
ar
X

iv
:m

at
h/

03
12

14
9v

1 
 [

m
at

h.
C

O
] 

 7
 D

ec
 2

00
3 An inequality for regular near polygons
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Abstract

Let Γ denote a near polygon distance-regular graph with diameter
d ≥ 3, valency k and intersection numbers a1 > 0, c2 > 1. Let θ1
denote the second largest eigenvalue of Γ. We show

θ1 ≤
k − a1 − c2

c2 − 1
.

We show the following (i)–(iii) are equivalent. (i) Equality is attained
above; (ii) Γ is Q-polynomial with respect to θ1; (iii) Γ is a dual polar
graph or a Hamming graph.

Keywords: near polygon, distance-regular graph, Q-polynomial, dual
polar graph, Hamming graph.

AMS Subject Classification: 05E30.

1 Introduction

Let Γ denote a near polygon distance-regular graph with diameter d ≥ 3
(see Section 2 for formal definitions). Suppose the intersection numbers a1 >
0 and c2 > 1. It was shown by Brouwer, Cohen and Neumaier that if Γ
has classical parameters (d, q, 0, β) then Γ is a Hamming graph or a dual
polar graph [2, Theorem 9.4.4]. The same conclusion was obtained by the
second author under the assumption that Γ isQ-polynomial and has diameter
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d ≥ 4 [11, Corollary 5.7]. Let θ0 > θ1 > · · · > θd denote the eigenvalues
of Γ. It is known that θ0 = k, where k denotes the valency of Γ. By [2,
Proposition 4.4.6(i)],

θd ≥ −
k

a1 + 1
,

with equality if and only if Γ is a near 2d-gon. We now state our result.

Theorem 1.1. Let Γ denote a near polygon distance-regular graph with di-
ameter d ≥ 3, valency k, and intersection numbers a1 > 0, c2 > 1. Let θ1
denote the second largest eigenvalue of Γ. Then

θ1 ≤
k − a1 − c2

c2 − 1
. (1.1)

Moreover, the following (i)–(iii) are equivalent.

(i) Equality is attained in (1.1);

(ii) Γ is Q-polynomial with respect to θ1;

(iii) Γ is a dual polar graph or a Hamming graph.

2 Preliminaries

In this section we review some definitions and basic concepts. See the books
by Bannai and Ito [1] or Brouwer, Cohen, and Neumaier [2] for more back-
ground information.

Let Γ = (X,R) denote a finite, undirected, connected graph without
loops or multiple edges, with vertex set X , edge set R, path-length distance
function ∂ and diameter d := max{∂(x, y)|x, y ∈ X}. For x ∈ X and for all
integers i, set

Γi(x) := {y|y ∈ X, ∂(x, y) = i}.

Let k denote a nonnegative integer. We say Γ is regular with valency k
whenever |Γ1(x)| = k for all x ∈ X. Pick an integer i (0 ≤ i ≤ d). For x ∈ X
and for y ∈ Γi(x), set

B(x, y) := Γ1(x) ∩ Γi+1(y), (2.1)

A(x, y) := Γ1(x) ∩ Γi(y), (2.2)

C(x, y) := Γ1(x) ∩ Γi−1(y). (2.3)
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The graph Γ is said to be distance-regular whenever for all integers i (0 ≤
i ≤ d), and for all x, y ∈ X with ∂(x, y) = i, the numbers

ci := |C(x, y)|, ai := |A(x, y)|, bi := |B(x, y)| (2.4)

are independent of x and y. We call the ci, ai, bi the intersection numbers of
Γ. We observe c0 = 0, a0 = 0, bd = 0 and c1 = 1. For the rest of this paper we
assume Γ is distance-regular with diameter d ≥ 3. We observe Γ is regular
with valence k = b0 and that

ci + ai + bi = k (0 ≤ i ≤ d) (2.5)

[2, p. 126].

We recall the Bose-Mesner algebra of Γ. For 0 ≤ i ≤ d let Ai denote the
matrix in MatX(R) which has xy entry

(Ai)xy =

{

1 if ∂(x, y) = i

0 if ∂(x, y) 6= i
(x, y ∈ X).

We call Ai the ith distance matrix of Γ. Observe (ai) A0 = I; (aii)
∑d

i=0Ai =

J ; (aiii) At
i = Ai (0 ≤ i ≤ d), (aiv) AiAj =

∑d

h=0 p
h
ijAh (0 ≤ i, j ≤ d), where I

denotes the identity matrix and J denotes the all ones matrix. We abbreviate
A := A1 and call this the adjacency matrix of Γ. LetM denote the subalgebra
of MatX(R) generated by A. Using (ai)–(aiv) we find A0, A1, · · · , Ad form
a basis of M. We call M the Bose-Mesner algebra of Γ. By [1, p. 59, p.
64], M has a second basis E0, E1, · · · , Ed such that (ei) E0 = |X|−1J ; (eii)
∑d

i=0Ei = I; (eiii) Et
i = Ei (0 ≤ i ≤ d); (eiv) EiEj = δijEi (0 ≤ i, j ≤ d).

We call E0, E1, · · · , Ed the primitive idempotents for Γ. Since E0, E1,
· · · , Ed form a basis for M there exist real scalars θ0, θ1, · · · , θd such that
A =

∑d

i=0 θiEi. By this and (eiv) we find AEi = θiEi (0 ≤ i ≤ d). Observe
θ0, θ1, · · · , θd are mutually distinct since A generates M. We assume the
Ei are indexed so that θ0 > θ1 > · · · > θd. We call θi the eigenvalue of
Γ corresponding to Ei. By [1, p. 197] we have θ0 = k and −k ≤ θi ≤ k
(0 ≤ i ≤ d). We call θ0 the trivial eigenvalue.

Let θ denote an eigenvalue of Γ and let E denote the corresponding prim-
itive idempotent. Since E ∈ M, there exist real numbers σ0, σ1, · · · , σd such
that

E = m|X|−1
d

∑

i=0

σiAi, (2.6)
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where m = rank E. We have σ0 = 1 and

ciσi−1 + aiσi + biσi+1 = θσi (0 ≤ i ≤ d), (2.7)

where σ−1, σd+1 denote indeterminates [1, p. 191]. The sequence σ0, σ1, · · · ,
σd is called the cosine sequence associated with θ. Let σ0, σ1, · · · , σd denote
the cosine sequence associated with the eigenvalue k. Comparing (2.5) and
(2.7) we find σi = 1 (0 ≤ i ≤ d). By the trivial cosine sequence of Γ we mean
the cosine sequence associated with k. Let θ denote an eigenvalue of Γ and
let σ0, σ1, · · · , σd denote the corresponding cosine sequence. By (2.7),

σ1 = θk−1, (2.8)

σ2 =
θ2 − a1θ − k

kb1
. (2.9)

Combining (2.8) and (2.9) we find

(σ1 − σ2)b1 = (θ + 1)(σ0 − σ1). (2.10)

Set V = R
X (column vectors). We define the inner product

〈u, v〉 = utv (u, v ∈ V ).

For each x ∈ X set
x̂ = (0, 0, · · · , 1, 0, · · · , 0)t,

where the 1 is in coordinate x. We observe {x̂| x ∈ X} is an orthonormal
basis for V. By (2.6), for x, y ∈ X we have

〈Ex̂, Eŷ〉 = m|X|−1σi, (2.11)

where i = ∂(x, y).

By a clique in Γ we mean a nonempty set consisting of mutually adjacent
vertices of Γ. A given clique in Γ is said to be maximal whenever it is not
properly contained in a clique. The graph Γ is said to be a near polygon
whenever

(i) Each maximal clique has cardinality a1 + 2;
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(ii) For all maximal cliques ℓ and for all x ∈ X, either

(iia) ∂(x, y) = d for all y ∈ ℓ, or

(iib) there exists an integer i (0 ≤ i ≤ d − 1) and a unique z ∈ ℓ such
that ∂(x, z) = i and ∂(x, y) = i+ 1 for all y ∈ ℓ− {z}.

We give an alternate description of a near polygon. Let K1,2,1 denote the
graph with 4 vertices s, x, y, s′ such that ∂(s, x) = ∂(s, y) = ∂(x, y) =
∂(x, s′) = ∂(y, s′) = 1 and ∂(s, s′) = 2. Then by [2, Theorem 6.4.1] Γ is
a near polygon if and only if both the following (i’)-(ii’) hold.

(i’) Γ does not contain an induced K1,2,1 subgraph;

(ii’)
ai = a1ci (0 ≤ i ≤ d− 1). (2.12)

Assume Γ is a near polygon. Then

ad ≥ a1cd. (2.13)

Moreover ad = a1cd if and only if no maximal clique satisfies (iia) above [2,
Theorem 6.4.1]. In this case we call Γ a near 2d-gon. Otherwise we call Γ a
near (2d + 1)-gon. Assume Γ is a near polygon. The Hoffman bound states
that

θd ≥ −
k

a1 + 1
, (2.14)

with equality if and only if Γ is a near 2d-gon [2, Proposition 4.4.6(i)].

Definition 2.1. Let Γ denote a distance-regular graph with diameter d ≥
3. We say Γ has classical parameters (d, q, α, β) whenever the intersection
numbers are given by

ci =

[

i

1

](

1 + α

[

i− 1

1

])

(0 ≤ i ≤ d), (2.15)

bi =

([

D

1

]

−

[

i

1

])(

β − α

[

i

1

])

(0 ≤ i ≤ d), (2.16)

where
[

j

1

]

:= 1 + q + q2 + · · ·+ qj−1. (2.17)
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We give two examples of near polygon distance-regular graphs with clas-
sical parameters (d, q, α, β).

Example 2.2. The Hamming graph H(d, n) (n ≥ 2) [4], [5], [6], [8].

X=all d-tuples of elements from the set {1, 2, · · · , n},

xy ∈ R iff x, y differ in exactly 1 coordinate (x, y ∈ X),

q = 1, α = 0, β = n− 1,

ci = i, bi = (d− i)(n− 1), ai = (n− 2)i (0 ≤ i ≤ d),

θi = (d− i)(n− 1)− i (0 ≤ i ≤ d).

Example 2.3. The Dual polar graphs [3], [7].

Let U denote a finite vector space with one of the following non-degenerate
forms:

name dim(U) field form ǫ

Bd(p
n) 2d+ 1 GF (pn) quadratic 1

Cd(p
n) 2d GF (pn) symplectic 1

Dd(p
n) 2d GF (pn)

quadratic
(Witt index d)

0

2Dd+1(p
n) 2d+ 2 GF (pn)

quadratic
(Witt index d)

2

2A2d(p
n) 2d+ 1 GF (p2n) Hermitean

3

2

2A2d−1(p
n) 2d GF (p2n) Hermitean

1

2

A subspace of U is called isotropic whenever the form vanishes completely
on that subspace. In each of the above cases, the dimension of any maximal
isotropic subspace is d.
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X = set all maximal isotropic subspaces of U,

xy ∈ R iff dim(x ∩ y) = d− 1 (x, y ∈ X),

α = 0, β = qǫ,

ci =
qi − 1

q − 1
, ai =

qi+ǫ − qi − qǫ + 1

q − 1
(0 ≤ i ≤ d),

bi =
qi+ǫ(qd−i − 1)

q − 1
(0 ≤ i ≤ d− 1),

θi =
qd+ǫ−i − qǫ − qi + 1

q − 1
(0 ≤ i ≤ d),

where

q = pn, pn, pn, pn, p2n, p2n respectively.

The following three theorems will be used in the proof of our results.

Theorem 2.4. ([9, Theorem 4.1]) Let Γ denote a distance-regular graph with
diameter d ≥ 3, and let q denote a real number at least 1. Then the following
conditions (i), (ii) are equivalent.

(i) Γ has a nontrivial cosine sequence σ0, σ1, · · · , σd such that σi−1 − qσi

is independent of i (1 ≤ i ≤ d).

(ii) The intersection numbers of Γ are such that qci − bi − q(qci−1 − bi−1)
is independent of i (1 ≤ i ≤ d).

Furthermore, if (i), (ii) hold, then

c3 ≥ (c2 − q)(1 + q + q2). (2.18)

Theorem 2.5. ([9, Theorem 4.2]) Let Γ denote a distance-regular graph with
diameter d ≥ 3, and let q denote a real number at least 1. Then the following
conditions (i), (ii) are equivalent.

(i) Statements (i), (ii) hold in Theorem 2.4, and c3 = (c2 − q)(1 + q+ q2).
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(ii) There exists α, β ∈ R such that Γ has classical parameters (d, q, α, β).

Theorem 2.6. ([2, Theorem 9.4.4]) Let Γ denote a distance-regular graph
with diameter d ≥ 3 with classical parameters (d, q, 0, β). Assume the inter-
section numbers a1 > 0 and c2 > 1. Suppose Γ is a near polygon. Then Γ is
a dual polar graph or a Hamming graph.

3 The inequality

In this section we obtain the inequality in Theorem 1.1.

Lemma 3.1. Let Γ denote a near polygon distance-regular graph with diam-
eter d ≥ 3, valency k, and intersection numbers a1 > 0, c2 > 1. Let θ1 denote
the second largest eigenvalue of Γ. Then

θ1 ≤
k − a1 − c2

c2 − 1
. (3.1)

Proof. Abbreviate E = E1. Let σ0, σ1, · · · , σd denote the cosine sequence
associated with θ1. Fix any two vertices x, y ∈ X with ∂(x, y) = 2. We
consider the vectors

u =
∑

z∈A(x,y)

Eẑ −
∑

w∈A(y,x)

Eŵ, (3.2)

v = Ex̂− Eŷ. (3.3)

By the Cauchy-Schwartz inequality,

‖u‖2‖v‖2 ≥ 〈u, v〉2. (3.4)

We compute the terms in (3.4). Using (2.11), (3.2), (3.3) we find

‖v‖2 = 2m|X|−1(σ0 − σ2), (3.5)

〈u, v〉 = 2ma2|X|−1(σ1 − σ2). (3.6)

We now compute ‖u‖2. To do this we first discuss the distances between
vertices in A(x, y) and vertices in A(y, x). We claim that for all z ∈ A(x, y),
z is adjacent to c2 − 1 vertices in A(y, x) and is at distance 2 from the
remaining a2−c2+1 vertices in A(y, x). To see this fix z ∈ A(x, y). Then ℓ :=
A(x, z)∪ {x, z} is a maximal clique; hence there exists a unique vertex s ∈ ℓ
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with ∂(s, y) = 1. That is s ∈ C(x, y)∩C(z, y). Observe |C(x, y)∩C(z, y)| = 1,
since any other s′ ∈ C(x, y)∩C(z, y) will cause either xss′y or sxzs′ to be a
K1,2,1 subgraph. Hence there are c2− 1 vertices in C(z, y)∩A(y, x). Observe
for w ∈ A(y, x) we have ∂(w, x) = 2 and ∂(w, s) ≤ 2 so ∂(w, z) ≤ 2. We have
now proved the claim. Using the claim and applying (2.11) we find

‖u‖2 = ‖
∑

z∈A(x,y)

Eẑ‖2 + ‖
∑

w∈A(y,x)

Eŵ‖2 − 2〈
∑

z∈A(x,y)

Eẑ,
∑

w∈A(y,x)

Eŵ〉

= 2ma2|X|−1(σ0 + (a1 − c2)σ1 + (c2 − a1 − 1)σ2). (3.7)

Evaluating (3.4) using (3.5)–(3.7) we routinely find

(σ0 + (a1 − c2)σ1 + (c2 − a1 − 1)σ2)(σ0 − σ2) ≥ a2(σ1 − σ2)
2. (3.8)

Evaluating (3.8) using (2.8), (2.9), (2.12) we obtain

(θ1 − k)2(θ1(a1 + 1) + k)(k − θ1(c2 − 1)− a1 − c2) ≥ 0. (3.9)

Clearly (θ1− k)2 > 0. By (2.14) and since θ1 > θd we find θ1(a1+1)+ k > 0.
Evaluating (3.9) using these comments we find

k − θ1(c2 − 1)− a1 − c2 ≥ 0

and (3.1) follows.

Remark 3.2. Referring to Example 2.2 and Example 2.3, the eigenvalue θ1
satisfies (3.1) with equality.

We comment on the proof of Lemma 3.1.

Lemma 3.3. With the notation of Lemma 3.1, the following (i)–(iii) are
equivalent.

(i) Equality is attained in (3.1).

(ii) For all x, y ∈ X such that ∂(x, y) = 2,

∑

z∈A(x,y)

Eẑ −
∑

w∈A(y,x)

Eŵ ∈ Span(Ex̂− Eŷ). (3.10)
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(iii) There exist x, y ∈ X such that ∂(x, y) = 2 and
∑

z∈A(x,y)

Eẑ −
∑

w∈A(y,x)

Eŵ ∈ Span(Ex̂− Eŷ). (3.11)

Here E = E1.

Proof. Observe from the proof of Lemma 3.1 that equality is attained in (3.1)
if and only if equality is attained in (3.4). We claim v 6= 0. This will follow
from (3.5) provided we can show σ0 6= σ2. Suppose σ0 = σ2. Setting θ = θ1
and σ2 = σ0 in (2.10) and simplifying the result we find θ1 = −b1 − 1. This
is inconsistent with (2.14) and θ1 > θd. We have now shown σ0 6= σ2 and it
follows v 6= 0. We now see that equality is attained in (3.4) if and only if
u ∈ Span(v). The result follows.

4 The case of equality

In this section we consider the case of equality in (3.1).

Lemma 4.1. Let Γ denote a near polygon distance-regular graph with diam-
eter d ≥ 3 and intersection numbers a1 > 0, c2 > 1. Let θ1 denote the second
largest eigenvalue of Γ and let σ0, σ1, · · · , σd denote the corresponding cosine
sequence. Suppose equality holds in (3.1). Then σi−1 − qσi is independent of
i (1 ≤ i ≤ d), where q = c2 − 1.

Proof. Setting c2 = q + 1 in (3.1) and using k − a1 − 1 = b1 we find θ1 + 1 =
b1q

−1. In particular θ1 6= −1. Observe σ1 6= σ2; otherwise σ0 = σ1 by (2.10)
forcing θ1 = k by (2.8), a contradiction. Evaluating (2.10) using θ1+1 = b1q

−1

we find
σ0 − σ1

σ1 − σ2
= q. (4.1)

Fix two vertices x, y ∈ X with ∂(x, y) = 2. Abbreviate E = E1. By Lemma 3.3
there exists λ ∈ R such that

∑

z∈A(x,y)

Eẑ −
∑

w∈A(y,x)

Eŵ = λ(Ex̂−Eŷ). (4.2)

Fix an integer i (1 ≤ i ≤ d − 1) and pick u ∈ X with ∂(u, x) = i − 1 and
∂(u, y) = i+ 1. Taking the inner product of Eû with both sides of (4.2),

a2(σi − σi+1) = λ(σi−1 − σi+1). (4.3)
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Setting i = 1 in (4.3) we find a2(σ1 − σ2) = λ(σ0 − σ2). From (4.1) we find
σ0 − σ2 = (σ1 − σ2)(1 + q). By these comments λ = a2/(q + 1). Evaluating
(4.3) using this we find

σi−1 − qσi = σi − qσi+1 (1 ≤ i ≤ d− 1).

From this we find σi−1 − qσi is independent of i for 1 ≤ i ≤ d.

Lemma 4.2. Let Γ denote a near polygon distance-regular graph with d ≥ 3
and intersection numbers a1 > 0, c2 > 1. Let θ1 denote the second largest
eigenvalue of Γ and assume equality holds in (3.1). Then Γ has classical
parameters (d, q, 0, β).

Proof. Let the scalar q be as in Lemma 4.1. By Lemma 4.1 we have Theo-
rem 2.4(i) and hence Theorem 2.4(ii). Applying Theorem 2.4(ii) with i = 2, 3
we find

qc2 − b2 − q(qc1 − b1) = qc3 − b3 − q(qc2 − b2). (4.4)

Simplifying (4.4) using (2.5) and c2 = q + 1, a2 = a1c2 we obtain

(a1 + 1 + q)(1 + q + q2 − c3) = a3 − a1c3. (4.5)

By (2.12) we have a3 = a1c3 if d > 3, and by (2.13) we have a3 ≥ a1c3 if
d = 3. In any case a3 ≥ a1c3 so the right-hand side of (4.5) is nonnegative.
Also a1 + 1 + q > 0 since q = c2 − 1. Evaluating (4.5) using these comments
we find

c3 ≤ 1 + q + q2. (4.6)

By (2.18) and using c2 = 1 + q we find c3 ≥ 1 + q + q2. Now apparently
c3 = 1+q+q2. We can now check that the assumption c3 = (c2−q)(1+q+q2)
in Theorem 2.5(i) holds. Applying Theorem 2.5 we find there exist real
numbers α, β such that Γ has classical parameters (d, q, α, β). By (2.15) we
find c2 = (1 + q)(1 + α). By the construction c2 = q + 1. Comparing these
equations we find α = 0.

Proof of Theorem 1.1. The inequality (1.1) is from (3.1).
(i)=⇒(iii). By Lemma 4.2, Γ has classical parameters (d, q, 0, β). By this and
Theorem 2.6 we find Γ is a dual polar graph or a Hamming graph.
(iii)=⇒(ii) This is immediate from [2, Corollary 8.5.3].
(ii)=⇒(i) Lemma 3.3(ii) holds by [9, Theorem 3.3], so Lemma 3.3(i) holds
and the result follows.
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