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POSET EDGE-LABELLINGS AND LEFT MODULARITY

PETER MCNAMARA AND HUGH THOMAS

Abstract. It is known that a graded lattice of rank n is supersolvable if and
only if it has an EL-labelling where the labels along any maximal chain are
exactly the numbers 1, 2, . . . , n without repetition. These labellings are called
Sn EL-labellings, and having such a labelling is also equivalent to possessing
a maximal chain of left modular elements. In the case of an ungraded lattice,
there is a natural extension of Sn EL-labellings, called interpolating labellings.
We show that admitting an interpolating labelling is again equivalent to pos-
sessing a maximal chain of left modular elements. Furthermore, we work in
the setting of an arbitrary bounded poset as all the above results generalize
to this case. We conclude by applying our results to show that the lattice of
non-straddling partitions, which is not graded in general, has a maximal chain
of left modular elements.

1. Introduction

An edge-labelling of a poset P is a map from the edges of the Hasse diagram of
P to Z. Our primary goal is to express certain classical properties of P in terms
of edge-labellings admitted by P . The idea of studying edge-labellings of posets
goes back to [12]. An important milestone was [3], where A. Björner defined EL-
labellings, and showed that if a poset admits an EL-labelling, then it is shellable
and hence Cohen-Macaulay. We will be interested in a subclass of EL-labellings,
known as Sn EL-labellings. In [13], R. Stanley introduced supersolvable lattices and
showed that they admit Sn EL-labellings. Examples of supersolvable lattices in-
clude distributive lattices, the lattice of partitions of [n], the lattice of non-crossing
partitions of [n] and the lattice of subgroups of a supersolvable group (hence the
terminology). It was shown in [9] that a finite graded lattice of rank n is supersolv-
able if and only if it admits an Sn EL-labelling. In many ways, this characterization
of lattice supersolvability in terms of edge-labellings serves as the starting point for
our investigations.

For basic definitions concerning partially ordered sets, see [14]. We will say that
a poset P is bounded if it contains a unique minimal element and a unique maximal
element, denoted 0̂ and 1̂ respectively. All the posets we will consider will be finite
and bounded. A chain of a poset P is said to be maximal if it is maximal under
inclusion. We say that P is graded if all the maximal chains of P have the same
length, and we call this length the rank of P . We will write x⋖ y if y covers x in
P and x ≤· y if y either covers or equals x. The edge-labelling γ of P is said to be
an EL-labelling if for any y < z in P ,

(i) there is a unique unrefinable chain y = w0 ⋖ w1 ⋖ · · · ⋖ wr = z such that
γ(w0, w1) ≤ γ(w1, w2) ≤ · · · ≤ γ(wr−1, wr), and
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Figure 1

(ii) the sequence of labels of this chain (referred to as the increasing chain from
y to z), when read from bottom to top, lexicographically precedes the labels
of any other unrefinable chain from y to z.

This concept originates in [3]; for the case where P is not graded, see [4, 5]. If P
is graded of rank n with an EL-labelling γ, then γ is said to be an Sn EL-labelling

if the labels along any maximal chain of P are all distinct and are elements of [n].

In other words, for every maximal chain 0̂ = w0 ⋖w1 ⋖ · · ·⋖wn = 1̂ of P , the map
sending i to γ(wi−1, wi) is a permutation of [n]. Note that the second condition in
the definition of an EL-labelling is redundant in this case.

Example 1.1. Any finite distributive lattice has an Sn EL-labelling. Let L be
a finite distributive lattice of rank n. By the Fundamental Theorem of Finite
Distributive Lattices [2, p. 59, Thm. 3], that is equivalent to saying that L = J(Q),
the lattice of order ideals of some n-element poset Q. Let ω : Q → [n] be a linear
extension of Q, i.e., any bijection labelling the vertices of Q that is order-preserving
(if a < b in Q then ω(a) < ω(b)). This labelling of the vertices of Q defines a
labelling of the edges of J(Q) as follows. If y covers x in J(Q), then the order ideal
corresponding to y is obtained from the order ideal corresponding to x by adding
a single element, labeled by i, say. Then we set γ(x, y) = i. This gives us an Sn

EL-labelling for L = J(Q). Figure 1 shows a labelled poset and its lattice of order
ideals with the appropriate edge-labelling.

A finite lattice L is said to be supersolvable if it contains a maximal chain, called
an M-chain of L, which together with any other chain in L generates a distributive
sublattice. We can label each such distributive sublattice by the method described
in Example 1.1 in such a way that the M-chain is the unique increasing maximal
chain. As shown in [13], this will assign a unique label to each edge of L and the
resulting global labelling of L is an Sn EL-labelling.

There is also a characterization of lattice supersolvability in terms of left modu-
larity. Given an element x of a finite lattice L, and a pair of elements y ≤ z, it is
always true that

(x ∨ y) ∧ z ≥ (x ∧ z) ∨ y. (1)

The element x is said to be left modular if, for all y ≤ z, equality holds in (1).
Following A. Blass and B. Sagan [6], we will say that a lattice itself is left modular

if it contains a left modular maximal chain, that is, a maximal chain each of whose
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elements is left modular. (One might guess that we should define a lattice to be left
modular if all of its elements are left modular, but this is equivalent to the definition
of a modular lattice.) As shown in [13], any M-chain of a supersolvable lattice is
always a left modular maximal chain, and so supersolvable lattices are left modular.
Furthermore, it is shown by L. S.-C. Liu [7] that if L is a finite graded lattice with
a left modular maximal chain M , then L has an Sn EL-labelling with increasing
maximal chain M . In turn, as shown in [9], this implies that L is supersolvable,
and so we conclude the following.

Theorem 1. Let L be a finite graded lattice of rank n. Then the following are

equivalent:

(1) L has an Sn EL-labelling,

(2) L is left modular,

(3) L is supersolvable.

It is shown in [13] that if L is upper-semimodular, then L is left modular if
and only if L is supersolvable. Theorem 1 is a considerable strengthening of this.
Here we used Sn EL-labellings to connect left modularity and supersolvability. It is
natural to ask for a more direct proof that (2) implies (3); such a proof has recently
been provided by the second author in [15].

Our goal is to generalize Theorem 1 to the case when L is not graded and,
moreover, to the case when L is not necessarily a lattice. We now wish to define
natural generalizations of Sn EL-labellings and of maximal left modular chains.

Definition 1.2. An EL-labelling γ of a poset P is said to be interpolating if, for
any y ⋖ u⋖ z, either

(i) γ(y, u) < γ(u, z) or
(ii) the increasing chain from y to z, say y = w0 ⋖ w1 ⋖ · · · ⋖ wr = z, has the

properties that its labels are strictly increasing and that γ(w0, w1) = γ(u, z)
and γ(wr−1, wr) = γ(y, u).

Example 1.3. The reader is invited to check that the labelling of the non-graded
poset shown in Figure 2 is an interpolating EL-labelling. In fact, the poset shown is
the so-called “Tamari lattice” T4. For all positive integers n, there exists a Tamari
lattice Tn with Cn elements, where Cn = 1

n+1

(

2n

n

)

, the nth Catalan number. More

information on the Tamari lattice can be found in [5, §9], [6, §7] and the references
given there, and in [7, §3.2], where this interpolating EL-labelling appears. The
Tamari lattice is shown to have an EL-labelling in [5] and is shown to be left
modular in [6].

If P is graded of rank n and has an interpolating labelling γ in which the labels
on the increasing maximal chain reading from bottom to top are 1, 2, . . . n, then we
can check (cf. Lemma 3.2) that γ is an Sn EL-labelling.

Our next step is to define left modularity in the non-lattice case. Let x and y

be elements of P . We know that x and y have at least one common upper bound,
namely 1̂. If the set of common upper bounds of x and y has a least element, then
we denote it by x ∨ y. Similarly, if x and y have a greatest common lower bound,
then we denote it by x ∧ y.

Now let w and z be elements of P with w, z ≥ y. Consider the set of common
lower bounds for w and z that are also greater than or equal to y. Clearly, y is in
this set. If this set has a greatest element, then we denote it by w ∧y z and we say
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Figure 2. The Tamari lattice T4 and its interpolating EL-labelling

that w ∧y z is well-defined (in [y, 1̂]). We see that (x ∨ y) ∧y z is well-defined in
the poset shown in Figure 3, even though (x ∨ y) ∧ z is not. Similarly, let w and
y be elements of P with w, y ≤ z. If the set {u ∈ P | u ≥ w, y and u ≤ z} has a
least element, then we denote it by w ∨z y and we say that w ∨z y is well-defined
(in [0̂, z]). We will usually be interested in expressions of the form (x∨ y)∧y z and
(x ∧ z) ∨z y. The reader that is solely interested in the lattice case can choose to
ignore the subscripts and superscripts on the meet and join symbols.

Definition 1.4. An element x of a poset P is said to be viable if, for all y ≤ z in
P , (x ∨ y) ∧y z and (x ∧ z) ∨z y are well-defined. A maximal chain of P is said to
be viable if each of its elements is viable.

Example 1.5. The poset shown in Figure 3 is certainly not a lattice but the reader
can check that the increasing maximal chain is viable.

Definition 1.6. A viable element x of a poset P is said to be left modular if, for
all y ≤ z in P ,

(x ∨ y) ∧y z = (x ∧ z) ∨z y.

A maximal chain of P is said to be left modular if each of its elements is viable
and left modular, and P is said to be left modular if it possesses a left modular
maximal chain.

This brings us to the first of our main theorems.

Theorem 2. Let P be a bounded poset with a left modular maximal chain M . Then

P has an interpolating EL-labelling with M as its increasing maximal chain.

The proof of this theorem will be the content of the next section. In Section 3,
we will prove the following converse result.

Theorem 3. Let P be a bounded poset with an interpolating EL-labelling. The

unique increasing chain from 0̂ to 1̂ is a left modular maximal chain.
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These two theorems, when compared with Theorem 1, might lead one to ask
about possible supersolvability results for bounded posets that aren’t graded lat-
tices. This problem is discussed in Section 4. In the case of graded posets, we
obtain a satisfactory result, namely Theorem 4. As a consequence, we have given
an answer to the question of when a graded poset P has an Sn EL-labelling. This
has ramifications on the existence of a “good 0-Hecke algebra action” on the max-
imal chains of the poset, as discussed in [9]. However, it remains an open problem
to appropriately extend the definition of supersolvability to ungraded posets.

An explicit application of Theorem 3 is the subject of Section 5. As a variation
on non-crossing partitions and non-nesting partitions, we define non-straddling par-
titions. Ordering the set of non-straddling partitions of [n] by refinement gives a
poset, denoted NSn, that is generally a non-graded lattice. We define an edge-
labelling γ for NSn that is analogous to the usual EL-labelling for the lattice of
partitions of [n]. In order to show that NSn is left modular, we then prove that γ
is an interpolating EL-labelling.

2. Proof of Theorem 2

Throughout this section, we suppose that P is a bounded poset with a left
modular maximal chain M : 0̂ = x0 ⋖ x1 ⋖ · · ·⋖ xn = 1̂. We want to show that P
has an interpolating EL-labelling. Our approach will be as follows: we will begin
by specifying an edge-labelling γ for P such that M is an increasing chain with
respect to γ. We will then prove a series of lemmas which build on the viability and
left modularity properties. These culminate with Proposition 2.6 which, roughly
speaking, gives a more local definition for γ. We will then be ready to show that γ
is an EL-labelling and is, furthermore, an interpolating EL-labelling.

We choose a label set l1 < · · · < ln of natural numbers. (For most purposes, we
can let li = i.) We define an edge-labelling γ on P by setting γ(y, z) = li for y ⋖ z

if

(xi−1 ∨ y) ∧y z = y and (xi ∨ y) ∧y z = z.

It is easy to see that γ is well-defined. We will refer to it as the labelling induced by
M and the label set {li}. When P is a lattice, this labelling appears, for example,
in [7, 16]. As in [7], we can give an equivalent definition of γ as follows.
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Lemma 2.1. Suppose y ⋖ z in P . Then γ(y, z) = li if and only if

i = min{j | xj ∨ y ≥ z} = max{j + 1 | xj ∧ z ≤ y}.

Proof. That i = min{j | xj ∨ y ≥ z} is immediate from the definition of γ. By left
modularity, γ(y, z) = li if and only if (xi−1∧z)∨

zy = y and (xi∧z)∨
zy = z. In other

words, xi−1 ∧ z ≤ y and xi ∧ z � y. It follows that i = max{j+1 | xj ∧ z ≤ y}. �

Lemma 2.2. Suppose that y ≤ w ≤ z in P and let x ∈ M . Then ((x∧z)∨z y)∨zw

is well-defined and equals (x∧ z)∨z w. Similarly, ((x∨ y)∧y z)∧y w is well-defined

and equals (x ∨ y) ∧y w.

Proof. It is routine to check that, in [0̂, z], (x ∧ z) ∨z w is the least common upper

bound for w and (x∧z)∨z y, and that, in [y, 1̂], (x∨y)∧yw is the greatest common
lower bound lower bound for (x ∨ y) ∧y z and w. �

Lemma 2.3. Suppose that t ≤ u in [y, z] and x ∈ M . Let w = (x ∨ y) ∧y z =
(x∧ z)∨z y in [y, z]. Then (w ∨z t)∧t u and (w ∧y u)∨

u t are well-defined elements

of [t, u] and are equal.

Proof. We see that, by Lemma 2.2,

(x ∨ t) ∧t u = ((x ∨ t) ∧t z) ∧t u = ((x ∧ z) ∨z t) ∧t u

= (((x ∧ z) ∨z y) ∨z t) ∧t u = (w ∨z t) ∧t u.

Similarly,
(x ∧ u) ∨u t = (w ∧y u) ∨

u t

But (x ∨ t) ∧t u = (x ∧ u) ∨u t, yielding the result. �

Lemma 2.4. Suppose x and w are viable and that x is left modular in P .

(a) If x⋖ w then for any z in P we have x ∧ z ≤· w ∧ z.

(b) If w ⋖ x then for any y in P we have w ∨ y ≤· x ∨ y.

Part (b) appears in the lattice case in [7, Lemma 2.5.6] and [8, Lemma 5.3].

Proof. We prove (a); (b) is similar. Assume, seeking a contradiction, that x ∧ z <

u < w ∧ z for some u ∈ P . Now u ≤ z and u ≤ w. It follows that u � x.
Now x < x ∨ u ≤ w. Therefore, w = x ∨ u. So

u = (x ∧ z) ∨z u = (x ∨ u) ∧u z = w ∧ z,

which is a contradiction. �

We now prove a slight extension of [7, Lemma 2.5.7] and [8, Lemma 5.4].

Lemma 2.5. The elements of [y, z] of the form (xi ∨ y) ∧y z form a left modular

maximal chain in [y, z].

Proof. Lemma 2.3 gives the viability and left modularity properties. By Lemma
2.4(b), xi ∨ y ≤· xi+1 ∨ y. By Lemma 2.3 with z = 1̂, we have that xi ∨ y is left

modular in [y, 1̂]. Therefore, (xi ∨ y) ∧y z ≤· (xi+1 ∨ y) ∧y z by Lemma 2.4(a). �

We are now ready for the last, and most important, of our preliminary results.
Let [y, z] be an interval in P . We call the maximal chain of [y, z] from Lemma 2.5
the induced left modular maximal chain of [y, z]. One way to get a second edge-
labelling for [y, z] would be to take the labelling induced in [y, z] by this induced
maximal chain. We now prove that, for a suitable choice of label set, this labelling
coincides with γ.
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Proposition 2.6. Let P be a bounded poset, 0̂ = x0 ⋖ x1 ⋖ · · · ⋖ xn = 1̂ a left

modular maximal chain and γ the corresponding edge-labelling with label set {li}.
Let y < z, and define ci by saying

y = (x0 ∨ y) ∧y z = · · · = (xc1−1 ∨ y) ∧y z

⋖ (xc1 ∨ y) ∧y z = · · · = (xc2−1 ∨ y) ∧y z ⋖ · · ·

⋖ (xcr ∨ y) ∧y z = · · · = (xn ∨ y) ∧y z.

Let mi = lci . Let δ be the labelling of [y, z] induced by its induced left modular

maximal chain and the label set {mi}. Then δ agrees with γ restricted to the edges

of [y, z].

Proof. Suppose t⋖ u in [y, z]. Using ideas from the proof of Lemma 2.3,

δ(t, u) = mi ⇔ (((xci−1 ∨ y) ∧y z) ∨
z t) ∧t u = t and

(((xci ∨ y) ∧y z) ∨
z t) ∧t u = u

⇔ (xci−1 ∨ t) ∧t u = t and (xci ∨ t) ∧t u = u

⇔ γ(t, u) = lci .

�

Proof of Theorem 2. We now know that the induced left modular chain in [y, z] has
(strictly) increasing labels, say m1 < m2 < · · · < mr. Our first step is to show
that it is the only maximal chain with (weakly) increasing labels. Suppose that
y = w0⋖w1⋖ · · ·⋖wr = z is the induced chain and that y = u0⋖u1⋖ · · ·⋖us = z

is another chain with increasing labels.
If s = 1 then y ⋖ z and the result is clear. Suppose s ≥ 2. By Proposition

2.6, we may assume that the labelling on [y, z] is induced by the induced left
modular chain {wi}. In particular, we have that γ(ui, ui+1) = ml where l =
min{j | wj ∨

z ui ≥ ui+1}. Let k be the least number such that uk ≥ w1. Then it is
clear that γ(uk−1, uk) = m1. Note that this is the smallest label that can occur on
any edge in [y, z]. Since the labels on the chain {ui} are assumed to be increasing,
we must have γ(u0, u1) = m1. It follows that w1 ∨

z u0 ≥ u1 and since y ⋖ w1, we
must have u1 = w1. Thus, by induction, the two chains coincide. We conclude that
the induced left modular maximal chain is the only chain in [y, z] with increasing
labels.

It also has the lexicographically least set of labels. To see this, suppose that
y = u0⋖u1⋖ · · ·⋖us = z is another chain in [y, z]. We assume that u1 6= w1 since,
otherwise, we can just restrict our attention to [u1, z]. We have γ(u0, u1) = ml,
where l = min{j | wj ≥ u1} ≥ 2 since w1 � u1. Hence γ(u0, u1) ≥ m2 > γ(w0, w1).
This gives that γ is an EL-labelling. (That γ is an EL-labelling was already shown
in the lattice case in [7, 16].)

Finally, we show that it is an interpolating EL-labelling. If y ⋖ u ⋖ z is not the
induced left modular maximal chain in [y, z], then let y = w0 ⋖ w1 ⋖ · · ·⋖ wr = z

be the induced left modular maximal chain. We have that γ(y, u) = ml where

l = min{j | wj ∨
z y ≥ u} = min{j | wj ≥ u} = r

since u⋖ z. Therefore, γ(y, u) = mr. Also, γ(u, z) = ml where

l = max{j + 1 | wj ∧y z ≤ u} = max{j + 1 | wj ≤ u} = 1

since y ⋖ u. Therefore, γ(y, u) = m1, as required. �
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3. Proof of Theorem 3

We suppose that P is a bounded poset with an interpolating EL-labelling γ. Let
0̂ = x0⋖x1⋖· · ·⋖xn = 1̂ be the increasing chain from 0̂ to 1̂ and let li = γ(xi−1, xi).
We will begin by establishing some basic facts about interpolating labellings. These
results will enable us to show certain meets and joins exist by looking at the labels
that appear along particular increasing chains. We will thus show that the xi are
viable. We will finish by showing that the xi are left modular, again by looking at
the labels on increasing chains.

Let y = w0⋖w1⋖ · · ·⋖wr = z. Suppose that, for some i, we have γ(wi−1, wi) >
γ(wi, wi+1). Then the “basic replacement” at i takes the given chain and replaces
the subchain wi−1 ⋖ wi ⋖ wi+1 by the increasing chain from wi−1 to wi+1. The
basic tool for dealing with interpolating labellings is the following well-known fact
about EL-labellings.

Lemma 3.1. Let y = w0 ⋖ w1 ⋖ · · ·⋖ wr = z. Successively perform basic replace-

ments on this chain, and stop when no more basic replacements can be made. This

algorithm terminates, and yields the increasing chain from y to z.

Proof. At each step, the sequence of labels on the new chain lexicographically
precedes the sequence on the old chain, so the process must terminate, and it is
clear that it terminates in an increasing chain. �

We now prove some simple consequences of this lemma.

Lemma 3.2. Let m be the chain y = w0 ⋖ w1 ⋖ · · ·⋖ wr = z. Then the labels on

m all occur on the increasing chain from y to z and are all different. Furthermore,

all the labels on the increasing chain from y to z are bounded between the lowest

and highest labels on m.

Proof. That the labels on the given chain all occur on the increasing chain follows
immediately from Lemma 3.1 and the fact that after a basic replacement, the labels
on the old chain all occur on the new chain. Similar reasoning implies that the labels
on the increasing chain are bounded between the lowest and highest labels on m.

That the labels are all different again follows from Lemma 3.1. Suppose oth-
erwise. By repeated basic replacements, one obtains a chain which has two suc-
cessive equal labels, which is not permitted by the definition of an interpolating
labelling. �

Lemma 3.3. Let z ∈ P such that there is some chain from 0̂ to z all of whose

labels are in {l1, . . . , li}. Then z ≤ xi. Conversely, if z ≤ xi, then all the labels on

any chain from 0̂ to z are in {l1, . . . , li}.

Proof. We begin by proving the first statement. By Lemma 3.2, the labels on the
increasing chain from 0̂ to z are in {l1, . . . , li}. Find the increasing chain from z to

1̂. Let w be the element in that chain such that all the labels below it on the chain
are in {l1, . . . , li}, and those above it are in {li+1, . . . , ln}. Again, by Lemma 3.2,

the increasing chain from 0̂ to w has all its labels in {l1, . . . , li}, and the increasing

chain from w to 1̂ has all its labels in {li+1, . . . , ln}. Thus w is on the increasing

chain from 0̂ to 1̂, and so w = xi. But by construction w ≥ z. So xi ≥ z.
To prove the converse, observe that by Lemma 3.2, no label can occur more than

once on any chain. But since every label in {li+1, . . . , ln} occurs on the increasing
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chain from xi to 1̂, no label from among that set can occur on any edge below
xi. �

The obvious dual of Lemma 3.3 is proved similarly:

Corollary 3.4. Let z ∈ P such that there is some chain from z to 1̂ all of whose

labels are in {li+1, . . . , ln}. Then z ≥ xi. Conversely, if z ≥ xi, then all the labels

on any chain from z to 1̂ are in {li+1, . . . , ln}.

We are now ready to prove the necessary viability properties.

Lemma 3.5. xi∨z and xi∧z are well-defined for any z ∈ P and for i = 1, 2, . . . , n.

Proof. We will prove that xi∧z is well-defined. The proof that xi∨z is well-defined
is similar. Let w be the maximum element on the increasing chain from 0̂ to z such
that all labels on the increasing chain between 0̂ and w are in {l1, . . . , li}. Clearly
w ≤ z and, by Lemma 3.3, w ≤ xi.

Suppose y ≤ z, xi. It follows that all labels from 0̂ to y are in {l1, . . . , li}.
Consider the increasing chain from y to z. There exists an element u on this chain
such that all the labels on the increasing chain from 0̂ to u are in {l1, . . . , li} and
all the labels on the increasing chain from u to z are in {li+1, . . . , ln}. Therefore,

u is on the increasing chain from 0̂ to z and, in fact, u = w. Also, we have that
0̂ ≤ y ≤ u = w ≤ z. We conclude that w is the greatest common lower bound for
z and xi. �

Lemma 3.6. 0̂ = x0 ∧ z ≤ x1 ∧ z ≤ · · · ≤ xn ∧ z = z, after we delete repeated

elements, is the increasing chain in [0̂, z]. Hence, (xi ∧ z) ∨z y is well-defined for

y ≤ z. Similarly, (xi ∨ y) ∧y z is well-defined.

Proof. From the previous proof, we know that xi ∧ z is the maximum element on
the increasing chain from 0̂ to z such that all labels on the increasing chain between
0̂ and xi ∧ z are in {l1, . . . , li}. The first assertion follows easily from this.

Now apply Lemma 3.5 to the bounded poset [0̂, z]. It has an obvious interpolating
labelling induced from the interpolating labelling of P . Recall that our definition
of the existence of (xi ∧ z) ∨z y only requires it to be well-defined in [0̂, z]. The
result follows. �

We conclude that the increasing maximal chain 0̂ = x0 ⋖ x1 ⋖ · · ·⋖ xn = 1̂ of P
is viable. It remains to show that it is left modular.

Proof of Theorem 3. Suppose that xi is not left modular for some i. Then there
exists some pair y ≤ z such that (xi ∨ y) ∧y z > (xi ∧ z) ∨z y. Set x = xi,
b = (xi ∧ z) ∨z y and c = (xi ∨ y) ∧y z. Observe that d := x ∨ b ≥ c while
a := x ∧ c ≤ b. So the picture is as shown in Figure 4.

By Lemma 3.3, the labels on the increasing chain from 0̂ to a are less than or
equal to li. Consider the increasing chain from a to c. Let w be the first element
along the chain. If γ(a, w) ≤ li, then by Lemma 3.3, w ≤ xi, contradicting the fact
that a = x ∧ c. Thus the labels on the increasing chain from a to c are all greater
than li. Dually, the labels on the increasing chain from b to d are less than or equal
to li. But now, by Lemma 3.2, the labels on the increasing chain from b to c must
be contained in the labels on the increasing chain from a to c, and also from b to
d. But there are no such labels, implying a contradiction. We conclude that the xi

are all left modular. �
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x

d

a

b

c

Figure 4

We have shown that if P is a bounded poset with an interpolating labelling γ,
then the unique increasing maximal chain M is a left modular maximal chain. By
Theorem 2, M then induces an interpolating EL-labelling of P . We now show that
this labelling agrees with γ for a suitable choice of label set, which is a special case
of the following proposition.

Proposition 3.7. Let γ and δ be two interpolating EL-labellings of a bounded poset

P . If γ and δ agree on the γ-increasing chain from 0̂ to 1̂, then γ and δ coincide.

Proof. Let m : 0̂ = w0 ⋖ w1 ⋖ · · · ⋖ wr = 1̂ be the maximal chain with the lex-
icographically first γ labelling among those chains for which γ and δ disagree.
Since m is not the γ-increasing chain from 0̂ to 1̂, we can find an i such that
γ(wi−1, wi) > γ(wi, wi+1). Let m′ be the result of the basic replacement at i

with respect to the labelling γ. Then the γ-label sequence of m′ lexicographically
precedes that of m, so γ and δ agree on m′. But using the fact that γ and δ are
interpolating, it follows that they also agree on m. Thus they agree everywhere. �

4. Generalizing Supersolvability

Suppose P is a bounded poset. For now, we consider the case of P being graded
of rank n. We would like to define what it means for P to be supersolvable, thus
generalizing Stanley’s definition of lattice supersolvability. A definition of poset
supersolvability with a different purpose appears in [16] but we would like a more
general definition. In particular, we would like P to be supersolvable if and only
if P has an Sn EL-labelling. For example, the poset shown in Figure 3, while it
doesn’t satisfy V. Welker’s definition, should satisfy our definition. We need to
define, in the poset case, the equivalent of a sublattice generated by two chains.

Suppose P has a viable maximal chain M . Thus (x∨ y)∧y z and (x∧ z)∨z y are
well-defined for x ∈ M and y ≤ z in P . Given any chain c of P , we define RM (c)
to be the smallest subposet of P satisfying the following two conditions:

(i) M and c are contained in RM (c),
(ii) If y ≤ z in P and y and z are in RM (c), then so are (x ∨ y) ∧y z and

(x ∧ z) ∨z y for any x in M .

Definition 4.1. We say that a bounded poset P is supersolvable with M-chain M

if M is a viable maximal chain and RM (c) is a distributive lattice for any chain c

of P .

Since distributive lattices are graded, it is clear that a poset must be graded in
order to be supersolvable. We now come to the main result of this section.
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Theorem 4. Let P be a bounded graded poset of rank n. Then the following are

equivalent:

(1) P has an Sn EL-labelling,

(2) P is left modular,

(3) P is supersolvable.

Proof. Observe that for a graded poset, Lemma 3.2 implies that an interpolating
labelling is an Sn EL-labelling, and the converse is obvious. Thus, Theorems 2 and
3 restricted to the graded case give us that (1) ⇔ (2).

Our next step is to show that (1) and (2) together imply (3). Suppose P is
a bounded graded poset of rank n with an Sn EL-labelling. Let M denote the
increasing maximal chain 0̂ = x0 ⋖ x1 ⋖ · · · ⋖ xn = 1̂ of P . We also know that
M is viable and left modular and induces the same Sn EL-labelling. Given any
maximal chain m of P , we define QM (m) to be the closure of m in P under basic
replacements. In other words, QM (m) is the smallest subposet of P which contains
M and m and which has the property that, if y and z are in QM (m) with y ≤ z,
then the increasing chain between y and z is also in QM (m). It is shown in [9,
Proof of Thm. 1] that QM (m) is a distributive lattice. There P is a lattice but the
proof of distributivity doesn’t use this fact. Now consider RM (c). We will show
that there exists a maximal chain m of P such that RM (c) = QM (m). Let m be
the maximal chain of P which contains c and which has increasing labels between
successive elements of c ∪{0̂, 1̂}. The only idea we need is that, for y ≤ z in P , the
increasing chain from y to z is given by y = (x0 ∨ y) ∧y z ≤ (x1 ∨ y) ∧y z ≤ · · · ≤
(xn∨y)∧y z = z, where we delete repeated elements. This follows from Lemma 2.5
since the induced left modular chain in [y, z] has increasing labels. It now follows
that RM (c) = QM (m), and hence RM (c) is a distributive lattice.

Finally, we will show that (3) ⇒ (2). We suppose that P is a bounded super-
solvable poset with M-chain M . Suppose y ≤ z in P and let c be the chain y ≤ z.
For any x in M , x ∨ y is well-defined in P (because M is assumed to be viable)
and equals the usual join of x and y in the lattice RM (c). The same idea applies
to x ∧ z, (x ∨ y) ∧y z and (x ∧ z) ∨z y. Since RM (c) is distributive, we have that

(x ∨ y) ∧y z = (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) = (x ∧ z) ∨ y = (x ∧ z) ∨z y

in RM (c) and so M is left modular in P . �

Remark 4.2. We know from Theorem 1 that a graded lattice of rank n is supersolv-
able if and only if it has an Sn EL-labelling. Therefore, it follows from Theorem 4
that the definition of a supersolvable poset when restricted to graded lattices yields
the usual definition of a supersolvable lattice. (Note that this is not a priori obvious
from our definition of a supersolvable poset.)

Remark 4.3. The argument above for the equality of RM (c) and QM (m) holds
even if P is not graded. However, in the ungraded case, it is certainly not true that
QM (m) is distributive. The search for a full generalization of Theorem 1 thus leads
us to ask what can be said about QM (m) in the ungraded case. Is it a lattice? Can
we say anything even in the case that P is a lattice?

5. Non-straddling partitions

Let Πn denote the lattice of partitions of the set [n] into blocks, where we order
partitions by refinement: if y and z are partitions of [n] we say that y ≤ z if every
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block of y is contained in some block of z. Equivalently, z covers y in Πn if z

is obtained from y by merging two blocks of y. Therefore, Πn is graded of rank
n− 1. Πn is shown to be supersolvable in [13] and hence has an Sn−1 EL-labelling,
which we denote be δ. In fact, it will simplify our discussion if we use the label
set {2, . . . , n} for δ, rather than the label set [n− 1]. We choose the M-chain, and
hence the increasing maximal chain for δ, to be the maximal chain consisting of the
bottom element and those partitions of [n] whose only non-singleton block is [i],
where 2 ≤ i ≤ n. In the literature, δ is often defined in the following form, which
can be shown to be equivalent. If z is obtained from y by merging the blocks B

and B′, then we set
δ(y, z) = max{minB,minB′}.

For any x ∈ Πn, we will say that j ∈ {2, . . . n} is a block minimum in x if j = minB
for some block B of x. In particular, we see that δ(y, z) is the unique block minimum
in y that is not a block minimum in z.

Recall that a non-crossing partition of [n] is a partition with the property that
if some block B contains a and c and some block B′ contains b and d with a < b <

c < d, then B = B′. Again, we can order the set of non-crossing partitions of [n]
by refinement and we denote the resulting poset by NCn. This poset, which can be
shown to be a lattice, has many nice properties and has been studied extensively.
More information can be found in R. Simion’s survey article [11] and the references
given there. Since NCn is a subposet of Πn, we can consider δ restricted to the
edges of NCn. It was observed by Björner and P. Edelman in [3] that this gives
an EL-labelling for NCn and we can easily see that this EL-labelling is, in fact, an
Sn−1 EL-labelling (once we subtract 1 from every label).

We are now ready to state our main definition for this section, which should be
compared with the definition above of non-crossing partitions.

Definition 5.1. A partition of [n] is said to be non-straddling if whenever some
block B contains a and d and some block B′ contains b and c with a < b < c < d,
then B = B′.

This definition is also very similar to that of non-nesting partitions, as defined
by A. Postnikov and discussed in [10, Remark 2] and [1]. The only difference in the
definition of non-nesting partitions is that we do not require B = B′ if there is also
an element of B between b and c. So, for example, {1, 3, 5}{2, 4} is a non-nesting
partition in Π5 but is not a non-straddling partition. We say that {1, 3, 5}{2, 4} is
a straddling partition, that 1 < 2 < 4 < 5 is a straddle, and that the blocks {1, 3, 5}
and {2, 4} form a straddle.

Let NSn be the subposet of Πn consisting of those partitions that are non-
straddling. To distinguish the interval [x, y] in Πn from the interval [x, y] in NSn,
we will use the notation [x, y]Πn

and [x, y]NSn
, respectively. We note that the meet

in Πn of two non-straddling partitions is again non-straddling, implying that NSn

is a meet-semilattice. Since {1, 2. . . . , n} is a top element for NSn, we conclude
that NSn is a lattice. On the other hand, NSn is not graded. For example, con-
sider those elements of Π6 that cover {1, 4}{2, 5}{3, 6}, as represented in Figure
5(a). {1, 2, 4, 5}{3, 6}, {1, 3, 4, 6}{2, 5} and {1, 4}{2, 3, 5, 6} are all straddling parti-
tions, so {1, 4}{2, 5}{3, 6} is covered in NS6 by {1, 2, 3, 4, 5, 6}. Figure 5(b) shows

[{1, 4}{2, 5}{3}{6}, 1̂]NS6
.

Therefore, unlike Πn and NCn, NSn cannot have an Sn−1 EL-labelling. How-
ever, we can ask if it has an interpolating EL-labelling. We see that the following
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Figure 5

three ways of defining an edge-labelling γ for NSn are equivalent. Observe that if
y⋖ z in NSn, then z is obtained from y by merging the blocks B1, B2, . . . , Br of y
into a single block B in z. We set

γ(y, z) = second smallest element of {minB1, . . . ,minBr}

= smallest block minimum in y that is not a block

minimum in z

= smallest edge label of [y, z]Πn
under the edge-labelling δ. (2)

See Figure 5(b) for examples. Note that the label set for γ is {2, 3, . . . , n} and that
if r = 2, then γ(y, z) equals δ(y, z). We see that the chain

0̂ < {1, 2}{3} · · ·{n} < {1, 2, 3}{4} · · ·{n} < · · · < {1, 2, . . . , n− 1}{n} < 1̂

is an increasing maximal chain in NSn under γ.

Theorem 5. The edge-labelling γ is an interpolating EL-labelling for NSn.

Applying Theorem 3, we get the following result:

Corollary 5.2. NSn is left modular.

In preparation for proving Theorem 5, we wish to get a firmer grasp on NSn.
Suppose x, y ∈ NSn. While the meet of x and y in NSn is just the meet of x and y

in Πn, the situation for joins is more complicated. The next lemma, crucial to the
proof that γ is an EL-labelling, helps us to understand important types of joins.
From now on, unless otherwise specified, x∨ y with x, y ∈ NSn will denote the join
of x and y in NSn. Furthermore, if l0 < l1 < · · · < lr are block minima in y, then
〈li〉 will denote the block of y with minimum element li, and 〈l0〉∪〈l1〉∪· · ·∪〈lr〉 will
denote the minimum element z ∈ NSn for which the elements of 〈l0〉, 〈l1〉, · · · , 〈lr〉
are all in a single block. Note that z is well-defined, since it is the meet of all those
elements of NSn that have the required elements in a single block.

Lemma 5.3. Suppose l0 < l1 < · · · < lr are block minima in y and that

y ∨ (〈l0〉 ∪ 〈l1〉) = y ∨ (〈l0〉 ∪ 〈l1〉 ∪ · · · ∪ 〈lr〉).

Then

y ∨ (〈li〉 ∪ 〈lj〉) = y ∨ (〈l0〉 ∪ 〈l1〉 ∪ · · · ∪ 〈lr〉).

for any 0 ≤ i < j ≤ r.
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In words, this says that if merging the blocks 〈l0〉 and 〈l1〉 in y requires us to
merge all of 〈l0〉, 〈l1〉, . . . , 〈lr〉, then merging any two of these blocks also requires
us to merge all of them.

Proof. The proof is by induction on r, with the result being trivially true when
r = 1. While elementary, the details are a little intricate. To gain a better under-
standing, the reader may wish to treat the proof as an exercise. If i < j < r − 1,
then by the induction assumption and the hypothesis that y ∨ (〈l0〉 ∪ 〈l1〉) =
y ∨ (〈l0〉 ∪ 〈l1〉 ∪ · · · ∪ 〈lr〉, we have

y ∨ (〈li〉 ∪ 〈lj〉) = y ∨ (〈l0〉 ∪ 〈l1〉 ∪ · · · ∪ 〈lr−1〉) = y ∨ (〈l0〉 ∪ 〈l1〉 ∪ · · · ∪ 〈lr〉),

as required. Therefore, it suffices to let j = r.
Since y∨ (〈l0〉∪ 〈l1〉) = y∨ (〈l0〉∪ 〈l1〉∪ · · · ∪ 〈lr−1〉) = y∨ (〈l0〉∪ 〈l1〉∪ · · · ∪ 〈lr〉),

we know that 〈l0〉∪〈l1〉∪· · ·∪〈lr−1〉 forms a straddle with 〈lr〉. There are two ways
in which this might happen.

Suppose we have a < b < c < d with a, d ∈ 〈l0〉∪〈l1〉∪ · · ·∪〈lr−1〉 and b, c ∈ 〈lr〉.
Suppose d ∈ 〈ls〉 in y. Then, since ls < lr ≤ b < c, we have that ls < b < c < d is a
straddle in y, which contradicts y ∈ NSn.

Secondly, suppose we have a < b < c < d with a, d ∈ 〈lr〉 and b, c ∈ 〈l0〉 ∪ 〈l1〉 ∪
· · ·∪ 〈lr−1〉. Suppose b ∈ 〈ls〉 and c ∈ 〈lt〉. Now c > b > a ≥ lr > ls, lt. If s = t then
y has a straddle, so we can assume that ls 6= lt and that li 6= lt, with the argument
being similar if li 6= ls. If li < lt, then li < lt < c < d is a straddle when we merge
blocks 〈li〉 and 〈lr〉 in y. Therefore,

y ∨ (〈li〉 ∪ 〈lr〉) = y ∨ (〈li〉 ∪ 〈lt〉 ∪ 〈lr〉) = y ∨ (〈l0〉 ∪ 〈l1〉 ∪ · · · ∪ 〈lr〉) (3)

by the induction assumption. If li > lt, then lt < li < lr < c is a straddle when we
merge blocks 〈li〉 and 〈lr〉 in y, also implying (3). �

Lemma 5.4. Suppose y < z in NSn and that [y, z]Πn
has edge labels l1 < l2 <

· · · < ls under the edge-labelling δ.

(i) There is exactly one edge of the form y ⋖ w with γ(y, w) = l1 in [y, z]NSn
.

(ii) On any unrefinable chain y ⋖ u0 ⋖ u1 ⋖ · · · ⋖ uk = z in NSn, the label l1
has to appear.

Proof. (i) We first prove the existence of w. Let l0 be the minimum of the block of
z containing l1 and set w = y ∨ (〈l0〉 ∪ 〈l1〉). Suppose y < u ≤ w. We know w is
obtained from y by merging the blocks 〈l0〉, 〈l1〉, 〈li1〉, 〈li2〉, 〈lir 〉, for some 0 ≤ r < s.
Applying Lemma 5.3, we get that u = w and so y⋖w. By definition of γ, we have
that γ(y, w) = l1.

It remains to prove uniqueness. Suppose w′ ∈ NSn with y ⋖ w′ in [y, z]. If
γ(y, w′) = l1, then we see that the blocks 〈l0〉 and 〈l1〉 must be merged in w′.
Therefore, these two blocks are merged in w ∧ w′, which is thus greater than y.
Since y ⋖ w,w′, we conclude that w = w′.

(ii) Consider the chain y = u0 < u1 < · · · < uk = z as a chain in Πn. Since δ

is an Sn−1 EL-labelling for Πn (once we subtract 1 from every label), the label l1
has to appear on every maximal chain of [y, z]Πn

. It particular, it has to appear
in one of the intervals [ui, ui+1]Πn

for 0 ≤ i < k. Therefore, by (2), we get that
γ(ui, ui+1) = l1 for some 0 ≤ i < k. �

Proposition 5.5. The edge-labelling γ is an EL-labelling for NSn.
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Proof. Consider y, z ∈ NSn with y < z. Suppose [y, z]Πn
has edge labels l1 < l2 <

· · · < ls. By (2), these are the only edge labels that can appear in [y, z]NSn
. We now

describe a recursive construction of an unrefinable chain λ : y = w0⋖w1⋖· · ·⋖wk =
z in NSn. We let w1 be the w of Lemma 5.4, i.e. w1 is that unique element of the
interval [y, z] in NSn that covers y and satisfies γ(y, w1) = l1. Obviously, the labels
in the interval [w1, z] are all greater than l1. Now we apply the same argument
in the interval [w1, z] to define w2 and repeat until we have constructed all of λ.
Clearly, λ is then an increasing chain. By Lemma 5.4(i), it has the lexicographically
least set of labels. By Lemma 5.4(ii), it is the only increasing chain from y to z. �

Proof of Theorem 5. Suppose we have y ⋖ u ⋖ z in NSn with γ(y, u) > γ(u, z).
Let y = w0 ⋖ w1 ⋖ · · · ⋖ wk = z be the unique increasing chain of [y, z] in NSn.
By Lemma 5.4, we know that γ(w0, w1) = γ(u, z) = l1, the smallest edge label of
[y, z]Πn

.
To show that γ(y, u) = γ(wk−1, wk), we have to work considerably harder. We

will continue to write 〈m〉 to denote the block of y whose minimum is m and we
suppose that u is obtained from y by merging blocks 〈m0〉, 〈m1〉, . . . , 〈ms〉 of y, with
m0 < m1 < · · · < ms. We will write 〈l〉u to denote the block of u whose minimum is
l, and we suppose that z is obtained from u by merging blocks 〈l0〉u, 〈l1〉u, . . . , 〈lr〉u,
with l0 < l1 < · · · < lr. With the structure of the chain y ⋖ u ⋖ z thus fixed, we
now can deduce information about the structure of the increasing chain.

If l0 andm0 are distinct and are both block minima in z, then all the li’s andmj ’s
are distinct. It follows that z is obtained from y by merging blocks 〈l0〉, 〈l1〉, . . . , 〈lr〉
and separately merging blocks 〈m0〉, 〈m1〉, . . . , 〈ms〉. Since y ⋖ u ⋖ z, we get that
k = 2 and γ(y, u) = γ(w1, z) = m1. We assume, therefore, that m0 = li for some
0 ≤ i ≤ r.

As usual, we let w1 = y ∨ (〈l0〉 ∪ 〈l1〉). Now consider

w = y ∨ (
⋃

i: li<m1

〈li〉).

Since l1 < m1, we know that w ≥ w1. Let B denote the the block of w containing
all 〈li〉 satisfying li < m1. Since m0 < m1, we know that m0 ∈ B. In fact, if
we can show that m1 6∈ B, then we can now complete the proof. Indeed, assume
m1 6∈ B and let w′ = w ∨ (B ∪ 〈m1〉). Now w′ has m0 and m1 in the same block
and so satisfies w′ ≥ u, since u = y ∨ (〈m0〉 ∪ 〈m1〉). Also, w′ has l0 and l1 in
the same block and so satisfies w′ ≥ z, since z = u ∨ (〈l0〉 ∪ 〈l1〉). Hence, w′ = z.
By Lemma 5.3 (substitute w for y, and m1 < · · · < ms for l1 < · · · < lr), we see
that w ⋖ w′. Now γ(w,w′) = m1, while the edge labels of [y, w]Πn

all come from
the set {li | li < m1}, implying that w is on the increasing chain between y and z.
Therefore, w = wk−1 and so γ(wk−1, wk) = γ(y, u).

It remains to show that m1 6∈ B. In fact, we will show that mj 6∈ B for any
j ≥ 1. Consider the set:

B̃ =
⋃

i: li<m1

〈li〉

We will show that B̃ does not form a straddle with any 〈mj〉 for j ≥ 1. From that,

it follows immediately that B = B̃, and therefore that m1 6∈ B, as desired.
For j ≥ 1, if 〈mj〉 is a singleton, then B̃ does not form a straddle with 〈mj〉.

So suppose that |〈mj〉| ≥ 2. Let m′

j denote the second smallest element of 〈mj〉.
Observe the following:



16 PETER MCNAMARA AND HUGH THOMAS

• If 〈m0〉 contains an element greater than m′

j , then 〈m0〉 and 〈mj〉 form a
straddle in y, which is impossible.

• If 〈m0〉 has more than one element between mj and m′

j, then we can draw
the same conclusion.

• Consider those li < m1 with li 6= m0. If 〈li〉 contains an element greater
than mj , then 〈li〉u forms a straddle in u with 〈m0〉 ∪ 〈m1〉 ∪ · · · ∪ 〈ms〉,
which is impossible.

Combining these three observations, we see that B̃ contains no elements greater
than m′

j , and at most one element between mj and m′

j . In particular, it does not
form a straddle with 〈mj〉, as desired. �
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à Montreal, Case Postale 8888, succursale Centre-ville, Montréal (Québec) H3C 3P8,
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