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Abstract

Define Ik
n
(α) to be the set of involutions of {1, 2, . . . , n} with exactly k fixed points which

avoid the pattern α ∈ Si, for some i ≥ 2, and define Ikn(∅;α) to be the set of involutions of

{1, 2, . . . , n} with exactly k fixed points which contain the pattern α ∈ Si, for some i ≥ 2,

exactly once. Let ikn(α) be the number of elements in Ikn(α) and let ikn(∅;α) be the number

of elements in Ikn(∅;α). We investigate Ikn(α) and Ikn(∅;α) for all α ∈ S3. In particular,

we show that ikn(132) = ikn(213) = ikn(321), i
k
n(231) = ikn(312), i

k
n(∅; 132) = ikn(∅; 213), and

ik
n
(∅; 231) = ik

n
(∅; 312) for all 0 ≤ k ≤ n.

1. Introduction

Recall that π ∈ Sn is called an involution if and only if π−1 = π. Equivalently, π is an
involution if and only if the cycle structure of π has no cycle of length longer than two. In
[RSZ], the study of refined restricted permutations was initiated. In order to describe the
objects studied in [RSZ] and below we have need of a few definitions.

Let π ∈ Sn be a permutation of {1, 2, . . . , n} written in one-line notation. Let α ∈ Sm,
m ≤ n. We say that π contains the pattern α if there exist indices i1, i2, . . . , im such that
πi1πi2 . . . πim is equivalent to α, where we define equivalence as follows. Define πij = |{x :
πix ≤ πij , 1 ≤ x ≤ m}|. If α = πi1πi2 . . . πim then we say that α and πi1πi2 . . . πim are

1 Homepage: http://math.colgate.edu/∼aaron/
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equivalent. For example, if τ = 124635 then τ contains the pattern 132 by noting that
τ2τ4τ5 = 263 is equivalent to 132. We say that π is α-avoiding if π does not contain the
pattern α. In our above example, τ is 321-avoiding.

Let S = ∪i≥2Si. Let T be a subset of S and M be a multiset of S. Define Sn(T ;M) to
be the set of permutations in Sn which avoid all patterns in T and contain each pattern in
M exactly once. Let sn(T ;M) be the number of elements in Sn(T ;M). If M = ∅ we write
Sn(T ) and sn(T ). Further, if T or M contain only one pattern, we omit the set notation.

Consider the following refinement, introduced in [RSZ]. Define Sk
n(T ;M) to be the set of

permutations in Sn(T ;M) with exactly k fixed points. Let skn(T ;M) be the number of
elements in Sk

n(T ;M) where we omit M and the set notation when appropriate.

In this paper, we are concerned with those permutations in Sk
n(T ;M) which are involutions.

To this end, we define Ikn(T ;M) to be the set of involutions in Sk
n(T ;M) and we let ikn(T ;M)

be the number of elements in Ikn(T ;M). As before, we omit M and the set notation when
appropriate.

In [RSZ], it was shown that skn(132) = skn(213) = skn(321) and skn(231) = skn(312) for all
0 ≤ k ≤ n. In this paper we will show that the same result holds when restricting our
permutations to be involutions.

The results skn(132) = skn(321) and ikn(132) = ikn(321) lend some evidence that there may be
a restricted permutation result concerning the cycle structure. However, for a given cycle
structure c, in general, the number of 132-avoiding permutations with cycle structure c is not
equal to the number of 321-avoiding permutations with cycle structure c. As an example,
consider S6(132) and S6(321). (It should be noted that n = 6 is the minimal n such that the
number of permutations classified according to their cycle structure differ by restriction.)
Below we give the permutations in each according to their cycle structure.

Cycle structure | S6(132) | S6(321)
16 | 1 | 1
1421 | 5 | 5
1331 | 8 | 8
1222 | 9 | 9
1241 | 12 | 12
112131 | 20 | 20
1151 | 20 | 20
23 | 5 | 5
2141 | 20 | 18
32 | 8 | 10
61 | 24 | 24
Sum | 132 | 132
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Some results concerning restricted involutions along with their fixed point refinement are
known. These are stated in the following three theorems. Other results are given in [GM]
and [GM2].

Theorem 1.1 (Simion and Schmidt, [SiS]2) Let in(α) be the number of α-avoiding involu-
tions in Sn. Let p1 ∈ {123, 132, 213, 321} and p2 ∈ {231, 312}. For n ≥ 1,

in(p1) =
(

n

⌊n
2
⌋

)

and

in(p2) = 2n−1.

Theorem 1.2 (Guibert and Mansour, [GM]) Let ikn(132) be the number of 132-avoiding
involutions in Sn with k fixed points. For 0 ≤ k ≤ n,

ikn(132) =

{

k+1
n+1

(

n+1
n−k
2

)

for k + n even

0 for k + n odd .

Theorem 1.3 (Robertson, Saracino, and Zeilberger, [RSZ]) Let γ ∈ Sn be given by γi =
n + 1 − i for 1 ≤ i ≤ n. For π ∈ Sn, let π⋆ = γπγ−1. Then, for all π, π and π⋆ have
the same number of fixed points. Furthermore, the number of occurrences of the pattern 213
(respectively 312) in π equals the number of occurrences of the pattern 132 (respectively 231)
in π⋆.

In the next section, we finish the enumeration of ikn(α) for all α ∈ S3 and 0 ≤ k ≤ n, as well
as provide some bijective results. In the last section, we investigate Ikn(∅;α) for all α ∈ S3

and 0 ≤ k ≤ n.

Notation We note here that with a transposition (xy) we will always take x < y.

2. Involutions Avoiding a Length Three Pattern

In [SiS], Simion and Schmidt completed the study of involutions avoiding a given pattern
of length three. Their results are given in Theorem 1.1 above. As done in [RSZ], we refine
the enumeration problem by classifying restricted permutations according to the number of
fixed points.

We can see from the conjugation given in Theorem 1.3 that ikn(132) = ikn(213) and ikn(231) =
ikn(312) for all 0 ≤ k ≤ n. In this section (Theorem 2.2) we show that ikn(321) = ikn(132) =
ikn(213) for all 0 ≤ k ≤ n as well.

We note here that since our permutations are involutions, we clearly require n+k to be even
in all theorems below.

2 Rodica Simion did not like the SS acronym due to its unpleasant connotation (see [Z]). Hence, we use
the nonstandard SiS and hope that others will as well.
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In the proofs below, we will use the following properties of standard Young tableaux. (For
proofs of these properties see [K], [K2], and [S].) Let Yπ be the Young tableaux corresponding
(via the Robinson-Schensted algorithm) to π ∈ Sn. Let Yπ have shape λ = (λ1 ≥ λ2 ≥ · · · ),
where λi is the length of the ith row.

1. λ1 is the maximum length of an increasing subsequence of π.

2. The length of the first column of Yπ is the maximum length of a decreasing subsequence
of π.

3. If π is an involution, then the number of fixed points of π equals the number of odd
length columns in Yπ.

4. For i ≤ n
2
, the number of standard Young tableaux of shape (n− i, i) (or its transpose

via changing columns into rows) is
(

n

i

)

−
(

n

i−1

)

.

Theorem 2.1 For n ≥ 1,

i0n(123) = i2n(123) =

{

(

n−1
n
2

)

for n even

0 for n odd

i1n(123) =

{

(

n
n−1

2

)

for n odd

0 for n even

ikn(123) = 0 for k ≥ 3.

Proof. Clearly for k ≥ 3 we have an occurrence of 123. Hence, it remains to prove the
formulas for k = 0, 1, 2.

Consider first k = 0 so that n is even. Let π ∈ I0n(123). Since π is 123-avoiding, the longest
increasing subsequence of π has length at most 2. Keeping in mind that π has no fixed point,
we use the above properties of standard Young tableaux to see that

i0n(123) =

n
2
∑

j=0

j even

((

n

j

)

−
(

n

j − 1

))

=

(

n− 1
n
2

)

.

Next, consider k = 2, so that again n is even. Since the total number of standard Young
tableaux of two columns on {1, 2, . . . , n} with n even is

(

n
n
2

)

, we have

i2n(123) =

(

n
n
2

)

−
(

n− 1
n
2

)

=

(

n− 1
n
2
− 1

)

=

(

n− 1
n
2

)

.
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For k = 1 we consider i1n−1(123), which is equal to the number of standard Young tableaux
on {1, 2, . . . , n} with at most 2 columns, with n odd (so that exactly one of the columns is
of odd length). Hence,

i1n(123) =

n−1

2
∑

j=0

((

n− 1

j

)

−
(

n

j − 1

))

=

(

n
n−1
2

)

.

✷

Remark. The case i1n(123) also follows from Theorem 1.1 (originally done in [SiS]).

We now provide two bijections between I0n(123) and I2n(123) since we see that they are
enumerated by the same sequence.

The first bijection uses standard Young tableaux. For π ∈ Sn, denote by SY T (π) the
standard Young tableau created by the Robinson-Schensted algorithm. Let SY Tn(2) be the
set of all standard Young tableaux on n elements with at most 2 columns with the lengths
of the columns having the same parity. Now, let π ∈ I0n(123) and consider SY T (π). From
the properties of standard Young tableaux we see that SY T (π) has one or two columns,
each of even length. Note that n must be the bottom entry in one of the columns. Let
γ : SY Tn(2) → SY Tn(2) be the map which takes n and places it on the bottom of the other
column (even if empty). For example,

γ









1 3
2 4
5
6









=





1 3
2 4
5 6



 .

It is easy to check that for π ∈ I0n(123), γ(STYn(π)) = STYn(τ) with τ ∈ I2n(123) and that
γ is a bijection.

The second bijection we present uses Dyck paths. For completeness we make the following
definition.

Definition 2.2 Let i ≥ j ≥ 0 and i + j ≥ 2 be even. A partial Dyck path is a path in
R2 from (0, 0) to (i, j) with j > 0 consisting of a sequence of steps of length

√
2 and slope

±1 which does not fall below the x-axis. We denote these two types of steps by (1, 1) and
(1,−1), called up-steps and down-steps, respectively. If j = 0 we call the path a (standard)
Dyck path.

Notation. We will denote the set of partial/standard Dyck paths from (0, 0) to (i, j) by
D(i, j).

We now describe, for completeness, a bijection from Sn(123) toD(2n, 0) due to Krattenthaler
[Kr].
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Let K : Sn(123) → D(2n, 0) be the bijection defined as follows. Let π1π2 · · ·πn = π ∈
Sn(123). Determine the right-to-left maxima of π, i.e. m = πi is a right-to-left maximum if
m > πj for all j > i. Let π have right-to-left maxima m1 < m2 < · · · < ms, so that we may
write

π = wsmsws−1ms−1 · · ·w1m1,

where the wi’s are possibly empty. Generate a Dyck path from (0, 0) to (2n, 0) as follows.
Read π from right to left. For each mi do mi − mi−1 up-steps (where we define m0 = 0).
For each wi do |wi|+ 1 down-steps.

Using Krattenthaler’s bijection, it is easy to check the following.

1. K|In(123) produces a Dyck path that is symmetric about the line x = n.

2. K|I0n(123) produces a Dyck path that has an even number of peaks.

3. K|I2n(123) produces a Dyck path that has an odd number of peaks.

For example, to prove 2 and 3, we note that for all i, πi is right-to-left maximum if and only
if i = 1, and that if there are two fixed points then the righthand fixed point is a right-to-left
maximum but the lefthand fixed point is not.

Using facts 1–3, we define Γ : I0n(123) → I2n(123) as follows. Let π ∈ I0n(123) and generate
K(π), which by the above properties must have a valley on the line x = n, i.e. it must have
a down-step which ends on the line x = n followed by an up-step. To apply Γ, turn the
down-step into an up-step and the up-step into a down-step. It is easy to check that Γ is a
bijection.

In the next theorem we find the surprising fact that ikn(132) = ikn(321) for all 0 ≤ k ≤ n.

Theorem 2.3 Let α ∈ {132, 213, 321}. For 0 ≤ k ≤ n,

ikn(α) =

{

k+1
n+1

(

n+1
n−k
2

)

for n+ k even

0 for n+ k odd .

Proof. Due to Theorems 1.2 and 1.3, all that remains is to prove the formula for the pattern
321. The proof for 321 uses the properties of standard Young tableaux. Since π ∈ Ikn(321)
may not contain a decreasing subsequence of length greater than 2, we see that the Young
tableaux corresponding to π has shape (n− n−k

2
, n−k

2
). Thus,

ikn(321) =

(

n
n−k
2

)

−
(

n
n−k
2

− 1

)

,

which simplifies to the stated formula. ✷
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We see, in particular, from Theorem 2.3, that the 321-avoiding derangement involutions of
{1, 2, . . . , 2n} and the 321-avoiding involutions of {1, 2, . . . , 2n − 1} with exactly one fixed
point are both enumerated by Cn = 1

n+1

(

2n
n

)

, the Catalan numbers. To the best of the
authors’ knowledge, these are new manifestation of the Catalan numbers. Below, we provide
a bijective explanation of this fact, as a special case of the more general bijection δ defined
below.

It is well-known that |D(n, k)| = k+1
n+1

(

n+1
n−k
2

)

(with n+ k even), the formula given in Theorem

2.3. Knowing this, we give a bijection from Ikn(321) to D(n, k). Note that D(n, k) = ∅ if
k < 0 or k > n.

Let π ∈ Ikn(321) with n+ k even and define the map δ : Ikn(321) → D(n, k) as follows. Write
π = π1π2 · · ·πn. If πi − i ≥ 0 then the ith step in δ(π) is an up-step. If πi − i < 0 then the
ith step in δ(π) is a down-step.

We first show that δ(π) ∈ D(n, k) (i.e., that it does not fall below the x-axis and that it
ends at (n, k)). Since π is an involution, if we ignore all fixed points in π, by the definition
of δ, each down-step must be coupled with a remaining up-step to its left. Hence, for each
1 ≤ i ≤ n, |{j : πj ≥ j, j ≤ i}| ≥ |{j : πj < j, j ≤ i}| thereby showing that δ(π) does
not fall below the x-axis. Since k is the number of fixed points in π and we have k more
up-steps than down-steps in δ(π), our ending height of δ(π) is clearly k, thereby showing
that δ(π) ∈ D(n, k).

To finish showing that δ is a bijection we provide δ−1. Let d ∈ D(n, k). Number the steps
of d from left to right by 1, 2, . . . , n. Proceeding from right to left across d, couple each
down-step with the closest uncoupled up-step to its left. Take the two step numbers and
create a transposition. For the uncoupled up-steps (if any), take the step number of and
create a fixed point. Once we have traversed d we will have an involution with k fixed points.

We now show that the resulting involution is 321-avoiding. We may decompose d as

ui1Pui2Pui3 · · ·uikPuik+1,

with k ≥ 1, i1, i2, . . . , ik+1 ≥ 0, and where uj stands for a sequence of j consecutive up-steps
and the P ’s are nonempty Dyck paths. Hence, each occurrence of u in this decomposition is
an uncoupled up-step and yields a fixed point in δ−1(d). Furthermore, any transposition in
π comes from an up-step and down-step that both reside within the same P .

Note that a 321 occurrence, if it exists, may contain at most one fixed point. Hence, a
321 occurrence must come from at least two transposition, say (ab) and (cd). Furthermore,
from the description of δ−1, we see that (ab) and (cd) must come from the same P in the
decomposition given above since if (ab) comes from a P to the left of the P from which (cd)
comes, then necessarily a, b < c, d and neither c nor d can be the smallest element of the 321
pattern.
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First, let z be a fixed point (xy) and (uv) be transpositions in δ−1(d), where (xy) and
(uv) come from the same P in the decomposition above. From this decomposition and the
description of δ−1 we see that either z < x, y, u, v or z > x, y, u, v. If z < x, y, u, v then
we have either a 123 or a 132 pattern. If z > x, y, u, v then we have either a 123 or a 213
pattern. Hence a fixed point and at most two transpositions cannot create a 321 pattern.

We now let (xy) and (uv) be transpositions in δ−1(d) which come from the same P in the
decomposition given above. Without loss of generality, let x < u. From the description
of δ−1 we must have x < u < y < v. This ordering yields a 3412 pattern, and thus no
occurrence of 321. Hence, any possible 321 occurrence must consist of one number from each
of three transpositions (xy), (uv), and (wz). We may assume that x < u < w and conclude
that x < u < w < y < v < z. This yields a 456123 pattern, and thus no occurrence of 321.

An example is in order. Consider π = 34125768 ∈ I28 (321). Then δ(π) is the partial Dyck
path shown below.

0

1

2

0 1 2 3 4 5 6 7 8
•

•
•

•
•

•
•

•
•

�
�
�
��❅

❅
❅
❅❅�

�
�
��❅

❅❅�
��

δ(34125768) ∈ D(8, 2)

For the inverse, we traverse the above partial Dyck path from right to left to get the involution
(in cycle notation) (8)(6 7)(5)(2 4)(1 3) = 34125768.

We may also use a bijection to D(n, k) to offer an alternative proof for the patterns 132 and
213 (which by Theorem 1.3 are essentially the same). Let π ∈ Ikn(213) with n + k even and
consider the bijection ζ : Ikn(213) → D(n, k) defined as follows.

Create two columns, the left column designated the up column, denoted UC, and the right
column designated the down column, denoted DC. Let π = π1π2 · · ·πn. Read π from left to
right while performing the following algorithm.

I. If πi = i, move to the next row, place i in UC, and move down another row.

II. If πi > i, let x be the largest entry in DC’s row. If x does not exist, set x = 0.

a) If πi > x, place πi in DC and i in UC.
b) If πi < x, move to the next row and place πi in DC and i in UC. Furthermore, move
any element y ∈ DC, y < πi, that is in a row above πi to the row in which πi was placed.

After placing all elements of π into UC or DC, compute (u1, u2, . . . , ut) and (d1, d2, . . . , dt),
where ui is the number of entries in the ith row of UC and di is the number of entries in
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the ith row of DC. (Note that some of the di’s may be 0.) The partial Dyck path given by
uu1dd1uu2dd2 · · ·uutddt , where uj is j consecutive up-steps and dj is j consecutive down-steps,
is ζ(π)

To show that ζ is a bijection, we give ζ−1. Let d ∈ D(n, k). Traversing d from left to right
label the up-steps in order (starting with 1). Once this is done, traversing d from right to
left, label the down-steps in order starting with the next number (one more than the number
of up-steps in d).

Call an up-step and a down-step to the right of the up-step matching if the line segment
connecting their midpoints does not intersect the partial Dyck path. Using the labeling of
steps given above, create a transposition of the labels for every pair of matching up-steps
and down-steps. If an up-step has no matching down-step, create a fixed point with its label.

We now provide a sketch that the resulting permutation is 213-avoiding. We may decompose
d as

ui1Pui2Pui3 · · ·uikPuik+1,

with k ≥ 1, i1, i2, . . . , ik+1 ≥ 0, and where uj stands for a sequence of j consecutive up-steps
and the P ’s are nonempty Dyck paths. Hence, each occurrence of u in this decomposition is
an unmatched up-step and yields a fixed point in δ−1(d). Furthermore, any transposition in
δ−1(d) comes from an up-step and down-step that both reside within the same P .

Let f be a fixed point δ−1(d). Note that all elements to the left of f in δ−1(d) are either fixed
points or are larger than f . It follows that a 213 occurrence cannot contain two fixed points.
Also, if x and y are not fixed points, then only xfy may be a 213 pattern. However, this
implies that (xy) is not a transposition, i.e., that (xa) and (yb) are the transpositions (with
a 6= y). Further, (xa) must come from a P in the decomposition to the left of the up-step
corresponding to f and (yb) must come from a P in the decomposition to the right of the
up-step corresponding to f . But this implies that x > y, b and so xfy is not an occurrence
of 213. Thus, a 213 occurrence cannot contain a fixed point.

Now assume that (xy) and (uv), x < u, create a 213 pattern. The only ordering which yields
a 213 pattern is x < y < u < v. However, this is not possible since we have an up-step
(corresponding to u) with a higher label than a down-step (corresponding to y).

The last remaining case to consider is (xy), (uv), (wz), x < u < w, creating a 213 pattern.
We must have the ordering x < u < w < v < y < z in order to have a 213 pattern (in fact,
two such patterns). However, such an ordering is not possible since the path matching u and
v will intersect one of the paths matching x and y or w and z.

To illustrate ζ , consider the following example. Let π = 689751423 ∈ I19 (213). We find that

9



our up and down columns are
UC DC
1, 2, 3 8, 9
4 6, 7
5

.

From here we get (u1, u2, u3) = (3, 1, 1) and (d1, d2, d3) = (2, 2, 0). Hence, ζ(π) is the partial
Dyck path given below (ignoring the labels and dotted lines).

0

1

2

3

0 1 2 3 4 5 6 7 8 9
•

•
•

•
•

•
•

•
•

•
�
�
�
�
�
��❅

❅
❅
❅❅�

��❅
❅
❅
❅❅�

��1

2

3 9

8 4 7

6 5

ζ(689751423) ∈ D(9, 1)

For the inverse, note that a dotted line connects an up-step with its matching down-step
(if it exists). Using this information and the labels on the above partial Dyck path we can
immediately construct (in cycle notation) (1 6)(2 8)(3 9)(4 7)(5) = 689751423.

The next theorem finishes this section.

Theorem 2.4 Let α ∈ {231, 312}. For n ≥ 1 and 0 ≤ k ≤ n,

ikn(α) =

{

2
n−k−2

2

(

(n+k
2

n−k
2

)

+
(n+k−2

2
n−k
2

)

)

for n + k even

0 for n + k odd .

Proof. In [SiS] it is remarked that Sn({231, 312}) = In(231). Hence, Sk
n({231, 312}) =

Ikn(231) for all 0 ≤ k ≤ n. This last equality, coupled with Theorem 2.8 in [MR], gives the
stated formula. ✷

3. Involutions Containing a Length Three Pattern Exactly Once

We can see from the conjugation given in Theorem 1.3 that ikn(∅; 132) = ikn(∅; 213) and
ikn(∅; 231) = ikn(∅; 312) for all 0 ≤ k ≤ n. In this section, we show that these are the
only equalities for patterns of length three. We note again that since our permutations are
involutions, we clearly require n+ k to be even in all theorems below.
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Theorem 3.1 For n ≥ 1,

i3n(∅; 123) = 3
n

(

n
n−3

2

)

for n ≥ 3 odd , and

ikn(∅; 123) = 0 otherwise.

Proof. We start with some at-first-sight unrelated results.

Recall thatD(i, j) is the set of partial/standard Dyck paths from (0, 0) to (i, j). Define d(n, j)
to be the size of D(2n− j − 1, j − 1) for j ≥ 0. Since a step ending at (2n− j − 1, j − 1) is
either a down-step from (2n− j − 2, j) or an up-step from (2n− j − 2, j − 2) we see that

d(n, j) = d(n, j + 1) + d(n− 1, j − 1). (3.1)

By definition we have d(n, 1) = Cn−1. From (3.1) we get d(n, 2) = Cn−1 as well. Rearranging
(3.1) and making the change of variables j 7→ j + 1 and n 7→ n+ 1 we get

d(n, j) = d(n+ 1, j + 1)− d(n+ 1, j + 2). (3.2)

From (3.2) we have

n
∑

j=2

d(n, j) =

n
∑

j=2

(d(n+ 1, j + 1)− d(n+ 1, j + 2)) = d(n+ 1, 3).

Applying (3.1) again we see that

n
∑

j=2

d(n, j) = d(n+ 1, 3) = d(n+ 1, 2)− d(n, 1) = Cn − Cn−1. (3.3)

Now consider K : Sn(123) → D(2n, 0), Krattenthaler’s bijection as described in section 2.

Let π have right-to-left maxima m1 < m2 < · · · < ms, so that we may write

π = wsmsws−1ms−1 · · ·w1m1,

where the wi’s are possibly empty.

We notice that if πj = n then sincems = n we have |ws| = j−1. We consider the adumbrated
permutation (which is technically not a permutation, but obviously corresponds uniquely to
a permutation of the same length)

π⋆ = msws−1ms−1 · · ·w1m1,
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(i.e. π with ws removed). Using the algorithmic steps of K, we may abuse notation and
write K(π⋆) to mean K(π) with its last step removed. This partial Dyck path is in D(2n−
j − 1, j − 1). To see this, note that K(π⋆) ends at (2n − j, j) but the last step must be an
up-step. Hence, the number of permutations in Sn(123) with π(j) = n is d(n, j) for any
1 ≤ j ≤ n.

At last we turn our attention to Ikn(∅; 123). We first argue that if k 6= 3 then ikn(∅; 123) = 0.
Clearly, if k > 3 we have more than one occurrence of 123. Hence, we assume k < 3. Let
π ∈ Ikn(∅; 123) with k < 3 and let our 123 pattern be the subsequence abc in π. It is easy to see
that if we let π = π(1)bπ(2) then π(1) is a permutation of {a, b+1, b+2, . . . , c−1, c+1, . . . , n}
and π(2) is a permutation of {1, 2, . . . , a − 1, a + 1, . . . , b − 1, c}. Since π is an involution,
we see that we must have both a and c as fixed points. This in turn implies that b must be
fixed, since b is preceded by b− 1 entries, contradicting our assumption that k < 3.

Thus, we restrict our attention to k = 3, whereby our 3 fixed points create the single 123
occurrence. Call these fixed points a < b < c. From above we see that we must have b = n+1

2

and n odd in order for b to be a fixed point.

Since we are restricted to involutions, the placement of 1, 2, . . . , b − 1, c completely defines
π ∈ I3n(∅; 123). Thus, 1, 2, . . . , b − 1, c must be 123-avoiding and can be identified uniquely
with some τ ∈ Sb(123) with τ(j) = b, where j = j′ − (b − 1) and j′ is defined by π−1(c).
Since τ(1) = a we must have τ(1) 6= c so that j 6= 1. Since the number of permutations in
Sn(123) with π(j) = n is d(n, j) and b = n+1

2
we have, using (3.3),

i3n(∅; 123) =
n+1

2
∑

j=2

d

(

n+ 1

2
, j

)

= Cn+1

2

− Cn−1

2

, (3.4)

which simplifies to the stated formula. ✷

As a consequence of Theorem 3.1, we obtain the following obvious corollary.

Corollary 3.2 For n ≥ 3, in(∅; 123) = 3
n

(

n
n−3

2

)

.

The next theorem for the pattern 132 was first proved in [GM]. This combined with Theorem
1.3 yields the following theorem, which we include for completeness.

Theorem 3.3 For n ≥ 3, 0 ≤ k ≤ n, and α ∈ {132, 213},

ikn(∅;α) =







k+1
n−1

(

n−1
n+k
2

)

for n+ k even and k 6= 0

0 otherwise.

Summing ikn(∅;α) for α ∈ {132, 213} over k gives us the following result, first given in [GM].
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Corollary 3.4 For n ≥ 3 and α ∈ {132, 213}, in(∅;α) =
(

n−2
⌊n−3

2
⌋

)

.

Theorem 3.5 For n ≥ 4, 0 ≤ k ≤ n, and α ∈ {231, 312},

ikn(∅;α) =











(k − 1)2
n−k−6

2

(

(n+k
2

−2
n−k
2

−1

)

+ 2
(n+k

2
−3

n−k
2

−1

)

+
(n+k

2
−4

n−k
2

−1

)

)

for n+ k even

0 for n+ k odd .

Proof. Let a(n, k) = ikn(∅; 231) and b(n, k) = ikn(231) for 0 ≤ k ≤ n. Let π ∈ Ikn(∅; 231).
Write π = π(1)nπ(2)j; if j = 1 then π(1) = ∅ and if j = n then π(2) = ∅.

For j = n we clearly have π(1) ∈ Ik−1
n−1(∅; 231). For j < n we consider two cases: the 231

pattern is to the left of n and the 231 pattern is to the right of n. We argue that the 231
pattern cannot include n. To see this, assume otherwise and let ynx be the 231 pattern. If
x 6= j we must have j > y so that x < j and (xy) is not a transposition of π. This implies
that π−1(x)nx and ynx are distinct 231 patterns (since (xy) is not a transposition of π), a
contradiction. If x = j then we have j < y. Since (jn) is a transposition of π, we know
that π−1(y) 6= j. Hence, ynj and ynπ−1(y) are two distinct occurrences of 231, again a
contradiction.

First, consider the case where π(1) contains the pattern. Note that we must have π(2) =
(n − 1)(n − 2) · · · (j + 2)(j + 1) and that π(1) ∈ Ik−1

j−1 ∪ Ikj−1, depending upon the parity of
n+ j. Hence, this case contributes

n−2
∑

j=1

n+j even

a(j − 1, k − 1) +
n−1
∑

j=1

n+j odd

a(j − 1, k).

Next, consider the case where π(2)j contains the pattern. In this case it is easy to see that
π(2) = (n− 2)(n− 1) and that j = n− 3. Thus, this case contributes b(n− 4, k − 2) to the
total.

Summing over all j we get

a(n, k) = a(n− 1, k − 1) + b(n− 4, k − 2) +
n−2
∑

j=1

n+j even

a(j − 1, k − 1) +
n−1
∑

j=1

n+j odd

a(j − 1, k)

which, using b(n, k) = 2b(n− 2, k) + b(n− 1, k − 1) given in [MR], yields

a(n, k) = 2a(n− 2, k) + a(n− 1, k − 1) + b(n− 6, k − 2) + b(n− 5, k − 3). (3.5)
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Define the generating functions Ak(x) =
∑

n≥0 a(n, k)x
n and Bk(x) =

∑

n≥0 b(n, k)x
n. Using

b(n, k) = 2b(n− 2, k) + b(n− 1, k − 1) it is easy to show that

Bk(x) =
xk(1− x2)

(1− 2x2)k+1
. (3.6)

Since b(n, k) = skn(231, 312) (shown in the proof of Theorem 2.4) we have (from Theorem
2.9 in [MR])

Bk(x) =
∑

n≥1

n+k even

2
n−k−2

2

(

(n+k
2

n−k
2

)

+

(n+k−2
2

n−k
2

)

)

xn. (3.7)

From (3.5) we have Ak(x) = 2x2Ak(x)+xAk−1(x)+x6Bk−2(x)+x5Bk−3(x). Using (3.5) and
(3.6) we get

Ak(x) =
(k − 1)xk+2(1− x2)2

(1− 2x2)k
= (k − 1)x3(1− x2)Bk−1(x).

To obtain the stated formula for a(n, k), we extract the coefficient of xn in Ak(x) using the
above equation and (3.7) and simplify. ✷

Summing ikn(∅;α) for α ∈ {231, 312} over k gives us the following nice formula.

Corollary 3.6 For n ≥ 5 and α ∈ {231, 312}, in(∅;α) = (n− 1)2n−6.

Remark. For n = 4, 6, 8, . . . , in(∅;α) = i22n−4(∅;α) for α ∈ {231, 312}.

The last remaining pattern to consider in this section is 321.

Theorem 3.7 For n ≥ 3, 0 ≤ k ≤ n,

ikn(∅; 321) =
k(k + 3)

n+ 1

(

n+ 1
n−k
2

− 1

)

.

Proof. Let i(n, k) = ikn(∅; 321). We first show that

i(n, k) =

n−k
∑

f=1

f odd

i(n− f, k − 1)C f−1

2

+

n−k
∑

f=2

f even

ikn−f(321)C f

2

,

which is equivalent, by Theorem 2.3, to

i(n, k) =

n−k
∑

f=1

f odd

i(n− f, k − 1)C f−1

2

+

n−k
∑

f=2

f even

k + 1

n− f + 1

(

n− f + 1
n−k−f

2

)

C f

2

, (3.8)
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where we have initial conditions i(n, 0) = 0 for all n ≥ 3.

To see that i(n, 0) = 0 for all n let cba be the 321 pattern in π. In order to avoid another 321
pattern, to the left (right) of b we cannot have an element larger (smaller) than b, except c
(a) itself. Hence, b is a fixed point. Thus, the restriction of having exactly one 321 pattern
implies a fixed point must be present (see Theorem 6.4 in [RSZ] for further details). Hence,
we may let f be the smallest fixed point in π ∈ Ikn(∅; 321). We separate the argument into
two cases: f odd and f even.

First, let f be odd and write π = π(1)fπ(2). In order for π to contain exactly one occurrence
of 321 we must have π(1) ∈ I0f−1(321) and π(2) ∈ Ik−1

n−f(∅; 321). To see that we require
π(1) ∈ I0f−1(321) assume otherwise, that is that π(1) is not an involution. Since π is an
involution and f is odd, there exist x 6= y both in π(1) with x, y > f . This produces two
occurrences of 321: xfπ(x) and yfπ(y), a contradiction. (As an aside, this shows that an odd
fixed point cannot be part of a 321 occurrence.) Next, since π(1) ∈ I0f−1(321), we necessarily

must have π(2) ∈ Ik−1
n−f(∅; 321). Summing over valid f and using Theorem 2.3 (for k = 0) we

get
n−k
∑

f=1

f odd

i(n− f, k − 1)C f−1

2

in this case.

Next, consider f even. Again, write π = π(1)fπ(2). Since π is an involution and f is
even we must have x ∈ π(1) with x > f . This gives the 321 occurrence xfπ(x). Thus,
only one such x may exist. Furthermore, π(2) must be 321-avoiding. Now, consider the
f leftmost entries in π: τ = τ(1)xτ(2)f . Note that τ is a 321-avoiding permutation on f

elements. Furthermore, τ does not contain the element π−1(x). Thus, τ is a permutation of
{1, 2, . . . , π−1(x)−1, π−1(x)+1, . . . , f−1, f, x}. By letting i ∈ τ become i−1 if π−1(x)+1 ≤
i ≤ f and letting x become f we obtain τ ⋆ ∈ I0f (321). Next consider π(2)

⋆ = xπ(2), i.e. π(2)

with x in the first position. As before, π(2)⋆ may be identified with σ ∈ Ik−1
n−f+1(321) with

the added condition that σ(1) 6= 1 since we know that π(2)⋆(1) = x > π−1(x). Next, we have
that the number of 321-avoiding involutions of {1, 2, . . . , n− f + 1} with k − 1 fixed points
and 1 not a fixed point is ik−1

n−f+1(321) − ik−2
n−f (321) (where ik−2

n−f(321) counts the number of

such permutations with 1 being a fixed point). Noting that ik−1
n (321)−ik−2

n−1(321) = ikn−1(321)
and summing over valid f we get

n−k
∑

f=2

f even

ikn−f(321)C f

2

.

Combining the two cases’ results proves (3.8).

We must now show that (3.8) along with the initial conditions yields i(n, k) = k(k+3)
n+1

(

n+1
n−k
2

−1

)

.
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We first show that

k + 3

n + 1

(

n + 1
n−k
2

− 1

)

=

n−k
∑

f=2

f even

k + 1

n− f + 1

(

n− f + 1
n−k−f

2

)

C f

2

,

i.e., that

k + 3

n+ 1

(

n + 1
n−k
2

− 1

)

=

n−k
2
∑

i=1

k + 1

n− 2i+ 1

(

n− 2i+ 1
n−k−2i

2

)

Ci. (3.9)

For 0 ≤ k ≤ n, denote the lefthand side of (3.9) by f(n, k) and the righthand side of (3.9) by
g(n, k). It is straightforward to show that for k ≥ 1, f(n, k) = f(n−1, k+1)+f(n−1, k−1)
and g(n, k) = g(n− 1, k + 1) + g(n− 1, k − 1), where we define f(n, k) = 0 and g(n, k) = 0
if n < k. Since f(2, 2) = g(2, 2), to prove that (3.9) holds it is sufficient to show that
f(n, 0) = g(n, 0) for all n ≥ 2.

By Theorem 3.1, we see that f(n, 0) = 3
n+1

(

n+1
n
2
−1

)

= i3n(∅; 123). From (3.4), this gives us

f(n, 0) = Cn
2
+1 − Cn

2
, where Cn is the Catalan number. Next, since

g(n, 0) =
∑

n
2

i=1
1

n−2i+1

(

n−2i+1
n
2
−i

)

Ci

=
∑

n
2

i=1Cn
2
−iCi

=
∑

n
2

i=0Cn
2
−iCi − Cn

2

= Cn
2
+1 − Cn

2

= f(n, 0)

we have proven (3.9).

We now have

i(n, k) =

n−k
∑

f=1

f odd

i(n− f, k − 1)C f−1

2

+
k + 3

n+ 1

(

n+ 1
n−k
2

− 1

)

, (3.10)

with initial conditions i(n, 0) = 0 for all n ≥ 2.

We use this and induction on n + k to prove that i(n, k) = k(k+3)
n+1

(

n+1
n−k
2

−1

)

. Since this holds

for i(1, 1) and i(2, 0), we may assume that i(n− f, k−1) = (k−1)(k+2)
n−f+1

(

n−f+1
n−f−k−1

2

)

. Substitution

into (3.10) gives

i(n, k) =

n−k
2
∑

i=1

(k − 1)(k + 2)

n− 2i+ 2

(

n− 2i+ 2
n−k
2

− i

)

Ci−1 +
k + 3

n + 1

(

n + 1
n−k
2

− 1

)

.
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Hence, we must show that

n−k
2
∑

i=1

k + 2

n− 2i+ 2

(

n− 2i+ 2
n−k
2

− i

)

Ci−1 =
k + 3

n + 1

(

n+ 1
n−k
2

− 1

)

. (3.11)

Denote by h(n, k) the lefthand side of (3.11) and keep f(n, k) as the notation for the right-
hand side of (3.11). It is straightforward to show that h(n, k) = h(n−1, k+1)+h(n−1, k−1)
and that h(1, 1) = f(1, 1) and h(2, 2) = f(2, 2). To prove (3.11), it is sufficient to show that
h(n, 0) = f(n, 0) for all n ≥ 2. Since

h(n, 0) =
∑

n
2

i=1
2

n−2i+2

(

n−2i+2
n
2
−i

)

Ci−1

=
∑

n
2
−1

i=0
2

n−2i

(

n−2i
n
2
−i−1

)

Ci

=
∑

n
2
−1

i=0 Cn
2
−iCi

=
∑

n
2

i=0Cn
2
−iCi − Cn

2

= Cn
2
+1 − Cn

2

= f(n, 0)

we have proven (3.11), thereby proving the theorem. ✷

From the proof of Theorem 3.7 we obtain Corollary 3.9 below, for which we have need of the
following definition.

Definition 3.8 Let dp(n, k) ∈ D(n, k) and let dpx(n) be a Dyck path with 2n steps starting
at (x, 0). For 1 ≤ i ≤ n−k

2
, we call a lattice path which results from dp(n−2i, k)∪dpn−2i(i) a

modified Dyck path with a single drop from height k, and denote the set of all such modified
Dyck paths by MDP (n; k).

Using this definition, we can give the following, the proof of which is a direct consequence
of (3.9).

Corollary 3.9 For n ≥ 2 and 0 ≤ k ≤ n with n+ k even, |MDP (n; k)| = k+3
n+1

(

n+1
n−k
2

−1

)

.

Comparing Corollary 3.9 with the number of partial Dyck paths, we find that |MDP (n; k)| =
|D(n, k + 2)|. We explain this via a bijection.

Let pdp(n − 2i, k) ◦ dp(i) be the decomposition of an element in MDP (n; k) where pdp

stands for partial Dyck path and dp stands for (standard) Dyck path. To obtain an element
in D(n, k + 2) we perform the following steps.
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Concatenate one up-step to the end of pdp(n − 2i, k). To the end of this new up-step
concatenate d(i) and remove the last step of d(i) (necessarily a down-step). The result is an
element of D(n, k + 2).

For the inverse, perform the following steps to pdp(n, k+2) ∈ D(n, k+2). Add a down-step
to the end of pdp(n, k + 2). Next, traverse pdp(n, k + 2) from left to right and locate the
last occurrence of two consecutive up-steps whose second step has ending point on the line
y = k + 2. From these two up-steps, remove the up-step closest to the origin. We now have
a partial Dyck path ending at height k and a Dyck path lying k + 1 units above the x-axis.
Move the Dyck path left 1 unit and down k+1 units. The result is a member of MDP (n; k).

We illustrate this bijection with an example. Consider the following member of MDP (10; 2).
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�
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�
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We add an up-step to the end of the partial Dyck path and remove the last step of the
modified Dyck path to get the following lattice path.
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To create an element of D(n, k+2) we concatenate the Dyck path with its last step removed
to the end of the partial Dyck path and get the following.

0
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Appendix

Below we provide values of ikn(α) and ikn(∅;α) for small n and all α ∈ S3.

n�
k 0 1 2 3 4 5 6 7 8

0 1
1 0 1
2 1 0 1
3 0 3 0 0
4 3 0 3 0 0
5 0 10 0 0 0 0
6 10 0 10 0 0 0 0
7 0 35 0 0 0 0 0 0
8 35 0 35 0 0 0 0 0 0

n�
k 0 1 2 3 4 5 6 7 8

0 1
1 0 1
2 1 0 1
3 0 2 0 1
4 2 0 3 0 1
5 0 5 0 4 0 1
6 5 0 9 0 5 0 1
7 0 14 0 14 0 6 0 1
8 14 0 28 0 20 0 7 0 1

n�
k 0 1 2 3 4 5 6 7 8

0 1
1 0 1
2 1 0 1
3 0 3 0 1
4 2 0 5 0 1
5 0 8 0 7 0 1
6 4 0 18 0 9 0 1
7 0 20 0 32 0 11 0 1
8 8 0 56 0 50 0 13 0 1

i
k

n
(123) i

k

n
(132) = i

k

n
(321) = i

k

n
(213) i

k

n
(231) = i

k

n
(312)

n�
k 0 1 2 3 4 5 6 7 8

0 0
1 0 0
2 0 0 0
3 0 0 0 1
4 0 0 0 0 0
5 0 0 0 3 0 0
6 0 0 0 0 0 0 0
7 0 0 0 9 0 0 0 0
8 0 0 0 0 0 0 0 0 0

n�
k 0 1 2 3 4 5 6 7 8

0 0
1 0 0
2 0 0 0
3 0 1 0 0
4 0 0 1 0 0
5 0 2 0 1 0 0
6 0 0 3 0 1 0 0
7 0 5 0 4 0 1 0 0
8 0 0 9 0 5 0 1 0 0

n�
k 0 1 2 3 4 5 6 7 8

0 0
1 0 0
2 0 0 0
3 0 0 0 0
4 0 0 1 0 0
5 0 0 0 2 0 0
6 0 0 2 0 3 0 0
7 0 0 0 8 0 4 0 0
8 0 0 5 0 18 0 5 0 0

i
k

n(∅;123) i
k

n(∅;132) = i
k

n(∅;213) i
k

n(∅;231) = i
k

n(∅;312)

n�
k 0 1 2 3 4 5 6 7 8

0 0
1 0 0
2 0 0 0
3 0 1 0 0
4 0 0 2 0 0
5 0 4 0 3 0 0
6 0 0 10 0 4 0 0
7 0 14 0 18 0 5 0 0
8 0 0 40 0 28 0 6 0 0

i
k
n(∅;321)
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