Coloring face hypergraphs on surfaces

https://doi.org/10.1016/j.ejc.2004.01.003Get rights and content
Under an Elsevier user license
open archive

Abstract

The face hypergraph of a graph G embedded on a surface has the same vertex set as G and its edges are the sets of vertices forming faces of G. A hypergraph is k-choosable if for each assignment of lists of colors of sizes k to its vertices, there is a coloring of the vertices from these lists avoiding a monochromatic edge.

We prove that the face hypergraph of the triangulation of a surface of Euler genus g is O(g3)-choosable. This bound matches a previously known lower bound of order Ω (g3). If each face of the graph is incident with at least r distinct vertices, then the face hypergraph is also O(gr)-choosable. Note that colorings of face hypergraphs for r=2 correspond to usual vertex colorings and the upper bound O(g) thus follows from Heawood’s formula. Separate results for small genera are presented: the bound 3 for triangulations of the surface of Euler genus g=3 and the bound 7+36g+496 for surfaces of Euler genus g≥3. Our results dominate the previously known bounds for all genera except for g=4,7,8,9,14.

Cited by (0)