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0. Introduction

Using a combinatorial approach which avoids geometry, this paper studies the ring structure
of KT (G/B), the T -equivariant K-theory of the (generalized) flag variety G/B. Here, the data
G ⊇ B ⊇ T is a complex reductive algebraic group (or symmetrizable Kac-Moody group)G, a Borel
subgroup B, and a maximal torus T , and KT (G/B) is the Grothendieck group of T -equivariant
coherent sheaves on G/B. Because of the T -equivariance the ring KT (G/B) is an R-algebra, where
R is the representation ring of T . As explained by Grothendieck [Gd] (in the non Kac-Moody case)
and Kostant and Kumar [KK] (in the general Kac-Moody case), the ring KT (G/B) has a natural
R-basis {[OXw

] | w ∈ W}, where W is the Weyl group and OXw
is the structure sheaf of the

Schubert variety Xw ⊆ G/B. One of the main problems in the field is to understand the structure
constants of the ring KT (G/B) with this basis, that is, the coeffients czwv in the equations

[OXw
][OXv

] =
∑

z∈W

czwv[OXz
]. (0.1)

Our approach is to work completely combinatorially and defineKT (G/B) as a quotient of the affine
nil-Hecke algebra. The fact that the combinatorial approach coincides with the geometric one is
a consequence of the results of Kostant and Kumar [KK] and Demazure [D]. In the combinatorial
literature the elements [OXw

] are often called (double) Grothendieck polynomials.
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Let P be the weight lattice of G and, for λ ∈ P , let [Xλ] be the homogeneous line bundle
on G/B corresponding to the character of T indexed by λ. The theorem of Pittie [P] says that
the ring KT (G/B) is generated by the [Xλ], λ ∈ P . Steinberg [St] strengthened this result by
displaying specific [X−λw ], w ∈ W , which form an R-basis of KT (G/B). These results are often
collectively known as the “Pittie-Steinberg theorem”.

The theorems which we prove in Section 2 are simply different points of view on the Pittie-
Steinberg theorem. Though we are not aware of any reference which states these theorems in the
generality which we consider, these theorems should be considered well known.

Let s1, . . . , sn be the simple reflections in W (determined by the data (G ⊇ B ⊇ T )), let w0 be
the longest element of W and let P+ be the set of dominant weights in P . The Schubert varieties
Xw0si are the codimension one Schubert varieties in G/B. In section 3 we prove “Pieri-Chevalley”
formulas for the products

[Xλ][OXw
], [X−λ][OXw

], [Xw0λ][OXw
], and [OXw0si

][OXw
], (0.2)

for λ ∈ P+, w ∈ W and 1 ≤ i ≤ n. All of these Pieri-Chevalley formulas are given in terms
of the combinatorics of the Littelmann path model [Li1-3]. The formula which we give for the
first product in (0.2) is due to Pittie and Ram [PR1]. In this paper we provide more details of
proof than appeared in [PR1]. The other formulas for the products in (0.2) follow by applying
the duality theorem of Brion [Br, Theorem 4] to the first formula. However, here we give an
independent, combinatorial, proof and deduce Brion’s result as a consequence. The last formula is
a consequence of the nice formula

[OXw0si
] = 1− ew0ωi [X−ωi ], (0.3)

which is an easy consequence of the first two Pieri-Chevalley rules.

It is not difficult to “specialize” product formulas for KT (G/B) to corresponding product
formulas for K(G/B), H∗

T (G/B), and H∗(G/B) (by using the Chern character and comparing
lowest degree terms, and ignoring the T -action). Thus the products which are computed in this
paper also give results for ordinary Grothendieck polynomials, double Schubert polynomials, and
ordinary Schubert polynomials. In section 4 we explain how to do these conversions. For most of
these cases the specialized versions of our Pieri-Chevalley rules are already very well known (see,
for example, [Ch]).

In Section 5 we give explicitly

(a) two different kinds of formulas for [OXw
] in terms of Xλ, and

(b) complete computations of the products in (0.1)

for the rank two root systems. This data allows us to make a “positivity conjecture” for the coeffi-
cients czwv in (0.1). This conjecture generalizes the theorems of Brion [Br, formula before Theorem
1] and Graham [Gr, Corollary 4.1], which treat the cases K(G/B) and H∗

T (G/B), respectively.

Acknowledgement. It is a pleasure to thank Alain Lascoux for setting the foundations of the
subject of this paper. Our approach is heavily influenced by his teachings. In particular, he has
always promoted the study of the flag variety by divided difference operators (the affine, or graded,
nil-Hecke algebra), it is his work with Fulton in [FL] that provided the motivation for the Pieri-
Chevalley rules as we present them, and it his idea of “transition” (see, for example, the beautiful
paper [La]) which allows us to obtain product formulas for Schubert classes in the form which we
have given in Section 5 of this paper.
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1. Preliminaries

Fix the following data and notation:

h∗ is a real vector space of dimension n,
R is a reduced irreducible root system in h∗,
R+ is a set of positive roots in R,
W is the Weyl group of R,
s1, . . . , sn are the simple reflections in W,
mij is the order of sisj in W , i 6= j,
R(w) = {α ∈ R+ | wα 6∈ R+} is the inversion set of w ∈ W ,
ℓ(w) = Card(R(w)) is the length of w ∈ W ,
≤ is the Bruhat-Chevalley order on W ,
α1, . . . , αn are the simple roots in R+,
ω1, . . . , ωn are the fundamental weights,
P =

∑n
i=1 Zωi is the weight lattice,

P+ =
∑n

i=1 Z≥0ωi is the set of dominant integral weights.

For a brief, easy, introduction to root systems with lots of pictures for visualization see [NR]. By
[Bou VI §1 no. 6 Cor. 2 to Prop. 17], if w = si1 · · · sip be a reduced word for w, then

R(w) = {αip , sipαip−1
, . . . , sip · · · si2αi1}, (1.1)

The affine nil-Hecke algebra is the algebra H̃ given by generators T1, . . . , Tn and Xλ, λ ∈ P ,
with relations

T 2
i = Ti, TiTjTi · · ·︸ ︷︷ ︸

mij factors

= TjTiTj · · ·︸ ︷︷ ︸
mij factors

, XλXµ = Xλ+µ, (1.2)

and

XλTi = TiX
siλ +

Xλ −Xsiλ

1−X−αi
. (1.3)

Let Tw = Ti1 · · ·Tip for a reduced word w = si1 · · · sip . Then

{XλTw | w ∈ W,λ ∈ P} and {TwX
λ | w ∈ W,λ ∈ P} (1.4)

are bases of H̃.
Both the nil-Hecke algebra,

H = Z-span{Tw | w ∈ W}, and Z[X] = Z-span{Xλ | λ ∈ P} (1.5)

are subalgebras of H̃. The action of W on Z[X] is given by defining

wXλ = Xwλ, for w ∈ W , λ ∈ P , (1.6)

and extending linearly. The proof of the following theorem is given in [R, Theorem 1.13 and
Theorem 1.17]. The first statement of the theorem is due to Bernstein, Zelevinsky, and Lusztig
[Lu, 8.1] and the second statement is due to Steinberg [St] and is known as the Pittie-Steinberg
theorem.
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Theorem 1.7. Define
λw = w−1

∑

siw<w

ωi, for w ∈ W. (1.8)

The center of H̃ is Z(H̃) = Z[X]W and each element f ∈ Z[X] has a unique expansion

f =
∑

w∈W

fwX
−λw , with fw ∈ Z[X]W . (1.9)

Let εi = 1 − Ti and let εw = εi1 · · · εip for a reduced word w = si1 · · · sip . Then εw is well
defined and independent of the reduced word for w since

ε2i = εi, and εiεjεi · · ·︸ ︷︷ ︸
mij factors

= εjεiεj · · ·︸ ︷︷ ︸
mij factors

. (1.10)

The second equality is a consequence of the formulas

εw =
∑

v≤w

(−1)ℓ(v)Tv and Tw =
∑

v≤w

(−1)ℓ(v)εv (1.11)

which are straightforward to verify by induction on the length of w.

2. The ring KT (G/B)

LetH and Z[X] be as in (1.5). The trivial representation ofH is defined by the homomorphism
1:H → Z given by 1(Ti) = 1. The first of the maps

Z[X]
∼
−→ H̃Tw0

∼
−→ H̃ ⊗H 1

f 7−→ fTw0
7−→ f ⊗ 1

is an H̃-module isomorphism if the action of H̃ on Z[X] is given by

Ti · f =
Xαif − sif

Xαi − 1
, for f ∈ Z[X]. (2.1)

The group algebra of P is

R = Z-span{eλ | λ ∈ P} with eλeµ = eλ+µ, (2.2)

for λ, µ ∈ P . Extend coefficients to R so that H̃R = R⊗Z H̃ and R[X] = R⊗ZZ[X] are R-algebras.
Define KT (G/B) to be the H̃R-module

KT (G/B) = R-span{[OXw
] | w ∈ W}, (2.3)

so that the [OXw
], w ∈ W , are an R-basis of KT (G/B), with H̃R-action given by

Xλ[OX1
] = eλ[OX1

], and Ti[OXw
] =

{
[OXwsi

], if wsi > w,
[OXw

], if wsi < w.
(2.4)
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If R is an R[X]-module via the R-algebra homomorphism given by

e: R[X] −→ R
Xλ 7−→ eλ

(2.5)

then, as H̃R-modules,KT (G/B) ∼= H̃R⊗R[X]Re, whereRe is theR-rank 1R[X]-module determined
by the homomorphism e.

Let Q be the field of fractions of R and let Q be the algebraic closure of Q. For w ∈ W let

bw in Q⊗R KT (G/B) be determined by Xλbw = ewλbw, for λ ∈ P . (2.6)

If the bw exist, then they are a Q-basis of Q⊗RKT (G/B) since they are eigenvectors with distinct
eigenvalues. If τi, 1 ≤ i ≤ n, are the operators on Q̄⊗R KT (G/B) given by

τi = Ti −
1

1−X−αi
, then b1 = [OX1

] and τibw = bwsi , for wsi > w, (2.7)

because, a direct computation with relation (1.3) gives that Xλτibw = τiX
siλbw = τie

wsiλbw =
ewsiλbwsi . Thus the bw, w ∈ W , exist and the form of the τ -operators shows that, in fact, they
form a Q-basis of Q⊗R KT (G/B) (it was not really necessary to extend coefficients all the way to
Q). Equations (2.6) and (2.7) force

τiτjτi · · ·︸ ︷︷ ︸
mij factors

= τjτiτj · · ·︸ ︷︷ ︸
mij factors

, and the equality τ2i =
1

(Xαi − 1)(X−αi − 1)

is checked by direct computation using (1.3). Let τw = τi1 · · · τip for a reduced word w = si1 · · · sip .
Then, for w ∈ W ,

bw = τw−1b1, [OXw
] = Tw−1 [OX1

] and we define [IXw
] = εw−1 [OX1

], (2.8)

where εw is as in (1.11). In terms of geometry, [OXw
] is the class of the structure sheaf of the

Schubert variety Xw in G/B and, up to a sign, [IXw
] is class of the sheaf IXw

determined by the
exact sequence 0 → IXw

→ OXw
→ O∂Xw

→ 0, where ∂Xw =
⊔

v<w BvB (see [Ma, Theorem
2.1(ii)] and [LS, equation (4)]. We are not aware of a good geometric characterization of the basis
{[X−λw ] | w ∈ W} of KT (G/B) which appears in the following theorem.

Theorem 2.9. Let λw, w ∈ W , be as defined in Theorem 2.9 and let [Xλ] = Xλ[OXw0
] =

XλTw0
[OX1

] for λ ∈ P . Then the [X−λw ], w ∈ W , form an R-basis of KT (G/B).

Proof. Up to constant multiples, [OXw0
] = Tw0

[OX1
] is determined by the property

Ti[OXw0
] = [OXw0

], for all 1 ≤ i ≤ n. (2.10)

If constants cw ∈ Q are given by

[OXw0
] =

∑

w∈W

cwbw,

then comparing coefficients of bwsi , for wsi > w, on each side of (2.10) yields a recurrence relation
for the cw,

cw = cwsi

(
1

1− e−wαi

)
for wsi > w, which implies cw0v−1 =

∏

α∈R(v)

1

1− ew0α
, (2.11)
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via (1.1) and the fact that cw0
= 1. Thus,

[X−λv ] = X−λv [OXw0
] =

∑

w∈W

cwe
−wλvbw,

and if C, M and A are the |W | × |W | matrices given by

C = diag(cw), M = (e−wλv), and A = (azw), where bw =
∑

z∈W

azw[OXz
],

then the transition matrix between the X−λv and the [OXz
] is the product ACM . By (2.8) and

the definition of the τi, the matrix A has determinant 1. Using the method of Steinberg [St] and
subtracting row e−sαwλv from row e−wλv in the matrix M allows one to conclude that det(M) is
divisible by

∏

α∈R+

(1− e−α)|W |/2 and identifying
∏

w∈W

e−wλw =
n∏

i=1

∏

siw<w

e−ωi = (e−ρ)|W |/2

as the lowest degree term determines det(M) exactly. Thus,

det(ACM) = 1 ·


 ∏

w∈W

∏

α∈R(w)

1

1− e−α



(
eρ
∏

α∈R+

(
1− e−α

)
)|W |/2

= (eρ)|W |/2.

Since this is a unit in R, the transition matrix between the [OXw
] and the X−λv is invertible.

Theorem 2.12. The composite map

Φ: R[X] −→ H̃RTw0
→֒ H̃R −→ KT (G/B)

f 7−→ fTw0
h 7−→ h[OX1

]

is surjective with kernel
kerΦ = 〈f − e(f) | f ∈ R[X]W 〉,

the ideal of the ring R[X] generated by the elements f − e(f) for f ∈ R[X]W . Hence

KT (G/B) ∼=
R[X]

〈f − e(f) | f ∈ R[X]W 〉

has the structure of a ring.

Proof. Since Φ(Xλ) = XλTw0
[OX1

] = Xλ[OXw0
], it follows from Theorem 2.9 that Φ surjective.

Thus KT (G/B) ∼= R[X]/ ker Φ. Let I = 〈f − e(f) | f ∈ R[X]W 〉. If f ∈ R[X]W then, for all λ ∈ P ,

Φ(Xλ(f − e(f))) = Xλ(f − e(f))Tw0
[OX1

] = XλTw0
(f − e(f))[OX1

]

= XλTw0
(e(f)− e(f))[OX1

] = 0,

since f − e(f) ∈ Z(H̃R). Thus I ⊆ kerΦ. The ring KT (G/B) = R[X]/ ker Φ is a free R-module of
rank |W | and, by Theorem 1.7, so is R[X]/I. Thus kerΦ = I.
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3. Pieri-Chevalley formulas

Recall that both

{XλTw−1 | λ ∈ P,w ∈ W} and {Tz−1Xµ | µ ∈ P, z ∈ W} are bases of H̃ .

If cµ,zw,λ ∈ Z are the entries of the transition matrix between these two bases,

XλTw−1 =
∑

z∈W,µ∈P

cµ,zw,λTz−1Xµ, (3.1)

then applying each side of (3.1) to [OX1
] gives that

[Xλ][OXw
] =

∑

z∈W,µ∈P

cµ,zw,λe
µ[OXz

] , in KT (G/B).

This is the most general form of “Pieri-Chevalley rule”. The problem is to determine the coefficients
cµ,zw,λ.

The path model

A path in h∗ is a piecewise linear map p: [0, 1] → h∗ such that p(0) = 0. For each 1 ≤ i ≤ n
there are root operators ei and fi (see [L3] Definitions 2.1 and 2.2) which act on the paths. If
λ ∈ P+ the path model for λ is

T λ = {fi1fi2 · · · filpλ},

the set of all paths obtained by applying the root operators to pλ, where pλ is the straight path
from 0 to λ, that is, pλ(t) = tλ, 0 ≤ t ≤ 1. Each path p in T λ is a concatenation of segments

p = pa1

w1λ
⊗pa2

w2λ
⊗· · ·⊗par

wrλ
with w1 ≥ w2 ≥ · · · ≥ wr and a1+a2+ · · ·+ar = 1, (3.2)

where, for v ∈ W and a ∈ (0, 1], pavλ is a piece of length a from the straight line path pvλ = vpλ.
If Wλ = Stab(λ) then the wj should be viewed as cosets in W/Wλ and ≥ denotes the order on
W/Wλ inherited from the Bruhat-Chevalley order on W . The total length of p is the same as the
total length of pλ which is assumed (or normalized) to be 1. For p ∈ T λ let

p(1) =

r∑

i=1

aiwiλ be the endpoint of p,

ι(p) = w1, the initial direction of p, and

φ(p) = wr, the final direction of p.

If h ∈ T λ is such that ei(h) = 0 then h is the head of its i-string

Sλ
i (h) = {h, fih, . . . , f

m
i h},

where m is the smallest positive integer such that fm
i h 6= 0 and fm+1

i h = 0. The full path model
T λ is the union of its i-strings. The endpoints and the inital and final directions of the paths in
the i-string Sλ

i (h) have the following properties:

(fk
i h)(1) = h(1)− kαi, for 0 ≤ k ≤ m,

either ι(h) = ι(fih) = · · · = ι(fm
i h) < siι(h)

or ι(h) < ι(fih) = · · · = ι(fm
i h) = siι(h), and

either siφ(f
m
i h) < φ(h) = · · · = φ(fm−1

i h) = φ(fm
i h)

or siφ(f
m
i h) = φ(h) = · · · = φ(fm−1

i h) < φ(fm
i h).

(3.3)
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The first property is [L2] Lemma 2.1a, the second is is [L1] Lemma 5.3, and the last is a result of
applying [L2] Lemma 2.1e to [L1] Lemma 5.3. All of these facts are really coming from the explicit
form of the action of the root operators on the paths in T λ which is given in [L1] Proposition 4.2.

Let λ ∈ P+, w ∈ W and z ∈ W/Wλ, and let p ∈ T λ be such that ι(p) ≤ wWλ and
φ(p) ≥ z. Write p in the form (3.2) and let w̃1, . . . , w̃r, z̃ be the maximal (in Bruhat order) coset
representatives of the cosets w1, . . . , wr, z such that

w ≥ w̃1 ≥ w̃2 ≥ · · · ≥ w̃r ≥ z̃. (3.4)

Theorem 3.5. Recall the notation εv from (1.11). Let λ ∈ P+ and let Wλ = Stab(λ). Let
w ∈ W . Then, in the affine nil-Hecke algebra H̃,

XλTw−1 =
∑

p∈T λ

ι(p)≤wWλ

Tφ(p)−1Xp(1) and Xλεw−1 =
∑

p∈T λ

ι(p)=w

∑

z∈W/Wλ
z≤φ(p)

(−1)ℓ(w)+ℓ(z)εz̃−1Xp(1),

where, if Wλ 6= {1} then Tφ(p)−1 = Tw̃−1
r

and εz−1 = εz̃−1 with w̃r and z̃ as in (3.4).

Proof. (a) The proof is by induction on ℓ(w). Let w = siv where siv > v. Define

T λ
≤w = {p ∈ T λ | ι(p) ≤ wWλ}.

Assume w = siv > v. Then the facts in (3.3) imply that
(1) T λ

≤w is a union of the strings Si(h) such that h ∈ T λ
≤v, and

(2) If h ∈ T λ
≤v then either Si(h) ⊆ T λ

≤v or Si(h) ∩ T λ
≤v = {h}.

Using the facts in (3.3), a direct computation with the relation (1.3) establishes that, if h ∈ T λ
≤v

then ∑

p∈Si(h)

Tφ(p)−1Xη(1) = Tφ(h)−1Xh(1)Ti, and

∑

p∈Si(h)

Tφ(p)−1Xη(1) =

{
Tφ(h)−1Xh(1)Ti, if Si(h) ⊆ T λ

≤v,

Tφ(h)−1Xh(1)Ti, if Si(h) ∩ T λ
≤v = {h}.

Thus

XλTw−1 = XλTv−1Ti =



∑

p∈T λ
≤v

Tφ(p)−1Xp(1)


Ti (by induction)

=
∑

h∈T λ
≤v

ei(h)=0




∑

Si(h)⊆T λ
≤v

∑

p∈Si(h)

Tφ(p)−1Xp(1) +
∑

Si(h)∩T λ
≤v

={h}

Tφ(h)−1Xh(1)


 Ti

=
∑

h∈T λ
≤w

ei(h)=0




∑

Si(h)⊆T λ
≤v

Tφ(h)−1Xh(1)Ti +
∑

Si(h)∩T λ
≤v

={h}

Tφ(h)−1Xh(1)


Ti

=
∑

h∈T λ
≤w

ei(h)=0




∑

Si(h)⊆T λ
≤v

Tφ(h)−1Xh(1)Ti +
∑

Si(h)∩T λ
≤v

={h}

∑

p∈Si(h)

Tφ(p)−1Xp(1)




=
∑

p∈T λ
≤w

Tφ(p)−1Xp(1).
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(b) The proof is similar to case (a). For w ∈ W let

T λ
=w = {p ∈ T λ | ι(p) = wWλ}.

Assume w = siv > v. Then the facts in (3.3) imply that
(1) T λ

=w is a union of the strings Si(h) such that h ∈ T λ
=h, and

(2) If h ∈ T λ
=v then either Si(h) ⊆ T λ

=v or Si(h) ∩ T λ
=v = {h}.

Let
Eφ(p) =

∑

z∈W/Wλ
z≤φ(p)

(−1)ℓ(z)εz̃−1 . (3.6)

Using (3.3), a direct computation with the relation (1.3) establishes that, if h ∈ T λ
=v with eih = 0

then ∑

p∈Si(h)

Eφ(p)X
p(1)Ti = 0, and Eφ(h)X

h(1)Ti = −
∑

p∈Si(h)−{h}

Eφ(p)X
p(1).

Thus

Xλεw−1 = Xλεv−1εi = (−1)ℓ(v)


 ∑

p∈T λ
=v

Eφ(p)X
p(1)


Ti

= (−1)ℓ(v)


 ∑

Si(h)⊆T λ
=v

∑

p∈Si(h)

Eφ(p)X
p(1) +

∑

Si(h)∩T λ
=v={h}

Eφ(h)X
h(1)


Ti

= (−1)ℓ(v)


0−

∑

Si(h)∩T λ
=v={h}

∑

p∈Si(h)−{h}

Eφ(p)X
p(1)




= (−1)ℓ(w)


 ∑

p∈T λ
=w

Eφ(p)X
p(1)


 .

Corollary 3.7. Let λ, µ ∈ P+ and let w ∈ W . Then, in the affine nil-Hecke algebra H̃ ,

X−λTw−1 =
∑

p∈T −w0λ

φ(p)=ww0

∑

z∈W/W−w0λ

zw0≥ι(p)

(−1)ℓ(w)+ℓ(z)Tz̃−1Xp(1) and

Xw0µTw−1 =
∑

p∈T µ

φ(p)=ww0

∑

z∈W/Wµ
zw0≤φ(p)

(−1)ℓ(w)+ℓ(z)Tz̃−1Xp(1).

Proof. The second identity is a restatement of the first with a change of variable µ = −w0λ. The
first identity is obtained by applying the algebra involution

H̃ −→ H̃
Tw 7−→ εw
Xλ 7−→ X−λ

and the bijection
T λ −→ T −w0λ

p −→ p∗
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where p∗ is the same path as p except translated so that its endpoint is at the origin. Representation
theoretically, this bijection corresponds to the fact that L(λ)∗ ∼= L(−w0λ), if L(λ) is the simple
G-module of highest weight λ. Note that p∗(1) = −p(1), ι(p∗) = φ(p)w0, and φ(p∗) = ι(p)w0.

Applying the identities from Theorem 3.5 and Corollary 3.7 to [OX1
] yields the following

product formulas in KT (G/B). In particular, this gives a combinatorial proof of the (T -equivariant
extension) of the duality theorem of Brion [Br, Theorem 4]. For λ ∈ P and w ∈ W let [Xλ] =
Xλ[OXw0

] = XλTw0
[OX1

] and let czλ,w be given by

[Xλ][OXw
] =

∑

z∈W

czλ,w[OXz
], (3.8)

Corollary 3.9. Let λ ∈ P+, w ∈ W and Wλ = Stab(λ). Then, with notation as in (3.8),

czλ,w =
∑

p∈T λ

wWλ≥ι(p)≥φ(p)=zWλ

ep(1),

czw0λ,w
= (−1)ℓ(w)+ℓ(z)cww0

λ,zw0
, and cz−λ,w = (−1)ℓ(w)+ℓ(z)cww0

−w0λ,zw0
.

Proposition 3.10. For 1 ≤ i ≤ n, [OXw0si
] = 1− ew0ωi [X−ωi ].

Proof. We shall show that

X−ωi [OXw0
] = e−w0ωi([OXw0

]− [OXw0si
]), (3.11)

and the result will follow by solving for [OXsiw0
]. Let ωj = −w0ωi. By Corollary 3.9,

cz−ωi,w0
= (−1)ℓ(w0)+ℓ(z)c1ωj ,zw0

= (−1)ℓ(w0)+ℓ(z)
∑

p∈T
ωj

zw0≥ι(p)≥φ(p)=1

ep(1).

The straight line path to ωj , pωj
, has ιzw0

(pωj
) = φzw0

(ωj) and is the unique path in T ωj which
may have final direction 1. Suppose φzw0

(pωj
) = 1. Then, since sj is the only simple reflection

which is not in Stab(ωj), it must be that zw0 6≥ sk for all k 6= j. Thus zw0 = 1 or zw0 = sj and
so cz−ωi,w0

6= 0 only if z = w0 or z = sjw0 = w0si. Now (3.11) follows since pωj
has endpoint

ωj = −w0ωi.

Corollary 3.12. Let czwv be as in (3.8). Then, for 1 ≤ i ≤ n, cww0si,w = −(e−(wωi−w0ωi) − 1), and

czw0si,w = (−1)ℓ(w)+ℓ(z)+1
∑

p∈T −w0ωi

zw0≥ι(p)≥φ(p)=ww0

ew0ωi+p(1), for z 6= w.

Proof. This follows from Proposition 3.10 and Corollary 3.9 and the fact that, in the case when
z = w, there is a unique path p with ww0 = ι(p) = φ(p) = ww0 and endpoint p(1) = ww0(−w0ωi) =
−wωi.
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4. Converting to H∗
T (G/B)

The graded nil-Hecke algebra is the algebra Hgr given by generators t1, . . . , tn and xλ, λ ∈ P ,
with relations

t2i = 0, titjti · · ·︸ ︷︷ ︸
mij factors

= tjtitj · · ·︸ ︷︷ ︸
mij factors

, xλ+µ = xλ + xµ, and xλti = tixsiλ + 〈λ, α∨
i 〉. (4.1)

The subalgebra of Hgr generated by the xλ is the polynomial ring Z[x1, . . . , xn], where xi = xωi
,

and W acts on Z[x1, . . . , xn] by

wxλ = xwλ and w(fg) = (wf)(wg), for w ∈ W , λ ∈ P , f, g ∈ Z[x1, . . . , xn].

Then the last formula in (4.1) generalizes to

fti = ti(sif) +
f − sif

αi
, for f ∈ Z[x1, . . . , xn].

Let tw = ti1 · · · tip for a reduced word w = si1 · · · sip and let ZW ∗ be the subalgebra of Hgr spanned
by the tw, w ∈ W . Then

{xm1
1 · · · xmn

n tw | w ∈ W, mi ∈ Z≥0} and {twx
m1
1 · · · xmn

n | w ∈ W, mi ∈ Z≥0}

are bases of Hgr.
Let S = Z[y1, . . . , yn] and extend coefficients to S so thatHgr,S = S⊗ZHgr and S[x1, . . . , xn] =

S ⊗Z Z[x1, . . . , xn] are S-algebras. Define H∗
T (G/B) to be the Hgr,S module

H∗
T (G/B) = S-span{[Xw] | w ∈ W}, (4.2)

so that the [Xw], w ∈ W , are an S-basis of KT (G/B), with Hgr,S-action given by

xi[X1] = yi[X1], and ti[Xw] =

{
[Xwsi ], if wsi > w,
0, if wsi < w,

(4.3)

Let y be the S-algebra homomorphism given by

y: S[x1, . . . , xn] −→ S
xi 7−→ yi

so that H∗
T (G/B) ∼= Hgr,S ⊗S[x1,...,xn] y as Hgr,S-modules Then, using analogous methods to the

KT (G/B) case proves the following theorem, which gives the ring structure of H∗T (G/B) (see also
the proof of [KR, Prop. 2.9] for the same argument with (non-nil) graded Hecke algebras).

Theorem 4.4. The composite map

Φ: S[x1, . . . , xn] −→ Hgr,Stw0
→֒ Hgr,S −→ H∗

T (G/B)
f 7−→ ftw0

h 7−→ h[X1]

is surjective with kernel
kerΦ = 〈f − y(f) | f ∈ S[x1, . . . , xn]

W 〉,
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the ideal of the ring S[x1, . . . , xn] generated by the elements f−y(f) for f ∈ S[x1, . . . , xn]
W . Hence

H∗
T (G/B) ∼=

Z[y1, . . . , yn, x1, . . . , xn]

〈f − y(f) | f ∈ S[x1, . . . , xn]W 〉

has the structure of a ring.

As a vector space Hgr = Z[x1, . . . , xn] ⊗ ZWgr. Let Ĥgr = Q[[x1, . . . , xn]] ⊗ QWgr with

multiplication determined by the relations in (4.1). Then Ĥgr is a completion of Hgr (this simply

allows us to write infinite sums) and the elements of Ĥgr given by

ch(Xλ) =
∑

r≥0

1
r!
xr
λ and ch(Ti) = ti ·

xαi

1− ch(Xαi)
(4.5)

satisfy the relations of H̃ and thus ch extends to a ring homomorphism ch: H̃ −→ Ĥgr. It is this fact
that really makes possible the transfer from K-theory to cohomomology possible. Though is it not
difficult to check that the elements in (3.5) satisfy the defining relations of H̃ it is helpful to realize
that these formulas come from geometry. As explained in [PR2], the action of Ti on KT (G/B) and
the action of ti on H∗

T (G/B) are, respectively, the push-pull operators π∗
i (πi)! and π∗

i (πi)∗, where
if Pi is a minimal parabolic subgroup of G then πi:G/Pi → G/B is the natural surjection. Then
the first formula in (3.5) is the definition of the Chern character, and the second formula is the
Grothedieck-Riemann-Roch theorem applied to the map πi. The factor αi/(1 − ch(Xαi)) is the
Todd class of the bundle of tangents along the fibers of πi (see [Hz, page 91]).

Then Ĥ∗
T (G/B)Q = Q[[y1, . . . , yn]] ⊗Z[y1,...,yn] H

∗
T (G/B) is the appropriate completion of

H∗
T (G/B) to use to transfer the ring homomorphism ch: H̃R → Ĥgr to a ring homomorphism

ch:KT (G/B) −→ Ĥ∗
T (G/B)Q by setting ch(h[OX1

]) = ch(h)[X1], for h ∈ H̃R. (4.6)

The ring Ĥ∗
T (G/B)Q is a graded ring with

deg(yi) = 1 and deg([Xw]) = ℓ(w0)− ℓ(w), (4.7)

and, for w ∈ W , ch([OXw
]) = [Xw] + higher degree terms. (4.8)

In summary, if ei = eωi , Xi = Xωi , yi = yωi
, xi = xωi

,

R[X] = Z[e±1
1 , . . . , e±1

n ,X±1
1 , . . . ,X±1

n ],

Z[X] = Z[X±1
1 , . . . ,X±1

n ],
and Ŝ[x1, . . . , xn] = Q[[y1, . . . , yn]][x1, . . . , xn],

then there is a commutative diagram of ring homomorphisms

KT (G/B) =
R[X]

〈f − e(f) | f ∈ R[X]W 〉
ch
−→ H∗

T (G/B)Q =
Ŝ[x1, . . . , xn]

〈f − y(f) | f ∈ Ŝ[x1, . . . , xn]W 〉

yei=1

yyi=0

K(G/B) =
Z[X]

〈f − f(1) | f ∈ Z[X]W 〉

ch
−→ H∗(G/B)Q =

Q[x1, . . . , xn]

〈f − f(0) | f ∈ Q[x1, . . . , xn]W 〉
.
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5. Rank two and a positivity conjecture

In this section we will give explicit formulas for the rank two root systems. The data supports
the following positivity conjecture which generalizes the theorems of Brion [Br, formula before
Theorem 1] and Graham [Gr, Corollary 4.1].

Conjecture 5.1. For β ∈ R+ let yβ = e−β and aβ = e−β − 1 and let d(w) = ℓ(w0) − ℓ(w) for
w ∈ W . Let czwv be the structure constants of KT (G/B) with respect to the basis {[OXw

] | w ∈ W}
as defined in (0.1). Then

czwv = (−1)d(w)+d(v)−d(z)f(α, y), where f(α, y) ∈ Z≥0[αβ , yβ | β ∈ R+],

that is, f(α, y) is a polynomial in the variables αβ and yβ , β ∈ R+, which has nonnegative integral
coefficients.

In the following, for brevity, use the following notations:

in KT (G/B), [w] = [OXw
], αrs = e−(rα1+sα2) − 1, and yrs = e−(rα1+sα2),

in K(G/B), [w] = [OXw
], αrs = 0, and yrs = 1,

in H∗
T (G/B), [w] = [Xw], αrs = rα1 + sα2, and yrs = 1,

in H∗(G/B), [w] = [Xw], αrs = 0, and yrs = 1,

and in H∗
T (G/B) and in H∗(G/B) the terms in { } brackets do not appear.

Type A2. For the root system R of type A2

α1 = −ω1 + 2ω2, λ1 = ρ, λs1 = ω2 = 1
3
α1 +

2
3
α2, λs2s1 = s2ω2 = 1

3
α1 −

1
3
α2,

α2 = 2ω1 − ω2, λw0
= 0, λs2 = ω1 = 2

3α1 +
1
3α2, λs1s2 = s1ω1 = − 1

3α1 +
1
3α2.

Formulas for the Schubert classes in terms of homogeneous line bundles can be given by

[s1s2s1] = 1, [1] = (1− es1ω1X−ω1)[s1] = (1− es2ω2X−ω2)[s2],
[s2s1] = 1− e−ω1X−ω2 , [s1s2] = 1− e−ω2X−ω1

[s1] = (1− es2ω2X−ω2)[s2s1], [s2] = (1− es1ω1X−ω1)[s1s2],

and

[s1s2s1] = 1, [s1s2] = 1− e−ω2X−ω1 , [s2s1] = 1− e−ω1X−ω2 ,

[s1] = 1− e−ω2X−s1ω1 − e−ω2X−ω1 + e−2ω2X−ω2 ,

[s2] = 1− e−ω1X−s2ω2 − e−ω1X−ω2 + e−2ω1X−ω1 ,

[1] = 1− e−ω2X−s1ω1 − e−ω1X−s2ω2 + e−2ω1X−ω1 + e−2ω2X−ω2 − e−ρX−ρ.

The multiplication of the Schubert classes is given by

[1]2 = −α10α01α11[1],

[1][s1] = α01α11[1],

[1][s2] = α10α11[1],

[1][s1s2] = −α11[1],

[1][s2s1] = −α11[1],

[s1]
2 = α01α11[s1],

[s1][s2] = −α11[1],

[s1][s1s2] = y01[1]− α01[s1],

[s1][s2s1] = −α11[s1],

[s2]
2 = α01α11[s2],

[s2][s1s2] = −α11[s2],

[s2][s2s1] = y10[1]− α10[s2],
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[s1s2]
2 = y01[s2]− α01[s1s2],

[s1s2][s2s1] = {−[1] } + [s1] + [s2],

[s2s1]
2 = y10[s1]− α10[s2s1].

Type B2. For the root system R of type B2

α1 = 2ω1 − ω2, λ1 = ρ = 2α1 +
3
2
α2, λs1 = ω2 = α1 + α2,

α2 = −2ω1 + 2ω2, λw0
= 0, λs2 = ω1 = α1 +

1
2α2,

λs2s1 = s2ω2 = α1, λs1s2s1 = s1s2ω2 = −α1,
λs1s2 = s1ω1 = 1

2α2, λs2s1s2 = s2s1ω1 = − 1
2α2.

Formulas for the Schubert classes in terms of homogeneous line bundles can be given by

[s1s2s1s2] = 1, [1] = (1− es1ω1X−ω1)[s1] = (1− es2ω2X−ω2)[s2],
[s1s2s1] = 1− e−ω2X−ω2 , [s2s1s2] = 1− e−ω1X−ω1 ,
[s2s1] = (1− e−ω1X−s1ω1)[s2s1s2], [s1s2] = (1− es2s1ω1X−ω1)[s2s1s2],
[s1] = (1− es2ω2X−ω2)[s2s1], [s2] = (1− es1ω1X−ω1)[s1s2],

and

[s1s2s1s2] = 1, [s1s2s1] = 1− e−ω2X−ω2 , [s2s1s2] = 1− e−ω1X−ω1 ,

[s1s2] = (1− e−ω2)− e−ω2X−ω2 − e−ω2X−s2ω2 + (e−ρ + e−s1ρ)X−ω1 ,

[s2s1] = 1− e−ω1X−ω1 − e−ω1X−s1ω1 + e−2ω1X−ω2 ,

[s1] = (1− e−ω2) + (e−ρ + e−s1ρ)X−s1ω1 + (e−ρ + e−s1ρ)X−ω1

− e−ω2X−s1s2ω2 − e−ω2X−s2ω2 − (e−2ω2 + e−ω2)X−ω2 ,

[s2] = (1 + e−2ω1) + e−2ω1X−s2ω2 + e−2ω1X−ω2

− e−ω1X−s2s1ω1 − e−ω1X−s1ω1 − (e−3ω1 + e−ω1)X−ω1 ,

[1] = (1 + e−2ω1)− e−ω1X−s2s1ω1 + (e−ρ + e−s1ρ)X−s1ω1 − (e−3ω1 + e−ω1)X−ω1

− e−ω2X−s1s2ω2 + e−2ω1X−s2ω2 − (e−2ω2 + e−ω2)X−ω2 + e−ρX−ρ.

The multiplication of the Schubert classes is given by

[1]2 = α10α01α11α21[1],

[1][s1] = −α01α11α21[1],

[1][s2] = −α10α11α21[1],

[1][s1s2] = α11α21[1],

[1][s2s1] = α11α21[1],

[1][s1s2s1] = −α11(1 + y11)[1],

[1][s2s1s2] = −α21[1],

[s1s2s1]
2 = {−y11[s1] }+ (y01 + y11)[s2s1]− α01[s1s2s1],

[s1s2s1][s2s1s2] = { [1]− [s1]− [s2] }+ [s1s2] + [s2s1],

[s2s1s2]
2 = y10[s1s2]− α10[s2s1s2],

[s2s1]
2 = −α21y10[s1] + α10α21[s2s1],

[s2s1][s1s2s1] = y21[s1]− α21[s2s1],

[s2s1][s2s1s2] = {−y10[1] }+ y10[s1] + y10[s2]− α10[s2s1],

[s1]
2 = −α01α11α21[s1],

[s1][s2] = α11α21[1],

[s1][s1s2] = −α11(y01 + y11)[1] + α01α11[s1],

[s1][s2s1] = α11α21[s1],

[s1][s1s2s1] = −α11(1 + y11)[s1],

[s1][s2s1s2] = y11[1]− α11[s1],

[s2]
2 = −α10α11α21[s2],

[s2][s1s2] = α11α21[s2],

[s2][s2s1] = −α21y10[1] + α10α21[s2],

[s2][s1s2s1] = y21[1]− α21[s2],

[s2][s2s1s2] = −α21[s2],
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[s1s2]
2 = −α11(y01 + y11)[s2] + α01α11[s1s2],

[s1s2][s2s1] = ({α11 }+ y21)[1]− α11[s1]− α21[s2],

[s1s2][s1s2s1] = {−(y01 + y11)[1] }+ y01[s1] + (y11 + y12)[s2]− α01[s1s2],

[s1s2][s2s1s2] = y11[s2]− α11[s1s2],

[s2s1]
2 = −α21y10[s1] + α10α21[s2s1],

[s2s1][s1s2s1] = y21[s1]− α21[s2s1],

[s2s1][s2s1s2] = {−y10[1] }+ y10[s1] + y10[s2]− α10[s2s1],

Type G2. For the root system R of type G2

λ1 = ρ = 5α+ 3α2, λs1s2s1 = s1s2ω2 = α2,
λs1 = ω2 = 3α1 + 2α2, λs2s1s2s1 = s2s1s2ω2 = −α2,
λs2 = ω1 = 2α1 + α2, λs1s2s1s2 = s1s2s1ω1 = −α1,
λs2s1 = s2ω2 = 3α1 + α2, λs1s2s1s2s1 = s1s2s1s2ω2 = −3α1 − α2,
λs1s2 = s1ω1 = α1 + α2, λs2s1s2s1s2 = s2s1s2s1ω1 = −α1 − α2,
λs2s1s2 = s2s1ω1 = α1, λw0

= 0.

Formulas for the Schubert classes in terms of homogeneous line bundles can be given by

[s1s2s1s2s1s2] = 1, [1] = (1− es1ω1X−ω1)[s1] = (1− es2ω2X−ω2)[s2],
[s1s2s1s2s1] = 1− e−ω2X−ω2 , [s2s1s2s1s2] = 1− e−ω1X−ω1 ,
[s2s1s2s1] = (1− e−ω1X−s1ω1)[s2s1s2s1s2], [s1s2s1s2] = (1− e−s1ω1X−ω1)[s2s1s2s1s2],

[s1s2s1] = see below, [s2s1s2] =
1− e−s2s2ω1X−ω1

1 +X−ω1
[s1s2s1s2],

[s2s1] = (1− e−ω1X−s1s2s1ω1)[s2s1s2], [s1s2] = (1− es2s1ω1X−ω1)[s1s2],
[s1] = (1− es2ω2X−ω2)[s2s1], [s2] = (1− es1ω1X−ω1)[s1s2],

[s1s2s1] =
(1− e−α2X−ω2)[s2s1s2s1] + e−α2(1 + eω1X−ω2)[s2s1]

1 + e−α2
,
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and

[w0] = 1, [s2s1s2s1s2] = 1− y21X
−ω1 , [s1s2s1s2s1] = 1− y32X

−ω2 ,

[s2s1s2s1] = 1− y21X
−ω1 − y21X

−s1ω1 + y42X
−ω2 ,

[s1s2s1s2] = (1− y32) + (y22 + y42 + y43 + y53)X
−ω1 − y32X

−s1ω1 − y32X
−s2s1ω1

− y32X
−ω2 − y32X

−s2ω2 ,

[s2s1s2] = (1− y21 + y42) + (y42 − y21 − y52 − y53 − y63)X
−ω1 + (y42 − y21)X

−s1ω1

+ (y42 − y21)X
−s2s1ω1 + y42X

−ω2 + y42X
−s2ω2 ,

[s1s2s1] = (1− 2y32) + (y22 + y42 + y43 + y53)X
−ω1 + (y22 + y42 + y43 + y53)X

−s1ω1

− y32X
−s2s1ω1 − y32X

−s1s2s1ω1

− (y32 + y43 + y53)X
−ω2 − y32X

−s2ω2 − y32X
−s1s2ω2 ,

[s2s1] = (1− y21 + 2y42) + (y42 − y21 − y52 − y53 − y63)X
−ω1

+ (y42 − y21 − y32 − y53 − y63)X
−s1ω1 + (y42 − y21)X

−s2s1ω1

+ (y42 − y21)X
−s1s2s1ω1 + (y42 + y63)X

−ω2 + y42X
−s2ω2 + y42X

−s1s2ω2 ,

[s1s2] = 1− y11 − y21 − y32 − y43 − y53 + (y22 + y32)(1 + y10 + y20)X
−ω1

+ (y22 + y32 + y42)X
−s1ω1 + (y22 + y32 + y42)X

−s2s1ω1

− (y32 + y43 + y53)X
−ω2 − (y32 + y43 + y53)X

−s2ω2 − y32X
−s1s2ω2 − y32X

−s2s1s2ω2 ,

[s2] = (1 + y31 + y32 + 2y42 + y63)− (y21 + y52 + y53 + y84)X
−ω1 − (y21 + y52 + y53)X

−s1ω1

− (y21 + y52 + y53)X
−s2s1ω1 − y21X

−s1s2s1ω1 − y21X
−s2s1s2s1ω1

+ (y42 + y63)X
−ω2 + (y42 + y63)X

−s2ω2 + y42X
−s1s2ω2 + y42X

−s2s1s2ω2 ,

[s1] = 1− (y11 + y21 + y32 + 2y43 + 2y53) + (y22 + y54)(1 + y10 + y20)X
−ω1

+ (y22 + y54)(1 + y10 + y20)X
−s1ω1 + (y22 + y32 + y42)X

−s2s1ω1

+ (y22 + y32 + y42)X
−s1s2s1ω1 − (y32 + y43 + y53 + y64)X

−ω2 − (y32 + y43 + y53)X
−s2ω2

− (y32 + y43 + y53)X
−s1s2ω2 − y32X

−s2s1s2ω2 − y32X
−s1s2s1s2ω2 ,

[1] = (1 + y31 + y42 + y63 − y53 − y43)− y21(1 + y32)
2X−ω1

+ y22(1 + y10 + y20)(1 + y21 + y31)X
−s1ω1 − (y21 + y52 + y53)X

−s2s1ω1

+ y22X
−s1s2s1ω1 − y21X

−s2s1s2s1ω1 − y32(1 + y11)(1 + y21)X
−ω2 + (y42 + y63)X

−s2ω2

− (y32 + y43 + y53)X
−s1s2ω2 + y42X

−s2s1s2ω2 − y32X
−s1s2s1s2ω2 + y53X

−ρ.

The multiplication of the Schubert classes is given by

[1]2 = α10α01α11α21α31α32[1],

[1][s1] = −α01α11α21α31α32[1],

[1][s2] = −α10α11α21α31α32[1],

[1][s1s2] = α11α21α31α32[1],

[1][s2s1] = α11α21α31α32[1],

[1][s1s2s1] = −α11α21α32(1 + y11 + y21)[1],

[1][s2s1s2] = −α21α31α32[1],

[1][s1s2s1s2] = α21α32(1 + y21)[1],

[1][s2s1s2s1] = α21α32(1 + y21)[1],

[1][s1s2s1s2s1] = −α32(1 + y32)[1],

[1][s2s1s2s1s2] = −α21(1 + y21)[1],
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[s1]
2 = −α01α11α21α31α32[s1]

[s1][s2] = α11α21α31α32[1]

[s1][s1s2] = −α11α21α32(y01 + y11 + y21)[1] + α01α11α21α32[s1]

[s1][s2s1] = α11α21α31α32[s1]

[s1][s1s2s1] = −α11α21α32(1 + y11 + y21)[s1]

[s1][s2s1s2] = α21α32(y11 + y21)[1]− α11α21α32[s1]

[s1][s1s2s1s2] = −α32(y22 + y32)[1] + α11α32(1 + y11)[s1]

[s1][s2s1s2s1] = α21α32(1 + y21)[s1]

[s1][s1s2s1s2s1] = −α32(1 + y32)[s1]

[s1][s2s1s2s1s2] = y32[1]− α32[s1]

[s2]
2 = −α10α11α21α31α32[s2]

[s2][s1s2] = α11α21α31α32[s2]

[s2][s2s1] = −α21α31α32y10[1] + α10α21α31α32[s2]

[s2][s1s2s1] = α21α32(y21 + y31)[1]− α21α31α32[s2]

[s2][s2s1s2] = −α21α31α32[s2]

[s2][s1s2s1s2] = α21α32(1 + y21)[s2]

[s2][s2s1s2s1] = −α21(y31 + y52)[1] + α21α31(1 + y21)[s2]

[s2][s1s2s1s2s1] = y63[1]− α21(1 + y21 + y42)[s2]

[s2][s2s1s2s1s2] = −α21(1 + y21)[s2]

[s1s2]
2 = −α11α21α32(y01 + y11 + y21)[s2] + α01α11α21α32[s1s2]

[s1s2][s2s1] = α21α32(y11 + y21 + α31)[1]− α11α21α32[s1]− α21α31α32[s2]

[s1s2][s1s2s1] = −α32(y32 + y42{+α11(y01 + 2y11 + y21) })[1] + α11α32(y01 + y11)[s1]

+
(
α31α32y11 + α11α32(y01 + y11 + y21)

)
[s2]− α01α11α32[s1s2]

[s1s2][s2s1s2] = α21α32(y11 + y21)[s2]− α11α21α32[s1s2]

[s1s2][s1s2s1s2] = −α32(y22 + y32)[s2] + α11α32(1 + y11)[s1s2]

[s1s2][s2s1s2s1] =
(
y63 {+α32(y11 + y21) }

)
[1]− α32y11[s1]−

(
α32(y11 + y21) + α31y32

)
[s2]

+ α11α32[s1s2]

[s1s2][s1s2s1s2s1] = {−(y33 + y43 + y53)[1] }+ y33[s1] + (y33 + y43 + y53)[s2]

− α11(1 + y11 + y22)[s1s2]

[s1s2][s2s1s2s1s2] = y32[s2]− α32[s1s2]
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[s2s1]
2 = −α21α31α32y10[s1] + α10α21α31α32[s2s1]

[s2s1][s1s2s1] = α21α31(y21 + y31)[s1]− α21α31α32[s2s1]

[s2s1][s2s1s2] = −α21(y51 + y52{+α31y10 })[1] + α21(α10y31 + α32y10)[s1]

+ α21α31(y10 + y21)[s2]− α10α21α31[s2s1]

[s2s1][s1s2s1s2] =
(
y62{+α31(y21 + y31) }

)
[1]−

(
α31y21 + α10(y31 + y41)

)
[s1]

−
(
α31y21 + α32y31

)
[s2] + α21α31[s2s1]

[s2s1][s2s1s2s1] = −α21(y31 + y52)[s1] + α21α31(1 + y21)[s2s1]

[s2s1][s1s2s1s2s1] = y63[s1]− α21(1 + y21 + y42)[s2s1]

[s2s1][s2s1s2s1s2] = {−y31[1] } + y31[s1] + y31[s2]− α31[s2s1]

[s1s2s1]
2 = −α32(y32 + y42{+α11(y11 + y21) })[s1]

+
(
α11α32(y01 + y11 + y21) + α31α32y11

)
[s2s1]− α01α11α32[s1s2s1]

[s1s2s1][s2s1s2] =
(
1{+α11(y11 + y22 + y33 + y31 + y42) + α31(y21 + y32) + α32y21 }

)
[1]

−
(
α11(y21 + α32) + α10(y31 + y41 + y32 + y42)

)
[s1]

− (α31(y21 + y32) + α11(y21 + y32 + y31 + α42)[s2]

+ α11α32[s1s2] + α21α31[s2s1]

[s1s2s1][s1s2s1s2] = {−(y33 + 2y43 + y53 + α11(y01 + y11) + α21(y11 + y21))[1] }

+
(
y33 + y43{+α11(y01 + y11) + α21(y11 + y21) }

)
[s1](

(y33 + y43 + y53){+α11(y01 + y11) + α21(y11 + y21) }
)
[s2]

− α11(y01 + y11 + y22)[s1s2]−
(
α11(y01 + y11) + α21(y11 + y21)

)
[s2s1]

+ α01α11[s1s2s1]

[s1s2s1][s2s1s2s1] = (y62{+α32y21 })[s1]−
(
α31y32 + α32(y11 + y21)

)
[s2s1] + α11α32[s1s2s1]

[s1s2s1][s1s2s1s2s1] = {−(y43 + y53)[s1] } + (y33 + y43 + y53)[s2s1]− α11(1 + y11 + y22)[s1s2s1]

[s1s2s1][s2s1s2s1s2] = { (y11 + y21)[1]− (y11 + y21)[s1]− (y11 + y21)[s2] }

+ y11[s1s2] + (y11 + y21)[s2s1]− α11[s1s2s1]

[s2s1s2]
2 = −α21(y21 + y42)[s2] +

(
α11α21y31 + α21α31y10

)
[s1s2]− α10α21α31[s2s1s2]

[s2s1s2][s1s2s1s2] = y53[s2]−
(
α21y31 + α11α21α32y21

)
[s1s2] + α21α31[s2s1s2]

[s2s1s2][s2s1s2s1] = {−
(
y51 + y52 + α31y10

)
[1] }+ (y41{+α31y10 })[s1] + (y42 + y52{+α31y10 })[s2]

− (α11y31 + α31y10)[s1s2]− α31y10[s2s1] + α10α31[s2s1s2]

[s2s1s2][s1s2s1s2s1] = { (y31 + y32 + y42)[1]− (y31 + y32)[s1]− (y31 + y32 + y42)[s2] }

+ (y31 + y32)[s1s2] + y31[s2s1]− α31[s2s1s2]

[s2s1s2][s2s1s2s1s2] = y31[s1s2]− α31[s2s1s2]
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[s1s2s1s2]
2 = {−y43[s2] }+ (y32 + y42{+α01y21 + α32y11 })[s1s2]

−
(
α01(y11 + y21) + α31(y01 + y11)

)
[s2s1s2] + α01α11[s1s2s1s2]

[s1s2s1s2][s2s1s2s1] = { (y21 + y31 + y32 + y42 + α11)[1]

− (y21 + y31 + y32 + α11)[s1]− (y21 + y31 + y32 + y42 + α11)[s2] }

+ (y31 + y42{,+α11 })[s1s2] + (y21 + y31{+α11 })[s2s1]

− α11[s1s2s1]− α31[s2s1s2]

[s1s2s1s2][s1s2s1s2s1] = {−(y01 + y11 + y21 + y22 + y32)[1]

+ (y01 + y11 + y21 + y22)[s1] + (y01 + y11 + y21 + y22 + y32)[s2]

− (y01 + y11 + y21 + y22)[s1s2]− (y01 + y11 + y21)[s2s1] }

+ y01[s1s2s1] + (y01 + y11 + y21)[s2s1s2]− α01[s1s2s1s2]

[s1s2s1s2][s2s1s2s1s2] = {−y21[s1s2] }+ (y11 + y21)[s2s1s2]− α11[s1s2s1s2]

[s2s1s2s1]
2 = {−y52[s1] + (y42 + y52)[s2s1] } − (α11y31 + α31y10)[s1s2s1] + α10α31[s2s1s2s1]

[s2s1s2s1][s1s2s1s2s1] = { y42[s1]− (y31 + y41)[s2s1] } + (y31 + y32)[s1s2s1]− α31[s2s1s2s1]

[s2s1s2s1][s2s1s2s1s2] = {−y10[1] + y10[s1] + y10[s2]− y10[s1s2]− y10[s2s1] }

+ y10[s1s2s1] + y10[s2s1s2]− α10[s2s1s2s1]

[s1s2s1s2s1]
2 = {−y32[s1] + (y22 + y32)[s2s1]− (y11 + y21 + y22)[s1s2s1] }

+ (y01 + y11 + y21)[s2s1s2s1]− α01[s1s2s1s2s1]

[s1s2s1s2s1][s2s1s2s1s2] = { [1]− [s1]− [s2] + [s1s2] + [s2s1]

− [s1s2s1]− [s2s1s2] } + [s1s2s1s2] + [s2s1s2s1]

[s2s1s2s1s2]
2 = y10[s1s2s1s2]− α10[s2s1s2s1s2]
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Boston, 1997.
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Anneaux de Chow et applications, Séminaire C. Chevalley 2e année (mimeographed notes)
Paris (1958), pages 4-01 – 4-36.

[Gr] W. Graham, Positivity in equivariant Schubert calculus, Duke Math. J. 109 (2001), 599–614.

[Hz] F. Hirzebruch, Topological methods in algebraic geometry, Third edition, Springer-Verlag,
1995.

[KK] B. Kostant and S. Kumar, T -equivariant K-theory of generalized flag varieties, J. Differ-
ential Geom. 32 (1990), 549–603.

[KR] C. Kriloff and A. Ram, Representations of graded Hecke algebras, Representation Theory
6 (2002), 31–69.

[La] A. Lascoux, Chern and Yang through ice, preprint 2002.

[L1] P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent.
Math. 116 (1994), 329-346.

[L2] P. Littelmann, Paths and root operators in representation theory, Ann. Math. 142 (1995),
499-525.

[L3] P. Littelmann, Characters of representations and paths in H∗
R , Proc. Symp. Pure Math. 61

(1997), 29-49.

[LS] P. Littelmann and C.S. Seshadri, A Pieri-Chevalley formula for K(G/B) and stan-

dard monomial theory, in Studies in memory of Issai Schur, Progress in Mathematics 210,
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