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Abstract

We describe a particularly easy way of evaluating the modular irreducible ma-
trix representations of the symmetric group. It shows that Specht’s approach to the
ordinary irreducible representations, alongSpecht polynomials,can be unified with
Clausen’s approach to the modular irreducible representations usingsymmetrized
standard bideterminants.The unified method, usingsymmetrized Specht polyno-
mials is very easy to explain, and it follows directly from Clausen’s theorem by
replacing the indeterminatexij of the letter place algebra byxj

i.
Our approach is implemented in SYMMETRICA. It was used in order to obtain

computational results on code theoretic properties of thep-modular irreducible
representation[λ]p corresponding to ap-regular partitionλ via embedding it into
representation spaces obtained from ordinary irreducible representations. The first
embedding is into the permutation representation induced from the column group
of a standard Young tableau of shapeλ. The second embedding is the embedding of
[λ]p into the space of[λ], thep-modular representation obtained from the ordinary
irreducible representation[λ] by reducing the coefficients modulop.

We include a few tables with dimensions and minimum distances of these
codes, others can be found via our home page.

1 Introduction

The ordinary representation theory of symmetric groups is well established, and there
are also many results known on the modular representation theory of this class of
groups. A breakthrough was the definition of the modular irreducible representations
by G. D. James ([9]) as factor modules. The problem with this approach is, that we do
not obtain an explicit basis this way. Hence we better use M. Clausen’s approach —
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another breakthrough ([2],[3],[4]) — using standard bideterminants. It has the advan-
tage that the modular irreducibles show up as submodules and not as factor modules.
We therefore can get a explicit basis. Clausen’s method was successfully implemented
by A. Golembiowski ([8]) using Capelli operators.

Our approach, using multivariate polynomials, is very natural since when we act upon
a multivariate polynomial corresponding to a standard tableau we obtain a multivariate
polynomial that does not correspond to a standard tableau, in general, but the point is
that in this case we know what it means that a nonstandard multivariate polynomial is
an integral linear combination of standard ones, while we do not know at all why, and
how, a nonstandard Young tableau should be an integral linear combination of standard
ones.

Multivariate polynomials were first used by W. Specht ([14]) in order to evaluate linear
representations of the symmetric group. Astonishingly enough he never tried to apply
them for the modular case, too, although he had all the necessary tools in his hand. The
purpose of the present paper is to show, that we can easily combine his methods with
Clausen’s, as it will be described in the next sections.

2 Specht’s Polynomials

When W. Specht — a student of I. Schur — entered the representation theory of the
symmetric group it was well known that the standard Young tableaux of a given shape
λ (a partition ofn) form a basis of an ordinary irreducible representation space ofSn.
Here is, for example, one of the 16 standard Young tableaux of shapeλ = (3, 2, 1) :

0 1 5
2 3
4

.

Standardmeans that the entries are weakly increasing in the rows from left to right, and
that they are strictly increasing in the columns from top to bottom, whileYoungtableau
means that then entries are the different elements of the setn := {0, . . . , n− 1}, if λ
is a partition ofn. In the literature, the entries are usually taken from{1, . . . , n}, but
for technical reasons (see below) it is better to number from 0 onwards.
The problem is, that the symmetric group acts in a natural way on tableaux, but the
result of the application of a permutation to a standard tableau can be a nonstandard
tableau, and it is by no means clear how a nonstandard tableau can be written as a linear
combination of standard ones.
For this reason W. Specht introducedpolynomialscorresponding to the tableaux, and
it is obvious how a given polynomial can be written as a linear combination of other
polynomials.
The polynomials in question are nowadays calledSpecht polynomials,they are prod-
ucts of the Vandermonde determinants corresponding to the rows of the tableau in
question. (Warning: Specht used the Vandermonde determinants corresponding to the
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columns,we use the rows instead, in order to obtain later on the modular irreducible
that is usually associated toλ andnot the representation mostly associated toλ′. The
disadvantage is that we this way obtain in the ordinary case the associated one.) Here is
an example. The above tableau gives rise to the product of Vandermonde determinants

Spe

 0 1 5
2 3
4

 = V (0, 1, 5) · V (2, 3) · V (4),

where the entries in the rows correspond to the indices of the variables in the Vander-
monde determinant, i.e.

V (0, 1, 5) · V (2, 3) · V (4) = det

 1 1 1
x0 x1 x5

x2
0 x2

1 x2
5

 · det
(

1 1
x2 x3

)
· det (1)

= x1x3x
2
5 − x1x2x

2
5 − x2

1x3x5 + x2
1x2x5 − x0x3x

2
5 + x0x2x

2
5

+x0x
2
1x3 − x0x

2
1x2 + x2

0x3x5 − x2
0x2x5 − x2

0x1x3 + x2
0x1x2.

The symmetric groupS6 (on 6 = {0, . . . , 5}) acts upon this polynomial by permuting
the indicesi of the indeterminatesxi. For example, the image under the permutation
π := (2, 3, 4) = (2, π(2), π2(2)) is the polynomial

x1x4x
2
5 − x1x3x

2
5 − x2

1x4x5 + x2
1x3x5 − x0x4x

2
5 + x0x3x

2
5

+x0x
2
1x4 − x0x

2
1x3 + x2

0x4x5 − x2
0x3x5 − x2

0x1x4 + x2
0x1x3.

(Note that we interpretπ(i) = j as: Replacei by j under the action ofπ.) The point
is that we can reconstruct the tableau from the Specht polynomial: The product of
the main terms in the evaluation of the Vandermonde determinants is the monomial
summand

xa0
0 · · ·xan−1

n−1

of the Specht polynomial with lexicographically smallest sequence(a0, . . . , an−1) of
exponents, it is called theleading monomial.It contains the variables in the columns
except the leftmost column, the elements of which are not represented in the main
terms! The variablexi occurs with an exponentai that is the number of the column
(when the leftmost column is of number 0). In our example the leading monomial is
x1x3x

2
5, and so, sincen = 5, the leftmost column contains the entries0, 2, 4, while 1

and3 are contained in the column with number1, and5 is the entry in the column of
number2.

An immediate consequence is that the Specht polynomials corresponding to the stan-
dard Young tableaux of shapeλ are linearly independent.Moreover, they generatea
subspace invariant under the action of the symmetric groupon the indices of the vari-
ables. This follows from the fact that the action of a permutation on the lexicograph-
ically smallest monomial gives a monomial with a lexicographically bigger sequence
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of exponents, the leading monomial in a nonzero element always comes from a stan-
dard tableau. Even more, since the symmetric group action is transitive on the minimal
monomials, this module is the space of anordinary irreduciblerepresentation. This
gives (for details see e.g. [14], [10], sections 7.1 and 7.2, or [13], section 5.6) Specht’s
main result, the

2.1 Theorem The Specht polynomials

Spe(tλi )

corresponding to the fλ different standard Young tableaux tλi of shape λ are a basis of
an ordinary irreducible representation module Sλ′ , the Specht modulecorresponding
to λ′. This representation is usually denoted by [λ′].

Here is an example in detail: We want to compute a matrix corresponding to the irre-
ducible module ofS5 labelled by the partitionλ := (22, 1). We start with the5 standard
Young tableaux of shapeλ = (22, 1) :

t
(22,1)
0 =

0 3
1 4
2

, t
(22,1)
1 =

0 2
1 4
3

, t
(22,1)
2 =

0 2
1 3
4

, t
(22,1)
3 =

0 1
2 4
3

, t
(22,1)
4 =

0 1
2 3
4

.

The corresponding Specht polynomials are

Spe(t(2
2,1)

0 ) = (x3 − x0)(x4 − x1) = x3x4 − x1x3 − x0x4 + x0x1,

Spe(t(2
2,1)

1 ) = (x2 − x0)(x4 − x1) = x2x4 − x1x2 − x0x4 + x0x1,

Spe(t(2
2,1)

2 ) = (x2 − x0)(x3 − x1) = x2x3 − x1x2 − x0x3 + x0x1,

Spe(t(2
2,1)

3 ) = (x1 − x0)(x4 − x2) = x1x4 − x1x2 − x0x4 + x0x2,

Spe(t(2
2,1)

4 ) = (x1 − x0)(x3 − x2) = x1x3 − x1x2 − x0x3 + x0x2.

In order to compute the representing matrix for the elementary transposition (0,1), we
let it act on the Specht polynomials, obtaining

(0, 1)Spe(t(2
2,1)

0 ) = x3x4 − x1x4 − x0x3 + x0x1,

where the leading monomial isx3x4 so that we continue in the following way:

= Spe(t(2
2,1)

0 )− x1x4 + x1x3 + x0x4 − x0x3

= Spe(t(2
2,1)

0 )− Spe(t(2
2,1)

3 ) + x1x3 − x1x2 − x0x3 + x0x2

= Spe(t(2
2,1)

0 )− Spe(t(2
2,1)

3 ) + Spe(t(2
2,1)

4 ).
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Analogously we evaluate that

(0, 1)Spe(t(2
2,1)

1 ) = Spe(t(2
2,1)

1 )− Spe(t(2
2,1)

3 ),

(0, 1)Spe(t(2
2,1)

2 ) = Spe(t(2
2,1)

2 )− Spe(t(2
2,1)

4 ),

(0, 1)Spe(t(2
2,1)

3 ) = −Spe(t(2
2,1)

3 ),

(0, 1)Spe(t(2
2,1)

4 ) = −Spe(t(2
2,1)

4 ),

which gives the representing matrix

D(22,1)((0, 1)) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−1 −1 0 −1 0
1 0 −1 0 −1

 .

The experienced reader sees from the trace of this matrix, that this ordinary irreducible
representation is the representation usually denoted by[3, 2]. As we already said, we as-
sociate it to the partition(3, 2)′ = (22, 1), since later on we want to obtain directly from
it the 3-modular irreducible representation that corresponds to the partition(22, 1).

3 Clausen’s Symmetrized Bideterminants

A breakthrough towards constructive modular representation theory of the symmetric
groups is due to M. Clausen, who gave generators for the modular irreducible repre-
sentation spaces,symmetrized bideterminants.We should like briefly to describe this.
Clausen used bideterminants, multivariate polynomials introduced in invariant theory
in particular by Turnbull and Rota (see e.g. [6]). They are associated withbitableaux,
consisting of two tableaux of the same shapeλ. The bitableau is called astandard
bitableau, if both tableaux are standard. Here is a standard bitableau of shapeλ =
(22, 1) :  0 3

1 3
2

,
0 2
1 4
3

 .

The correspondingbideterminantis the product of determinants, formed from corre-
sponding rows in the two tableaux which form the bitableau:

Bid

 0 3
1 4
2

,
0 2
1 4
3

 :=
(

0 3 0 2
)
·
(

1 4 1 4
)
·
(

2 3
)
,

where

(
i0 . . . im−1 j0 . . . jm−1

)
:= det

 xi0j0 . . . xi0jm−1

...
...

xim−1j0 . . . xim−1jm−1

 ∈ Z[xi,j ].
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For example (
1 3 1 0

)
:= det

(
x11 x10

x31 x30

)
.

The next notion that we have to introduce issymmetrization.It can be applied to one
of the two tableaux in a bitableau and it can be done with respect to rows or columns.
Here we shall use symmetrization according to columns, and of the right hand tableau,
and we shall abbreviate it by putting asquarebracket. The left tableau is (ifλ =
(λ0, . . . , λh−1))

Tλ :=

0 1 . . . . . . . . . λ0 − 1
0 1 . . . . . . λ1 − 1
...
0 1 . . . λh−1 − 1

,

while the right component is a standard Young tableautλi of shapeλ. It is clear what
π(tλi ) means, forπ in thecolumn groupC(tλi ) of tλi , i.e. the group of permutationsπ
that leave each entry in its column. Clearly

C(tλi ) = ×iSλ′i
,

whereλ′i denotes the length of thei-th column of the Young tableautλi andSλ′i
the

symmetric group on the set of entries in this column.
We can now define what we mean by the symmetrized bideterminant Bid(Tλ, tλi ),
namely

Bid(Tλ, tλi ] :=
∑

π∈C(tλ
i )

Bid(Tλ, π(tλi )).

For example, the symmetrized bideterminant

Bid

T(22,1),
0 3
1 4
2


turns out to be the following sum of bideterminants:

Bid

T(22,1),
0 3
1 4
2

 + Bid

T(22,1),
0 3
2 4
1

 + Bid

T(22,1),
1 3
0 4
2



+Bid

T(22,1),
1 3
2 4
0

 + Bid

T(22,1),
2 3
0 4
1

 + Bid

T(22,1),
2 3
1 4
0


+Bid

T(22,1),
0 4
1 3
2

 + Bid

T(22,1),
0 4
2 3
1

 + Bid

T(22,1),
1 4
0 3
2


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+Bid

T(22,1),
1 4
2 3
0

 + Bid

T(22,1),
2 4
0 3
1

 + Bid

T(22,1),
2 4
1 3
0

 .

These symmetrized bideterminants are polynomials over the integers, and so they can
easily be reduced modulo a prime numberp, obtaining ap-reduced bideterminant

Bidp

T(22,1),
0 3
1 4
2

 ,

for example. Correspondingly, there are thep-reduced symmetrized bideterminants
Bidp

(
Tλ, tλi

]
arising from the symmetrized bideterminant by reducing the coefficients

modulop. The definition of bideterminants shows that these polynomials are multi-
variate polynomials over the integers and in the indeterminatesxi,j upon which the
elements of the symmetric group act as follows:

π(xi,j) := xi,π(j).

The main result on the reduced symmetrized bideterminants is due to Clausen:

3.1 Theorem Assume a prime number p and a p-regular partition λ of n (which means
a partition that contains no p parts λi of equal length). Then the p-reduced column
symmetrized bideterminants

Bidp

(
Tλ, tλi

]
form a system of generators for the p-modular irreducible representation corresponding
to λ, if tλi runs through the standard Young tableaux of shape λ.

4 Symmetrized Specht Polynomials

The crucial point is, that symmetrized bideterminants

Bid
(
Tλ, tλi

]
are sums of products of determinants of the following particular form, since the left
component is the tableauTλ,

(
0 . . . m j0 . . . jm

)
:= det

 x0,j0 . . . x0,jm

...
...

xm,j0 . . . xm,jm

 .

This determinant is transformed into a Vandermonde determinant,a Specht polynomial,
by applying the transformationxij 7−→ xi

j :

(
0 . . . m j0 . . . jm

)
7−→ det


1 . . . 1

xj0 . . . xjm

...
...

xm
j0

. . . xm
jm

 = V (j0, . . . , jm).
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For this reason we introduced the notation Spe(tλi ) for the Specht polynomial oftλi , the
product of the Vandermonde determinants of the rows oftiλ. We indicate by

Spe[tλi ] =
∑

π∈C(tλ
i )

Spe(πtλi )

the column symmetrized version. Finally we define by

Spep[t
λ
i ]

the polynomial obtained by reducing the coefficients in Spe[tλi ] modulop. The main
consequence is the following result obtained from Clausen’s theorem by the substitu-
tion mentioned above:

4.1 Theorem Assume a prime number p and a p-regular partition λ of n. Then the
p-reduced symmetrized Specht polynomials

Spep[t
λ
i ]

generate the space of the p-modular irreducible representation [λ]p corresponding to λ,
if tλi runs through the standard Young tableaux of shape λ.

The reason is that the transformationxij 7→ xi
j is a ring homomorphismFp[xij ] →

Fp[xj ] that commutes with the action of the symmetric group. If we apply it to an
irreducible representation space we either get zero or an irreducible module. In our
case here it is clearly not the zero mapping.

4.2 Example We should like to evaluate generators of the 3-modular irreducible rep-
resentation corresponding to the 3-regular partition(22, 1). The Specht polynomials

Spe(t(2
2,1)

0 ), . . . , Spe(t(2
2,1)

4 )

were already evaluated. The symmetrized Specht polynomials turn out to be, for ex-
ample,

Spe[t(2
2,1)

0 ] = 4x0x1 + 4x0x2 − 4x0x3 − 4x0x4 + 4x1x2 − 4x1x3 − 4x1x4

−4x2x3 − 4x2x4 + 12x3x4.

The others can be obtained by performing suitable permutations of the variablesxi.
Reduction modulo 2 gives the zero polynomial in accordance with the fact that the
partition(22, 1) is not2-regular, while reduction modulo 3 gives

Spe3[t
(22,1)
0 ] = x0x1 + x0x2 + 2x0x3 + 2x0x4 + x1x2 + 2x1x3 + 2x1x4

+2x2x3 + 2x2x4 + 0x3x4.
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The sequence of coefficients of the monomialsxixk (numbered lexicographically)
is 1, 1, 2, 2, 1, 2, 2, 2, 2, 0. The corresponding sequences of all the five symmetrized
Specht polynomials turn out to be, after reduction of the coefficients modulo 3, the
rows of the following matrix:

1 1 2 2 1 2 2 2 2 0
1 2 1 2 2 1 2 2 0 2
2 1 1 2 2 2 0 1 2 2
1 2 2 1 2 2 1 0 2 2
2 1 2 1 2 0 2 2 1 2

 .

According to the above theorem, the rows of this matrix describe generators of the 3-
modular irreducible submodule corresponding to the partition(22, 1). As the 3-rank of
this matrix is 4, this 3-modular irreducible representation is of dimension 4. Elementary
row transformations give the matrix

1 1 2 2 1 2 2 2 2 0
0 1 2 0 1 2 0 0 1 2
0 0 2 1 1 0 2 0 2 1
0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1


which shows that its first four rows form the basisb0, . . . , b3, where

b0 = x0x1 + x0x2 + 2x0x3 + 2x0x4 + x1x2 + 2x1x3 + 2x1x4 + 2x2x3 + 2x2x4,

b1 = x0x2 + 2x0x3 + x1x2 + 2x1x3 + x2x4 + 2x3x4,

b2 = 2x0x3 + x0x4 + x1x2 + 2x1x4 + 2x2x4 + x3x4,

b3 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4.

We want to compute the representing matrix for the elementary transposition (0,1).
Applying this transposition to the indices of the variables we obtain that

(0, 1)b0 = b0, (0, 1)b1 = b1, (0, 1)b2 = b1 + 2b2, (0, 1)b3 = b1 + b2 + b3.

This gives the matrix representing(0, 1) in the 3-modular irreducible representation
[22, 1]3 overGF (3) corresponding to the partition(22, 1) :

1 0 0 0
0 1 1 1
0 0 2 1
0 0 0 1

 .

3

A program that evaluates such representing matrices is implemented in SYMMET-
RICA ([11]), a software package for the representation theory of symmetric groups
and related classes of groups. It can be downloaded from
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http://www.symmetrica.de

and it can also be used online. The problem is the big number of monomials occurring
in the generators. Of course, the evaluation of a particular representing matrix makes
use of leading monomials.

5 Modular Irreducibles as Codes

We are now in a position to consider modular irreducible representations as linear
codes. Many interesting results on codes obtained fromreduciblemodular represen-
tations of symmetric groups can be found in [15] and [12]. The authors, K.-H. Zim-
mermann and R. A. Liebler, consider, among various other situations, modular repre-
sentations obtained from ordinary ones by reduction modulo the prime characteristic,
embedded into permutation representations. In contrast to this we consider embeddings
of modularirreducibleshere.
We have seen hat the reduced symmetrized Specht polynomials corresponding to the
standard Young tableaux generate the representation space. We can therefore easily
obtain agenerator matrixof this space, for example, the matrix

Γ =


1 1 2 2 1 2 2 2 2 0
0 1 2 0 1 2 0 0 1 2
0 0 2 1 1 0 2 0 2 1
0 0 0 0 1 1 1 1 1 1


mentioned above. Its rows form a basis, and they are elements of the vector space
GF (3)10. Hence the generated vector space is a subspace of the space that carries the
permutation representation induced from the column group of a standard Young tableau
of shape(22, 1).
We can therefore consider this four-dimensional subspace as a ternary linear(10, 4)-
code and can try to find out, for example, its minimum distanced3, which is the min-
imal number of nonzero coordinates in a nonzero vector of this space of dimension 4
overGF (3). This linear code, formed by this particular3-modular irreducible repre-
sentation ofS5 has the block length10, the dimension4, the minimal distanced3 = 6
and the order of the prime field isp = 3, for short: it is a(10, 4, 6, 3)-code.
Systematic computer calculations using SYMMETRICA gave tables for various de-
greesn of small symmetric groupsSn. They contain in their first column the partitions
λ of n. The row labelled byλ contains informations about linear codes obtained from
modular irreducible representations corresponding to this partition, their dimensions
and their minimal distances, for various small primes. The second column contains the
dimensionsm of the corresponding permutation representations, i.e. the dimensions
of the representations induced by the identity representation of the column group of a
standard tableau of shapeλ,

m =
(

n

λ′0, λ
′
1, . . .

)
.
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The entry at the intersection of the row labelled byλ and the column labelled by the
primep contains the dimension of thep-modular irreducible representation correspond-
ing toλ, if λ is p-regular (otherwise the entry is0).
The following column contains the minimum distancedp of the representation space
considered as a subspace of the permutation module corresponding toλ. The values
were obtained using A. Wassermann’s implementation of the LLL-algorithm ([7]) for
the evaluation of short vectors (casesp = 2, 3) and another software package due to
K.-J. Zimmermann using iterated Gaussian algorithm.
We consider the smallest primesp = 2, 3, 5, . . . and show small tables while further
tables can be found via internet under the address

http://www.mathe2.uni-bayreuth.de/axel/codes/modinperm/

Here is a numerical example, the casen = 5 :

λ m 2 d2 3 d3 5 d5

(5) 120 1 120 1 120 1 120
(4, 1) 60 4 24 4 24 3 42
(3, 2) 30 4 16 1 30 5 12
(3, 12) 20 0 6 6 3 14
(22, 1) 10 0 4 6 5 4
(2, 13) 5 0 0 1 5
(15) 1 0 0 0

The entries10, 4, 6 in the row ofλ = (22, 1) and the columns ofm, 3, d3 mean that the
3-modular irreducible representation corresponding to the 3-regular partition(22, 1),
embedded into the permutation module of the column group is of block length10, of
dimension4 and it has the minimum distanced3 = 6, so that this embedding gives a
linear(10, 4, 6, 3)-code.
The table shows — if we compare it with known results on optimal codes — that for the
following entries the corresponding codes are optimal in the sense that the minimum
distance is maximal for the blocklength and the dimension in question.

(60, 4, 24, 2)
(30, 4, 16, 2)
(10, 4, 6, 3)

There is another embedding of the modular irreducibles which is more interesting,
since the blocklength is much smaller. We can embed the modular irreducible[λ]p cor-
responding toλ into the representation space of[λ], the representation obtained from
the ordinary irreducible[λ] by writing it over the ring of integers and then reducing
the entries modulop. In order to obtain this embedding we use the fact that thep-
reduced symmetrized Specht polynomials form a generating system and that, before
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p-reduction, we can replace a symmetrized Specht polynomial by a uniquely defined
linear combination of standard Specht polynomials:

Spe[tλi ] =
∑

j

αjSpe(tλj ),

from which it follows that we can express the generators

Spep[t
λ
i ] =

∑
j

(αj)pSpep(t
λ
j )

in terms of reduced Specht polynomials, obtaining this way a new generator matrix
of the code in question. For example, the coefficients of the monomial summands in
the symmetrized Specht polynomials corresponding to the standard Young tableaux of
shape(22, 1) are listed in the following array:

x0x1 x0x2 x0x3 x0x4 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4

Spe[t(2
2,1)

0 ] 4 4 −4 −4 4 −4 −4 −4 −4 12

Spe[t(2
2,1)

1 ] 4 −4 4 −4 −4 4 −4 −4 12 −4

Spe[t(2
2,1)

2 ] 4 −4 −4 4 −4 −4 4 12 −4 −4

Spe[t(2
2,1)

3 ] −4 4 4 −4 −4 −4 12 4 −4 −4

Spe[t(2
2,1)

4 ] −4 4 −4 4 −4 12 −4 −4 4 −4

Hence we can easily obtain the symmetrized Specht polynomials as linear combina-
tions of the standard Specht polynomials, using the array of the standard Specht poly-
nomials evaluated above:

x0x1 x0x2 x0x3 x0x4 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4

Spe(t(2
2,1)

0 ) 1 0 0 −1 0 −1 0 0 0 1

Spe(t(2
2,1)

1 ) 1 0 0 −1 −1 0 0 0 1 0

Spe(t(2
2,1)

2 ) 1 0 −1 0 −1 0 0 1 0 0

Spe(t(2
2,1)

3 ) 0 1 0 −1 −1 0 1 0 0 0

Spe(t(2
2,1)

4 ) 0 1 −1 0 −1 1 0 0 0 0

.

For example, Spe[t(2
2,1)

0 ] is equal to the linear combination

12Spe(t(2
2,1)

0 )− 4Spe(t(2
2,1)

1 )− 4Spe(t(2
2,1)

2 )− 4Spe(t(2
2,1)

3 ) + 8Spe(t(2
2,1)

4 ),

so that, by reduction modulo 3, we get

Spe3[t
(22,1)
0 ] = 2Spe(t(2

2,1)
1 ) + 2Spe(t(2

2,1)
2 ) + 2Spe(t(2

2,1)
3 ) + 2Spe(t(2

2,1)
4 ).

To get a basis we can take the first 4 of the 5 symmetrized Specht polynomials. The
next 3 turn out to be

Spe3[t
(22,1)
1 ] = 2Spe(t(2

2,1)
0 ) + 2Spe(t(2

2,1)
2 ) + 2Spe(t(2

2,1)
3 ).

Spe3[t
(22,1)
2 ] = 2Spe(t(2

2,1)
0 ) + 2Spe(t(2

2,1)
1 ) + Spe(t(2

2,1)
3 ) + Spe(t(2

2,1)
4 ).

Spe3[t
(22,1)
3 ] = 2Spe(t(2

2,1)
0 ) + 2Spe(t(2

2,1)
1 ) + Spe(t(2

2,1)
2 ) + Spe(t(2

2,1)
4 ).
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and so we find the following matrix of generators of the code in question, where the
columns correspond to the standard Young tableaux

t
(22,1)
0 =

0 3
1 4
2

, t
(22,1)
1 =

0 2
1 4
3

, t
(22,1)
2 =

0 2
1 3
4

, t
(22,1)
3 =

0 1
2 4
3

, t
(22,1)
4 =

0 1
2 3
4

.

from which we finally obtain the desiredgenerator matrix

Γ =


0 2 2 2 2
2 0 2 2 0
2 2 0 1 1
2 2 1 0 1


of the representation space of[22, 1]3 embedded into the representation space of the
3-modular representation[22, 1] obtained from the ordinary irreducible representation
[22, 1] by reduction modulo 3.
Various further computational results are gathered in the following tables (additional
ones can be found on our home page the address of which was given already): The
leftmost column gives a partition, the next column shows the dimensionfλ of the cor-
responding ordinary irreducible representation, i.e. it gives the block lengths of the
code. The other columns provide the dimensions of the corresponding codes, depend-
ing on the characteristicp = 2, 3, 5, 7 of the prime field, and in most cases (some
dimensions were too big) there are also the minimum distancesdp given. In thenon-
trivial cases when they are maximal with respect to blocklength and dimension, they
are put in frameboxes in order to emphasize that the corresponding code is nontrivial
anddistance optimal:

fλ 2 d2 3 d3

(3) 1 1 1 1 1
(2, 1) 2 2 1 1 2

(1, 1, 1) 1 0 0

fλ 2 d2 3 d3

(4) 1 1 1 1 1
(3, 1) 3 2 2 3 1
(2, 2) 2 0 1 2

(2, 1, 1) 3 0 3 1
(1, 1, 1, 1) 1 0 0

fλ 2 d2 3 d3 5 d5

(5) 1 1 1 1 1 1 1
(4, 1) 4 4 1 4 1 3 2
(3, 2) 5 4 2 1 4 5 1

(3, 1, 1) 6 0 6 1 3 3
(2, 2, 1) 5 0 4 2 5 1

(2, 1, 1, 1) 4 0 0 1 4
(1, 1, 1, 1, 1) 1 0 0 0
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fλ 2 d2 3 d3 5 d5

(6) 1 1 1 1 1 1 1
(5, 1) 5 4 2 4 2 5 1

(4, 2) 9 4 4 9 1 8 2
(4, 1, 1) 10 0 6 3 10 1
(3, 3) 5 0 1 4 5 1

(3, 2, 1) 16 16 1 4 6 8 5
(3, 1, 1, 1) 10 0 0 10 1
(2, 2, 2) 5 0 0 5 1

(2, 2, 1, 1) 9 0 9 1 1 9
(2, 1, 1, 1, 1) 5 0 0 5 1

(1, 1, 1, 1, 1, 1) 1 0 0 0

fλ 2 d2 3 d3 5 d5 7 d7

(7) 1 1 1 1 1 1 1 1 1
(6, 1) 6 6 1 6 1 6 1 5 2
(5, 2) 14 14 1 13 2 8 4 14 1

(5, 1, 1) 15 0 15 1 15 1 10 3

(4, 3) 14 8 4 1 8 13 2 14 1
(4, 2, 1) 35 20 4 20 2 35 1 35 1

(4, 1, 1, 1) 20 0 0 20 1 10 4
(3, 3, 1) 21 0 6 4 8 6 21 1
(3, 2, 2) 21 0 15 2 13 3 21 1

(3, 2, 1, 1) 35 0 13 6 35 1 35 1
(3, 1, 1, 1, 1) 15 0 0 15 1 5 5
(2, 2, 2, 1) 14 0 0 1 14 14 1

(2, 2, 1, 1, 1) 14 0 0 6 4 14 1
(2, 1, 1, 1, 1, 1) 6 0 0 0 1 6

(1, 1, 1, 1, 1, 1, 1) 1 0 0 0 0
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fλ 2 d2 3 d3 5 d5 7 d7

(8) 1 1 1 1 1 1 1 1 1
(7, 1) 7 6 2 7 1 7 1 7 1
(6, 2) 20 14 3 13 4 20 1 19

(6, 1, 1) 21 0 21 1 21 1 21 1
(5, 3) 28 8 8 28 1 21 28 1

(5, 2, 1) 64 64 1 35 2 43 45
(5, 1, 1, 1) 35 0 0 35 1 35 1

(4, 4) 14 0 1 8 13 2 14 1
(4, 3, 1) 70 40 8 7 8 70 1 70 1
(4, 2, 2) 56 0 35 2 13 56 1

(4, 2, 1, 1) 90 0 90 1 90 1 45
(4, 1, 1, 1, 1) 35 0 0 35 1 35 1

(3, 3, 2) 42 0 21 4 21 42 1
(3, 3, 1, 1) 56 0 13 12 43 56 1
(3, 2, 2, 1) 70 0 28 8 70 1 70 1

(3, 2, 1, 1, 1) 64 0 0 21 19
(3, 1, 1, 1, 1, 1) 21 0 0 0 21 1

(2, 2, 2, 2) 14 0 0 1 1 14 1
(2, 2, 2, 1, 1) 28 0 0 7 28 1

(2, 2, 1, 1, 1, 1) 20 0 0 20 1 1
(2, 1, 1, 1, 1, 1, 1) 7 0 0 0 7 1

(1, 1, 1, 1, 1, 1, 1, 1) 1 0 0 0 0

Among these codes arising from 2-modular irreducible representations of symmetric
groups, there are — besides the trivially optimal codes and the codes for which the
minimal distance is not yet available for reasons of computer power — the distance
optimal binary codes with the parameter triples(n, k, d) equal to

(9, 4, 4) and(14, 8, 4).

A. Betten, see his home page

http://www.math.colostate.edu/ betten

found out that there are exactly 4 isometry classes of(9, 4, 4)-codes and exactly 48
isometry classes of(14, 8, 4)-codes overF2 among the altogether 134 isometry classes
of binary(9, 4)-codes and the 102.445 classes of binary(18, 4)-codes without columns
containing zeros only. The total numbers of isometry classes were obtained by H.
Fripertinger, see

http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html
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