HAMBURGER BEITRÄGE ZUR MATHEMATIK

Heft 183
Forcing unbalanced complete
bipartite minors
D. Kühn, FU Berlin, D. Osthus, HU Berlin

Forcing unbalanced complete bipartite minors

Daniela Kühn Deryk Osthus

Abstract

Myers conjectured that for every integer s there exists a positive constant C such that for all integers t every graph of average degree at least $C t$ contains a $K_{s, t}$ minor. We prove the following stronger result: for every $0<\varepsilon<10^{-16}$ there exists a number $t_{0}=t_{0}(\varepsilon)$ such that for all integers $t \geq t_{0}$ and $s \leq \varepsilon^{6} t / \log t$ every graph of average degree at least $(1+\varepsilon) t$ contains a $K_{s, t}$ minor. The bounds are essentially best possible. We also show that for fixed s every graph as above even contains $K_{s}+\bar{K}_{t}$ as a minor.

1 Introduction

Let $d(s)$ be the smallest number such that every graph of average degree greater than $d(s)$ contains the complete graph K_{s} as minor. The existence of $d(s)$ was first proved by Mader [4]. Kostochka [3] and Thomason [10] independently showed that the order of magnitude of $d(s)$ is $s \sqrt{\log s}$. Later, Thomason [11] was able to prove that $d(s)=(\alpha+o(1)) s \sqrt{\log s}$, where $\alpha=0.638 \ldots$ is an explicit constant. Here the lower bound on $d(s)$ is provided by random graphs. In fact, Myers [6] proved that all extremal graphs are essentially disjoint unions of pseudo-random graphs.

Recently, Myers and Thomason [8] extended the results of [11] from complete minors to H minors for arbitrary dense (and large) graphs H. The extremal function has the same form as $d(s)$, except that $\alpha \leq 0.638 \ldots$ is now an explicit parameter depending on H and s is replaced by the order of H. They raised the question of what happens for sparse graphs H. One partial result in this direction was obtained by Myers [7]: he showed that every graph of average degree at least $t+1$ contains a $K_{2, t}$ minor. This is best possible as he observed that for all positive ε there are infinitely many graphs of average degree at least $t+1-\varepsilon$ which do not contain a $K_{2, t}$ minor. (These examples also show that random graphs are not extremal in this case.) More generally, Myers [7] conjectured that for fixed s the extremal function for a $K_{s, t}$ minor is linear in t :

Conjecture 1 (Myers) Given $s \in \mathbb{N}$, there exists a positive constant C such that for all $t \in \mathbb{N}$ every graph of average degree at least $C t$ contains a $K_{s, t}$ minor.

Here we prove the following strengthened version of this conjecture. (It implies that asymptotically the influence of the number of edges on the extremal function is negligible.)

Theorem 2 For every $0<\varepsilon<10^{-16}$ there exists a number $t_{0}=t_{0}(\varepsilon)$ such that for all integers $t \geq t_{0}$ and $s \leq \varepsilon^{6} t / \log t$ every graph of average degree at least $(1+\varepsilon) t$ contains a $K_{s, t}$ minor.

Theorem 2 is essentially best possible in two ways. Firstly, the complete graph K_{s+t-1} shows that up to the error term εt the bound on the average degree cannot be reduced. Secondly, as we will see in Proposition 9 (applied with $\alpha:=1 / 3$), the result breaks down if we try to set $s \geq 18 t / \log t$. Moreover, Proposition 9 also implies that if $t / \log t=o(s)$ then even a linear average degree (as in Conjecture 1) no longer suffices to force a $K_{s, t}$ minor.

The case where $s=c t$ for some constant $0<c \leq 1$ is covered by the results of Myers and Thomason [8]. The extremal function in this case is $\left(\alpha \frac{2 \sqrt{c}}{1+c}+\right.$ $o(1)) r \sqrt{\log r}$ where $\alpha=0.638 \ldots$ again and $r=s+t$.

For fixed s, we obtain the following strengthening of Theorem 2:
Theorem 3 For every $\varepsilon>0$ and every integer s there exists a number $t_{0}=$ $t_{0}(\varepsilon, s)$ such that for all integers $t \geq t_{0}$ every graph of average degree at least $(1+\varepsilon) t$ contains $K_{s}+\bar{K}_{t}$ as a minor.

This note is organized as follows. We first prove Theorem 2 for graphs whose connectivity is linear in their order (Lemma 8). We then use ideas of Thomason [11] to extend the result to arbitrary graphs. The proof of Theorem 3 is almost the same as that of Theorem 2 and so we only sketch it.

2 Notation and tools

We write $e(G)$ for the number of edges of a graph $G,|G|$ for its order and $d(G):=2 e(G) /|G|$ for its average degree. We denote the degree of a vertex $x \in G$ by $d_{G}(x)$ and the set of its neighbours by $N_{G}(x)$. If $P=x_{1} \ldots x_{\ell}$ is a path and $1 \leq i \leq j \leq \ell$, we write $x_{i} P x_{j}$ for its subpath $x_{i} \ldots x_{j}$.

We say that a graph H is a minor of G if for every vertex $h \in H$ there is set $C_{h} \subseteq V(G)$ such that all the C_{h} are disjoint, each $G\left[C_{h}\right]$ is connected and G contains a $C_{h}-C_{h^{\prime}}$ edge whenever $h h^{\prime}$ is an edge in $H . C_{h}$ is called the branch set corresponding to h.

We will use the following result of Mader [5].
Theorem 4 Every graph G contains a $\lceil d(G) / 4\rceil$-connected subgraph.
Given $k \in \mathbb{N}$, we say that a graph G is k-linked if $|G| \geq 2 k$ and for every $2 k$ distinct vertices x_{1}, \ldots, x_{k} and y_{1}, \ldots, y_{k} of G there exist disjoint paths P_{1}, \ldots, P_{k} such that P_{i} joins x_{i} to y_{i}. Jung as well as Larman and Mani independently proved that every sufficiently highly connected graph is k-linked. Later, Bollobás and Thomason [2] showed that a connectivity linear in k suffices. Simplifying the argument in [2], Thomas and Wollan [9] recently obtained an even better bound:

Theorem 5 Every $16 k$-connected graph is k-linked.

Similarly as in [11], given positive numbers d and k, we shall consider the class $\mathcal{G}_{d, k}$ of graphs defined by

$$
\mathcal{G}_{d, k}:=\{G:|G| \geq d, e(G)>d|G|-k d\} .
$$

We say that a graph G is minor-minimal in $\mathcal{G}_{d, k}$ if G belongs to $\mathcal{G}_{d, k}$ but no proper minor of G does. The following lemma states some properties of the minor-minimal elements of $\mathcal{G}_{d, k}$. The proof is simple, its counterpart for digraphs can be found in [11, Section 2]. (The first property follows by counting the number of edges of the complete graph on $\lfloor(2-\varepsilon) d\rfloor$ vertices.)

Lemma 6 Given $0<\varepsilon<1 / 2, d \geq 2 / \varepsilon$ and $1 / d \leq k \leq \varepsilon d / 2$, every minorminimal graph in $\mathcal{G}_{d, k}$ satisfies the following properties:
(i) $|G| \geq(2-\varepsilon) d$,
(ii) $e(G) \leq d|G|-k d+1$,
(iii) every edge of G lies in more than $d-1$ triangles,
(iv) G is $\lceil k\rceil$-connected.

We will also use the following easy fact, see [11, Lemma 4.2] for a proof.
Lemma 7 Suppose that x and y are distinct vertices of a k-connected graph G. Then G contains at least $k^{2} / 4|G|$ internally disjoint $x-y$ paths of length at most $2|G| / k$.

3 Proof of theorems

The strategy of the proof of Theorem 2 is as follows. It is easily seen that to prove Theorem 2 for all graphs of average degree at least $(1+\varepsilon) t=: d$, it suffices to consider only those graphs G which are minor-minimal in the class $\mathcal{G}_{d / 2, k}$ for some suitable k. In particular, together with Lemma 6 this implies that we only have to deal with k-connected graphs. If d (and so also k) is linear in the order of G, then a simple probabilistic argument gives us the desired $K_{s, t}$ minor (Lemma 8). In the other case we use that by Lemma 6 each vertex of G together with its neighbourhood induces a dense subgraph of G. We apply this to find 10 disjoint $K_{10 s,\lceil d / 9\rceil}$ minors which we combine to a $K_{s, t}$ minor.

Lemma 8 For all $0<\varepsilon, c<1$ there exists a number $k_{0}=k_{0}(\varepsilon, c)$ such that for each integer $k \geq k_{0}$ every k-connected graph G whose order n satisfies $k \geq c n$ contains a $K_{s, t}$ minor where $t:=\lceil(1-\varepsilon) n\rceil$ and $s:=\left\lceil c^{4} \varepsilon n /(32 \log n)\right\rceil$. Moreover, the branch sets corresponding to the vertices in the vertex class of the $K_{s, t}$ of size t can be chosen to be singletons whereas all the other branch sets can be chosen to have size at most $8 \log n / c^{2}$.

Proof. Throughout the proof we assume that k (and thus also n) is sufficiently large compared with both ε and c for our estimates to hold. Put $a:=\lfloor 4 \log s / c\rfloor$. Successively choose as vertices of G uniformly at random without repetitions. Let C_{1} be the set of the first a of these vertices, let C_{2} be the set of the next a vertices and so on up to C_{s}. Let C be the union of all the C_{i}. Given $i \leq s$, we call a vertex $x \in G-C$ good for i if x has at least one neighbour in C_{i}. Moreover, we say that x is good if it is good for every $i \leq s$. Thus

$$
\mathbb{P}(x \text { is not good for } i) \leq\left(1-\frac{d_{G}(x)-a s}{n}\right)^{a} \leq \mathrm{e}^{-a(k-a s) / n} \leq \mathrm{e}^{-a c / 2}
$$

and so x is not good with probability at most $s \mathrm{e}^{-a c / 2}<\varepsilon / 2$. Therefore the expected number of good vertices outside C is at least $(1-\varepsilon / 2)|G-C|$. Hence there exists an outcome C_{1}, \ldots, C_{s} for which at least $(1-\varepsilon / 2)|G-C|$ vertices in $G-C$ are good.

We now extend all these C_{i} to disjoint connected subgraphs of G as follows. Let us start with C_{1}. Fix a vertex $x_{1} \in C_{1}$. For each $x \in C_{1} \backslash\left\{x_{1}\right\}$ in turn we apply Lemma 7 to find an $x-x_{1}$ path of length at most $2 n / k \leq 2 / c$ which is internally disjoint from all the paths chosen previously and which avoids $C_{2} \cup \cdots \cup C_{s}$. Since Lemma 7 guarantees at least $k^{2} / 4 n \geq a s \cdot 2 / c$ short paths between a given pair of vertices, we are able to extend each C_{i} in turn to a connected subgraph in this fashion. Denote the graphs thus obtained from C_{1}, \ldots, C_{s} by G_{1}, \ldots, G_{s}. Thus all the G_{i} are disjoint.

Note that at most $2 a s / c$ good vertices lie in some G_{i}. Thus at least (1$\varepsilon / 2)|G-C|-2 a s / c \geq(1-\varepsilon) n$ good vertices avoid all the G_{i}. Hence G contains a $K_{s, t}$ minor as required. (The good vertices avoiding all the G_{i} correspond to the vertices of the $K_{s, t}$ in the vertex class of size t. The branch sets corresponding to the vertices of the $K_{s, t}$ in the vertex class of size s are the vertex sets of $\left.G_{1}, \ldots, G_{s}.\right)$

Proof of Theorem 2. Let $d:=(1+\varepsilon) t$ and $s:=\left\lfloor\varepsilon^{6} d / \log d\right\rfloor$. Throughout the proof we assume that t (and thus also d) is sufficiently large compared with ε for our estimates to hold. We have to show that every graph of average degree at least d contains a $K_{s, t}$ minor. Put $k:=\lceil\varepsilon d / 4\rceil$. Since $\mathcal{G}_{d / 2, k}$ contains all graphs of average degree at least d, it suffices to show that every graph G which is minor-minimal in $\mathcal{G}_{d / 2, k}$ contains a $K_{s, t}$ minor. Let $n:=|G|$. As is easily seen, (i) and (iv) of Lemma 6 together with Lemma 8 imply that we may assume that $d \leq n / 600$. (Lemma 8 is applied with $c:=\varepsilon / 2400$ and with ε replaced by $\varepsilon / 3$.) Let X be the set of all those vertices of G whose degree is at most $2 d$. Since by Lemma 6 (ii) the average degree of G is at most d, it follows that $|X| \geq n / 2$. Let us first prove the following claim.

Either G contains a $K_{s, t}$ minor or G contains 10 disjoint $\lceil 3 d / 25\rceil$ connected subgraphs G_{1}, \ldots, G_{10} such that $3 d / 25 \leq\left|G_{i}\right| \leq 3 d$ for each $i \leq 10$.

Choose a vertex $x_{1} \in X$ and let G_{1}^{\prime} denote the subgraph of G induced by x_{1} and its neighbourhood. Then $\left|G_{1}^{\prime}\right|=d_{G}\left(x_{1}\right)+1 \leq 2 d+1$. Since by Lemma 6 (iii)
each edge between x_{1} and $N_{G}\left(x_{1}\right)$ lies in at least $d / 2-1$ triangles, it follows that the minimum degree of G_{1}^{\prime} is at least $d / 2-1$. Thus Theorem 4 implies that G_{1}^{\prime} contains a $\lceil 3 d / 25\rceil$-connected subgraph. Take G_{1} to be this subgraph. Put $X_{1}:=X \backslash V\left(G_{1}\right)$ and let X_{1}^{\prime} be the set of all those vertices in X_{1} which have at least $d / 500$ neighbours in G_{1}.

Suppose first that $\left|X_{1}^{\prime}\right| \geq|X| / 10$. In this case we will find a $K_{s, t}$ minor in G. Since the argument is similar to the proof of Lemma 8, we only sketch it. Set $a:=\left\lfloor 10^{4} \log s\right\rfloor$. This time, we choose the a-element sets C_{1}, \ldots, C_{s} randomly inside $V\left(G_{1}\right)$. Since every vertex in X_{1}^{\prime} has at least $d / 500$ neighbours in G_{1}, the probability that the neighbourhood of a given vertex $x \in X_{1}^{\prime}$ avoids some C_{i} is at most $s \mathrm{e}^{-a /\left(3 \cdot 10^{3}\right)}<\varepsilon$. So the expected number of such bad vertices in X_{1}^{\prime} is at most $\varepsilon\left|X_{1}^{\prime}\right|$. Thus for some choice of C_{1}, \ldots, C_{s} there are at least $(1-\varepsilon)\left|X_{1}^{\prime}\right| \geq(1-\varepsilon) n / 20 \geq t$ vertices in X_{1}^{\prime} which have a neighbour in each C_{i}. Since the connectivity of G_{1} is linear in its order, we may again apply Lemma 7 to make the C_{i} into disjoint connected subgraphs of G_{1} by adding suitable short paths from G_{1}. This shows that G contains a $K_{s, t}$ minor.

Thus we may assume that at least $\left|X_{1}\right|-|X| / 10 \geq 9|X| / 10-3 d>0$ vertices in X_{1} have at most $d / 500$ neighbours in G_{1}. Choose such a vertex x_{2}. Let G_{2}^{\prime} be the subgraph of G induced by x_{2} and all its neighbours outside G_{1}. Since by Lemma 6 (iii) every edge of G lies in at least $d / 2-1$ triangles, it follows that the minimum degree of G_{2}^{\prime} is at least $d / 2-1-d / 500>12 d / 25$. Again, we take G_{2} to be a $\lceil 3 d / 25\rceil$-connected subgraph of G_{2}^{\prime} obtained by Theorem 4.

We now put $X_{2}:=X_{1} \backslash\left(X_{1}^{\prime} \cup V\left(G_{2}\right)\right)$ and define X_{2}^{\prime} to be the set of all those vertices in X_{2} which have at least $d / 500$ neighbours in G_{2}. If $\left|X_{2}^{\prime}\right| \geq|X| / 10$, then as before, we can find a $K_{s, t}$ minor in G. If $\left|X_{2}^{\prime}\right| \leq|X| / 10$ we define G_{3} in a similar way as G_{2}. Continuing in this fashion proves the claim. (Note that when choosing x_{10} we still have $\left|X_{9}\right|-|X| / 10 \geq|X| / 10-9 \cdot 3 d>0$ vertices at our disposal since $n \geq 600 \mathrm{~d}$.)
Apply Lemma 8 with $c:=1 / 25$ to each G_{i} to find a $K_{10 s,\lceil d / 9\rceil}$ minor. Let $C_{1}^{i}, \ldots, C_{s}^{i}, D_{1}^{i}, \ldots, D_{9 s}^{i}$ denote the branch sets corresponding to the vertices of the $K_{10 s,\lceil d / 9\rceil}$ in the vertex class of size $10 s$. By Lemma 8 we may assume that all the C_{j}^{i} and all the D_{j}^{i} have size at most $8 \cdot 25^{2} \log \left|G_{i}\right| \leq 10^{5} \log d$ and that all the branch sets corresponding to the remaining vertices of the $K_{10 s,\lceil d / 9\rceil}$ are singletons. Let $T^{i} \subseteq V\left(G_{i}\right)$ denote the union of all these singletons. Let C be the union of all the C_{j}^{i}, let D be the union of all the D_{j}^{i} and let T be the union of all the T^{i}.

We will now use these $10 K_{10 s,\lceil d / 9\rceil}$ minors to form a $K_{s, t}$ minor in G. Recall that by Lemma 6 (iv) the graph G is $\lceil\varepsilon d / 4\rceil$-connected and so by Theorem 5 it is $\lfloor\varepsilon d / 64\rfloor$-linked. Thus there exists a set \mathcal{P} of $9 s$ disjoint paths in G such that for all $i \leq 9$ and all $j \leq s$ the set C_{j}^{i} is joined to C_{j}^{i+1} by one of these paths and such that no path from \mathcal{P} contains an inner vertex in $C \cup D$. (To see this, use that $\varepsilon d / 64 \geq 100 s \cdot 10^{5} \log d \geq|C \cup D|$.)

The paths in \mathcal{P} can meet T in many vertices. But we can reroute them such that every new path contains at most two vertices from each T^{i}. For every path $P \in \mathcal{P}$ in turn we will do this as follows. If P meets T^{1} in more than 2 vertices, let t and t^{\prime} denote the first and the last vertex from T^{1} on P. Choose some set
D_{j}^{1} and replace the subpath $t P t^{\prime}$ by some path between t and t^{\prime} whose interior lies entirely in $G\left[D_{j}^{1}\right]$. (This is possible since $G\left[D_{j}^{1}\right]$ is connected and since both t and t^{\prime} have a neighbour in D_{j}^{1}.) Proceed similarly if the path thus obtained still meets some other T^{i}. Then continue with the next path from \mathcal{P}. (The sets D_{j}^{i} used for the rerouting are chosen to be distinct for different paths.) Note that the paths thus obtained are still disjoint since D was avoided by all the paths in \mathcal{P}.

We now have found our $K_{s, t}$ minor. Each vertex lying in the vertex class of size s of the $K_{s, t}$ corresponds to a set consisting of $C_{j}^{1} \cup \cdots \cup C_{j}^{10}$ together with the (rerouted) paths joining these sets. For the remaining vertices of the $K_{s, t}$ we can take all the vertices in T which are avoided by the (rerouted) paths. There are at least t such vertices since these paths contain at most $20 \cdot 9 s$ vertices from T and $|T|-180 s \geq 10 d / 9-180 s \geq t$.

Proof of Theorem 3 (Sketch). Without loss of generality we may assume that $\varepsilon<10^{-16}$. The proof of Theorem 3 is almost the same as that of Theorem 2. The only difference is that now we also apply Lemma 7 to find $\binom{s}{2}$ short paths connecting all the pairs of the C_{i}. This can be done at the point where we extend the C_{i} 's to connected subgraphs.

The following proposition shows that the bound on s in Theorem 2 is essentially best possible. Its proof is an adaption of a well-known argument of Bollobás, Catlin and Erdős [1].

Proposition 9 There exists an integer n_{0} such that for each integer $n \geq n_{0}$ and each number $\alpha>0$ there is a graph G of order n and with average degree at least $n / 2$ which does not have a $K_{s, t}$ minor with $s:=\lceil 2 n / \alpha \log n\rceil$ and $t:=\lceil\alpha n\rceil$.

Proof. Let $p:=1-1 / \mathrm{e}$. Throughout the proof we assume that n is sufficiently large for our estimates to hold. Consider a random graph G_{p} of order n which is obtained by including each edge with probability p independently from all other edges. We will show that with positive probability G_{p} is as required in the proposition. Clearly, with probability $>3 / 4$ the average degree of G_{p} is at least $n / 2$. Hence it suffices to show that with probability at most $1 / 2$ the graph G_{p} will have the property that its vertex set $V\left(G_{p}\right)$ can be partitioned into disjoint sets S_{1}, \ldots, S_{s} and T_{1}, \ldots, T_{t} such that G_{p} contains an edge between every pair $S_{i}, T_{j}(1 \leq i \leq s, 1 \leq j \leq t)$. Call such a partition of $V\left(G_{p}\right)$ admissible. Thus we have to show that the probability that G_{p} has an admissible partition is $\leq 1 / 2$.

Let us first estimate the probability that a given partition \mathcal{P} is admissible:

$$
\begin{aligned}
\mathbb{P}(\mathcal{P} \text { is admissible }) & =\prod_{i, j}\left(1-(1-p)^{\left|S_{i}\right|\left|T_{j}\right|}\right) \leq \exp \left(-\sum_{i, j}(1-p)^{\left|S_{i}\right|\left|T_{j}\right|}\right) \\
& \leq \exp \left(-s t \prod_{i, j}(1-p)^{\left|S_{i}\right|\left|T_{j}\right|(s t)^{-1}}\right) \leq \exp \left(-s t(1-p)^{n^{2}(s t)^{-1}}\right) \\
& \leq \exp \left(-\frac{2 n^{2}}{\log n} \cdot n^{-\frac{1}{2}}\right) \leq \exp \left(-n^{\frac{4}{3}}\right) .
\end{aligned}
$$

(The first expression in the second line follows since the arithmetric mean is at least as large as the geometric mean.) Since the number of possible partitions is at most n^{n}, it follows that the probability that G_{p} has an admissible partition is at most $n^{n} \cdot \mathrm{e}^{-n^{4 / 3}}<1 / 2$, as required.

References

[1] B. Bollobás, P.A. Catlin and P. Erdős, Hadwiger's conjecture is true for almost every graph, European J. Combin. 1 (1980), 195-199.
[2] B. Bollobás and A. Thomason, Highly linked graphs, Combinatorica 16 (1996), 313-320.
[3] A. V. Kostochka, A lower bound for the Hadwiger number of graphs by the average degree, Combinatorica 4 (1984), 307-316.
[4] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Annalen 174 (1967), 265-268.
[5] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte, Abh. Math. Sem. Univ. Hamburg 37 (1972), 86-97.
[6] J.S. Myers, Graphs without large complete minors are quasi-random, Combin. Probab. Comput. 11 (2002), 571-585.
[7] J.S. Myers, The extremal function for unbalanced bipartite minors, Discrete Math., to appear.
[8] J.S. Myers and A. Thomason, The extremal function for noncomplete minors, preprint 2002.
[9] R. Thomas and P. Wollan, An improved linear edge bound for graph linkages, preprint 2003.
[10] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984), 261-265.
[11] A. Thomason, The extremal function for complete minors, J. Combin. Theory $B 81$ (2001), 318-338.

Daniela Kühn
Freie Universität Berlin
Fachbereich Mathematik
Arnimallee 2-6
D-14195 Berlin
Germany
E-mail address: dkuehn@math.fu-berlin.de
Deryk Osthus
Institut für Informatik
Humboldt-Universität zu Berlin
Unter den Linden 6
D - 10099 Berlin
Germany
E-mail address: osthus@informatik.hu-berlin.de

