr and

p̃ψ : Dr
ψ → Dr are isomorphic if and only if there exists a group automorphismα of

A suchthat

τi = α(σi )

for i = 1, . . . , r + |B| + 1. �

3. Computational formulae; a regular case

In this section, we aim to enumerate nonisomorphicregular branched coverings
over a bordered surfaceDr . But, it is sufficient to do it for connected branched
A-coverings over the bordered surfaceDr with a given branch setB, whereA is a
finite group, because of the regularity of the coverings. To do this, we define an Aut(A)-
action onC1(Br+|B|+1 ↪→ Dr − B;A) as follows: For anyα ∈ Aut(A) and any
(σ1, . . . , σr+|B|+1) ∈ C1(Br+|B|+1 ↪→ Dr − B;A), define

α · (σ1, . . . , σr+|B|+1) = (α(σ1), . . . , α(σr+|B|+1)).

Then it follows fromTheorem 2that two voltage assignments inC1(Br+|B|+1 ↪→ Dr −
B;A) derive isomorphic branchedA-coverings overDr if and only if they belong to the
same orbit under the Aut(A)-action. Notice that this Aut(A)-action onC1(Br+|B|+1 ↪→
Dr − B;A) is free because of the condition (C1). It gives the following lemma.
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Lemma 2. ThenumberIsoc(Dr , B;A) of nonisomorphic connected branchedA-cover-
ings over bordered surfaceDr with branch set B is equal to

Isoc(Dr , B;A) = |C1(Br+|B|+1 ↪→ Dr − B;A)|
|Aut(A)| .

Let Isoc(Br ;A) denote the number of nonisomorphic connected regular graph
coverings over the bouquetBr of r circles havingA as the covering transformation
group. Sinceπ1(Br ) = π1(Dr ) = Fr the free group of rankr , we haveIsoc(Br ;A) =
Isoc(Dr ,∅;A) and soLemma 2can be used to estimate the numberIsoc(Br ;A) as
well. Moreover, in the caseB = ∅ there is a one-to-one correspondence between
C1(Br+|B|+1 ↪→ Dr − B;A) and a setG(A, r ) formed by r -tuples (σ1, . . . , σr ) of
elements in the groupA, generating the full groupA. Indeed, sinceDr is a bordered
surface the number of its holesh ≥ 1. This means that the elementσr+1 = σak+h in
(C2) can be uniquely expressed through elementsσ1, . . . , σr and (C1) is equivalent to the
condition that the groupA is generated byσ1, . . . , σr . Note that (C3) is redundant in the
caseB = ∅.

In turn, the setG(A, r ) can be identified with the set Epi(Fr ;A) of epimorphisms of
thefree groupFr onto the groupA. Hence, theLemma 2gives the following.

Corollary 1. The number of nonisomorphic connectedA-coverings over the bouquetBr

is equal to

Isoc(Br ;A) = |Epi(Fr ;A)|
|Aut(A)| .

In this section, we introduce a general formula to enumerateA-coverings over a surface
Dr for any finite groupA in terms of the M¨obius function defined on the subgroup lattice
of A by Hall [2]. Jones [6, 7] used the M¨obius function to find a method for counting
normal subgroups of a surface group or a crystallographic group, and applied it to count
regular coverings over a surface. Denote by Hom(Fr ;A) the set ofhomomorphisms of the
free groupFr into the groupA. The set Hom(Fr ;A) can be naturally identified with the
setAr of r -tuples of elements of the groupA. Hence|Hom(Fr ,A)| = |A|r . Also,we have

|Hom(Fr ,A)| =
∑
K≤A

|Epi(Fr , K )|,

where the sum is taken over all subgroupsK of the groupA. Now, one can invert the
obtained equation to count epimorphisms in terms of homomorphisms, by introducing the
Möbius functionfor A. This assigns an integerµ(K ) to each subgroupK of A by the
recursive formula∑

H≥K

µ(H ) = δK ,A =
{

1 if K = A,
0 if K < A.

The equation

|Epi(Fr ,A)| =
∑
K≤A

µ(K )|Hom(Fr , K )|
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is then easily deduced.Lemma 2gives

Isoc(Br ;A) = |Epi(Fr ,A)|
|Aut(A)| = 1

|Aut(A)|
∑
K≤A

µ(K )|Hom(Fr , K )|

= 1

|Aut(A)|
∑
K≤A

µ(K )|K |r .

As a result, we obtain

Corollary 2. The number of nonisomorphic connected unbranchedA-coverings over the
bordered surfaceDr coincides with the number of nonisomorphic connectedA-coverings
over the bouquetBr , and is given by

Isoc(Dr ; ∅,A) = Isoc(Br ,A) = 1

|Aut(A)|
∑
H≤A

µ(H )|H |r .

When the group A is Abelian or anydihedral groupDn of order 2n, the number
Isoc(Br ;A) was explicitly computed in [8] by Burnside’s lemma without using the
Möbius functionµ.

The proof of the following theorem is based on the principle of inclusion and exclusion,
and is similar to the proof of Theorem 2 in [11] with Lemma 2.

Theorem 3. Let B be a b-subset of the interior of a bordered surfaceDr . Then, for any
finite groupA, the number of nonisomorphic connected branchedA-coverings overDr

with branch set B is

Isoc(Dr , B;A) =
b∑

t=0

(−1)t
(

b

t

)
Isoc(Br+b−t ;A).

The corresponding enumeration of nonisomorphic connected branched (regular)
coverings over a closed surface was formulated in terms of the nonisomorphic unbranched
(regular) ones and some nonisomorphic (regular) graph coverings over a suitable bouquet
of circles in Theorem 2 in [11]. However, in our bordered case, the former terms
have disappeared as shown inTheorem 3and its difference comes from a fact that the
fundamental group of a bordered surface is free.

Corollary 3. For any finite groupA, the number of nonisomorphic connected branched
A-coverings over a bordered surfaceDr with branch set B,|B| = b ≥ 0, is given by
formula

Isoc(Dr , B;A) = 1

|Aut(A)|
∑
H≤A

µ(H )(|H | − 1)b|H |r ,

whereµ(H ) is the M̈obius function for the groupA, and the sum is taken over all
subgroups H of the groupA.

Proof. By Corollary 2 andTheorem 3, we get

Isoc(Dr , B;A) =
b∑

t=0

(−1)t
(

b

t

)
1

|Aut(A)|
∑
H≤A

µ(H )|H |r+b−t
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= 1

|Aut(A)|
∑
H≤A

µ(H )

(
b∑

t=0

(−1)t
(

b

t

)
|H |b−t

)
|H |r

= 1

|Aut(A)|
∑
H≤A

µ(H )(|H | − 1)b|H |r . �

As an immediate consequence ofCorollary 3, we obtain the number of nonisomorphic
connected branchedA-coverings for the cyclic groupA = Zn and the dihedral
group A = Dn of order 2n. We note that the cyclic groupA = Zn has a
unique subgroupH = Zm for each m dividing n, and has no other subgroups.
We haveµ(H) = µ(n/m) (µ is the Möbius function) and|Aut(A)| = φ(n)
(φ is Euler’s totient function).

Corollary 4. The number of nonisomorphic connectedZn-coverings over the bordered
surfaceDr with branch set B,|B| = b ≥ 0, is given by

Isoc(Dr , B; Zn) = 1

φ(n)

∑
m | n

µ
( n

m

)
(m − 1)bmr .

From here on, we suppose that 0b = 1 if b = 0.

Corollary 5. LetDn be a dihedral group of order2n,n �= 2. Then,

Isoc(Dr , B; Dn) = 1

φ(n)

∑
m|n

µ
( n

m

)
[(2m − 1)b2r − (m − 1)b]mr−1.

In the case n= 2 wehave

Isoc(Dr , B; D2) = 1
6(3

b · 4r − 3 · 2r + 2 · 0b).

Proof. For givenm | n the group Dn has exactly one subgroupZm of order m with
µ(Zm) = −(n/m)µ(n/m) andn/m subgroupsDm with µ(Dm) = µ(n/m). Moreover,
|Aut(Dn)| = nφ(n) if n �= 2. See [6] for details. For n = 2 thegroupD2 = Z2 × Z2
and hence|Aut(D2)| = 6. The groupD2 contains as a subgroupD2 itself, three proper
subgroups isomorphic toZ2, and the trivial subgroupZ1. From thedefinition of Möbius
function we getµ(D2) = 1, µ(Z2) = −1, andµ(Z1) = 2. Hence, byTheorem 2, for
n �= 2

Isoc(Dr , B; Dn) = 1

|Aut(Dn)|
∑

H≤Dn

µ(H )(|H | − 1)b|H |r

= 1

nφ(n)

∑
m | n

(
− n

m
µ
( n

m

)
(m − 1)bmr

+ n

m
µ
( n

m

)
(2m − 1)b(2m)r

)
= 1

φ(n)

∑
m | n

µ
( n

m

)
[(2m − 1)b2r − (m − 1)b]mr−1.
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The casen = 2 is considered ina similar way. We obtain

Isoc(Dr , B; D2) = 1

|Aut(D2)|
∑

H≤D2

µ(H )(|H | − 1)b|H |r

= 1
6(µ(D2) · 3b · 4r + 3µ(Z2) · 1b · 2b + µ(Z1) · 0b · 1r )

= 1
6(3

b · 4r − 3 · 2r + 2 · 0b). �

4. Computational formulae; a general case

Let Isoc(Bm; n) denote the number of nonisomorphic connectedn-fold graph coverings
over the bouquetBm of m circles. The following theorem is a parallel version ofTheorem 3
for general (regular or not) coverings.

Theorem 4. Let B be a b-subset of the surfaceDr . Then the number of nonisomorphic
connected n-fold branched coverings over the bordered surfaceDr with branch set B is

Isoc(Dr , B; n) =
b∑

t=0

(−1)t
(

b

t

)
Isoc(Br+b−t ; n).

As an application ofTheorem 4, we have the following result.

Theorem 5. Let B be a b-subset of the bordered surfaceDr . Then the number of
nonisomorphic connected n-fold branched coverings over the surfaceDr with branch set
B is

Isoc(Dr , B; n) = 1

n

∑
m | n

∑
d | n

m

µ
( n

md

)
dTm(d),

where Tm(d) is apolynomial of d defined by

Tm(d) = m
m∑

k=1

(−1)k+1

k

∑
n1+···+nk=m

n1,...,nk≥1

(n1! · · · nk! dm)r−1(n1! · · · nk! dm − 1)b.

Proof. By Liskovets’ theorem [14] we have

Isoc(Bβ ; n) = 1

n

∑
m | n

Sβ(m)
∑
d | n

m

µ
( n

md

)
d(β−1)m+1,

where Sβ(m) is the number of subgroups of indexm in a free groupFβ of rank β,
determined by Hall [3]. Hence, byTheorem 5,

Isoc(Dr , B; n) =
b∑

t=0

(−1)t
(

b

t

)
Isoc(Br+b−t ; n) = 1

n

∑
m | n

∑
d | n

m

µ
( n

md

)
dTm(d),

whereTm(d) = ∑b
t=0(−1)t

(b
t

)
Sr+b−t (m)(dm)r+b−t−1.
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To find Tm(d), recall [3] that Sβ(m) satisfies the following formal power series identity

∑
m≥1

Sβ(m)

m
wm = log


∑

n≥0

(n!)β−1wn


 .

Replacingw by dβ−1w, whereβ = r + b − t we get

∑
m≥1

Sβ(m)

m
dm(β−1)wm = log


∑

n≥0

(n! dn)β−1wn


 .

Applying the linear operatorLt ( f ) = ∑b
t=0(−1)t

(b
t

)
f (t) to both sides of the above

equality we have

∑
m≥1

Tm(d)

m
wm = Lt


log


∑

n≥0

(n! dn)r+b−t−1wn




 .

Take coefficients ofwm

Tm(d)

m
= Lt




m∑
k=1

(−1)k+1

k

∑
n1+···+nk=m

n1,...,nk≥1

(n1! dn1 · · · nk! dnk)r+b−t−1


 .

Taking into account thatLt (xr+b−t−1) = ∑b
t=0(−1)t

(b
t

)
xb−t xr−1 = xr−1(x − 1)b we

obtain

Tm(d) = m
m∑

k=1

(−1)k+1

k

∑
n1+···+nk=m

n1,...,nk≥1

(n1! · · · nk! dm)r−1(n1! · · · nk! dm − 1)b. �

Note thatTm(d) is a polynomial ond of degreem(r − 1 + b). By explicit calculations
we get

T1(d) = dν(d − 1)b,

T2(d) = 2(2d2)ν(2d2 − 1)b − (d2)ν(d2 − 1)b,

T3(d) = 3(6d3)ν(6d3 − 1)b − 3(2d3)ν(2d3 − 1)b + (d3)ν(d3 − 1)b,

T4(d) = 4 · (24d4)ν(24d4 − 1)b − (6d4)ν(6d4 − 1)b − 2 · (4d4)ν(4d4 − 1)b

+ 4 · (2d4)ν(2d4 − 1)b − (d4)ν(d4 − 1)b,

T5(d) = 5 · 120∗5 − 5 · 24∗5 − 5 · 12∗5 + 5 · 6∗5 + 5 · 4∗5 − 5 · 2∗5 + 1∗5,

T6(d) = 6 · 720∗6 − 6 · 120∗6 − 6 · 48∗6 − 3 · 36∗6 + 6 · 24∗6 + 12 · 12∗6

+ 2 · 8∗6 − 6 · 6∗6 − 9 · 4∗6 + 6 · 2∗6 − 1∗6.

For simplicity we setν = r − 1 andN∗k = (Ndk)ν(Ndk − 1)b. By applyingTheorem 5,
we have
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Corollary 6. Let B, |B| = b ≥ 0 be a branch set of the bordered surfaceDr and
ν = r − 1 = −χ(Dr ), whereχ(Dr )is the Euler characteristic ofDr . Then

Isoc(Dr , B; 2) = 2 · 2ν − 0b,

Isoc(Dr , B; 3) = 6ν · 5b + 3ν · 2b − 2ν,

Isoc(Dr , B; 4) = 24ν · 23b + 8ν · 7b − 6ν · 5b,

Isoc(Dr , B; 5) = 120ν · 119b − 24ν · 23b − 12ν · 11b + 6ν · 5b + 5ν · 4b

+ 4ν · 3b − 2ν,

Isoc(Dr , B; 6) = 720ν · 719b − 120ν · 119b − 1
2 · 36ν · 35b + 24ν · 23b + 18ν · 17b

− 16ν · 15b + 2 · 12ν · 11b − 1
2 · 9ν · 8b + 2

3 · 8ν · 7b

− 1
2 · 6ν · 5b − 3

2 · 4ν · 3b − 1
2 · 3ν · 2b + 5

6 · 2ν · 1b.

Remark. The above formulae are nontrivial even for a diskD = D0 without holes. In this
case we haveν = −1 and

Isoc(D, B; 2) = 1 − 0b,

Isoc(D, B; 3) = 1
6 · 5b + 1

3 · 2b − 1
2,

Isoc(D, B; 4) = 1
24 · 23b + 1

8 · 7b − 1
6 · 5b,

Isoc(D, B; 5) = 1
120 · 119b − 1

24 · 23b − 1
12 · 11b + 1

6 · 5b + 1
5 · 4b + 1

4 · 3b − 1
2 .
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