REFINED RESTRICTED INVOLUTIONS

Emeric Deutsch
Department of Mathematics, Polytechnic University, Brooklyn, NY 11201 deutsch@duke.poly.edu
Aaron Robertson
Department of Mathematics, Colgate University, Hamilton, NY 13346
aaron@math.colgate.edu
Dan Saracino
Department of Mathematics, Colgate University, Hamilton, NY 13346
dsaracino@mail.colgate.edu

Abstract

Define $I_{n}^{k}(\alpha)$ to be the set of involutions of $\{1,2, \ldots, n\}$ with exactly k fixed points which avoid the pattern $\alpha \in S_{i}$, for some $i \geq 2$, and define $I_{n}^{k}(\emptyset ; \alpha)$ to be the set of involutions of $\{1,2, \ldots, n\}$ with exactly k fixed points which contain the pattern $\alpha \in S_{i}$, for some $i \geq 2$, exactly once. Let $i_{n}^{k}(\alpha)$ be the number of elements in $I_{n}^{k}(\alpha)$ and let $i_{n}^{k}(\emptyset ; \alpha)$ be the number of elements in $I_{n}^{k}(\emptyset ; \alpha)$. We investigate $I_{n}^{k}(\alpha)$ and $I_{n}^{k}(\emptyset ; \alpha)$ for all $\alpha \in S_{3}$. In particular, we show that $i_{n}^{k}(132)=i_{n}^{k}(213)=i_{n}^{k}(321), i_{n}^{k}(231)=i_{n}^{k}(312), i_{n}^{k}(\emptyset ; 132)=i_{n}^{k}(\emptyset ; 213)$, and $i_{n}^{k}(\emptyset ; 231)=i_{n}^{k}(\emptyset ; 312)$ for all $0 \leq k \leq n$.

1. Introduction

Recall that $\pi \in S_{n}$ is called an involution if and only if $\pi^{-1}=\pi$. Equivalently, π is an involution if and only if the cycle structure of π has no cycle of length longer than two. In [RSZ], the study of refined restricted permutations was initiated. In order to describe the objects studied in [RSZ] and below we have need of a few definitions.

Let $\pi \in S_{n}$ be a permutation of $\{1,2, \ldots, n\}$ written in one-line notation. Let $\alpha \in S_{m}$, $m \leq n$. We say that π contains the pattern α if there exist indices $i_{1}, i_{2}, \ldots, i_{m}$ such that $\pi_{i_{1}} \pi_{i_{2}} \ldots \pi_{i_{m}}$ is equivalent to α, where we define equivalence as follows. Define $\bar{\pi}_{i_{j}}=\mid\{x$: $\left.\pi_{i_{x}} \leq \pi_{i_{j}}, 1 \leq x \leq m\right\} \mid$. If $\alpha=\bar{\pi}_{i_{1}} \bar{\pi}_{i_{2}} \ldots \bar{\pi}_{i_{m}}$ then we say that α and $\pi_{i_{1}} \pi_{i_{2}} \ldots \pi_{i_{m}}$ are

[^0]equivalent. For example, if $\tau=124635$ then τ contains the pattern 132 by noting that $\tau_{2} \tau_{4} \tau_{5}=263$ is equivalent to 132 . We say that π is α-avoiding if π does not contain the pattern α. In our above example, τ is 321-avoiding.

Let $S=\cup_{i \geq 2} S_{i}$. Let T be a subset of S and M be a multiset of S. Define $S_{n}(T ; M)$ to be the set of permutations in S_{n} which avoid all patterns in T and contain each pattern in M exactly once. Let $s_{n}(T ; M)$ be the number of elements in $S_{n}(T ; M)$. If $M=\emptyset$ we write $S_{n}(T)$ and $s_{n}(T)$. Further, if T or M contain only one pattern, we omit the set notation.

Consider the following refinement, introduced in [RSZ]. Define $S_{n}^{k}(T ; M)$ to be the set of permutations in $S_{n}(T ; M)$ with exactly k fixed points. Let $s_{n}^{k}(T ; M)$ be the number of elements in $S_{n}^{k}(T ; M)$ where we omit M and the set notation when appropriate.

In this paper, we are concerned with those permutations in $S_{n}^{k}(T ; M)$ which are involutions. To this end, we define $I_{n}^{k}(T ; M)$ to be the set of involutions in $S_{n}^{k}(T ; M)$ and we let $i_{n}^{k}(T ; M)$ be the number of elements in $I_{n}^{k}(T ; M)$. As before, we omit M and the set notation when appropriate.

In [RSZ], it was shown that $s_{n}^{k}(132)=s_{n}^{k}(213)=s_{n}^{k}(321)$ and $s_{n}^{k}(231)=s_{n}^{k}(312)$ for all $0 \leq k \leq n$. In this paper we will show that the same result holds when restricting our permutations to be involutions.

The results $s_{n}^{k}(132)=s_{n}^{k}(321)$ and $i_{n}^{k}(132)=i_{n}^{k}(321)$ lend some evidence that there may be a restricted permutation result concerning the cycle structure. However, for a given cycle structure c, in general, the number of 132-avoiding permutations with cycle structure c is not equal to the number of 321 -avoiding permutations with cycle structure c. As an example, consider $S_{6}(132)$ and $S_{6}(321)$. (It should be noted that $n=6$ is the minimal n such that the number of permutations classified according to their cycle structure differ by restriction.) Below we give the permutations in each according to their cycle structure.

Cycle structure	$S_{6}(132)$	$S_{6}(321)$
1^{6}	1	1
$1^{4} 2^{1}$	5	5
$1^{3} 3^{1}$	8	8
$1^{2} 2^{2}$	9	9
$1^{2} 4^{1}$	12	12
$1^{1} 2^{1} 3^{1}$	20	20
$1^{1} 5^{1}$	20	20
2^{3}	5	5
$2^{1} 4^{1}$	20	18
3^{2}	8	10
6^{1}	24	24
Sum	132	132

Some results concerning restricted involutions along with their fixed point refinement are known. These are stated in the following three theorems. Other results are given in [GM] and [GM2].

Theorem 1.1 (Simion and Schmidt, [SiS/2]) Let $i_{n}(\alpha)$ be the number of α-avoiding involutions in S_{n}. Let $p_{1} \in\{123,132,213,321\}$ and $p_{2} \in\{231,312\}$. For $n \geq 1$,

$$
\begin{aligned}
& i_{n}\left(p_{1}\right)=\binom{n}{\left[\frac{n}{2}\right\rfloor} \quad \text { and } \\
& i_{n}\left(p_{2}\right)=2^{n-1} .
\end{aligned}
$$

Theorem 1.2 (Guibert and Mansour, [GM]) Let $i_{n}^{k}(132)$ be the number of 132-avoiding involutions in S_{n} with k fixed points. For $0 \leq k \leq n$,

$$
i_{n}^{k}(132)= \begin{cases}\frac{k+1}{n+1}\binom{n+1}{\frac{n-k}{2}} & \text { for } k+n \text { even } \\ 0 & \text { for } k+n \text { odd }\end{cases}
$$

Theorem 1.3 (Robertson, Saracino, and Zeilberger, [RSZ]) Let $\gamma \in S_{n}$ be given by $\gamma_{i}=$ $n+1-i$ for $1 \leq i \leq n$. For $\pi \in S_{n}$, let $\pi^{\star}=\gamma \pi \gamma^{-1}$. Then, for all π, π and π^{\star} have the same number of fixed points. Furthermore, the number of occurrences of the pattern 213 (respectively 312) in π equals the number of occurrences of the pattern 132 (respectively 231) in π^{\star}.

In the next section, we finish the enumeration of $i_{n}^{k}(\alpha)$ for all $\alpha \in S_{3}$ and $0 \leq k \leq n$, as well as provide some bijective results. In the last section, we investigate $I_{n}^{k}(\emptyset ; \alpha)$ for all $\alpha \in S_{3}$ and $0 \leq k \leq n$.

Notation We note here that with a transposition ($x y$) we will always take $x<y$.

2. Involutions Avoiding a Length Three Pattern

In [SiS], Simion and Schmidt completed the study of involutions avoiding a given pattern of length three. Their results are given in Theorem 1.1 above. As done in [RSZ], we refine the enumeration problem by classifying restricted permutations according to the number of fixed points.

We can see from the conjugation given in Theorem 1.3 that $i_{n}^{k}(132)=i_{n}^{k}(213)$ and $i_{n}^{k}(231)=$ $i_{n}^{k}(312)$ for all $0 \leq k \leq n$. In this section (Theorem 2.2) we show that $i_{n}^{k}(321)=i_{n}^{k}(132)=$ $i_{n}^{k}(213)$ for all $0 \leq k \leq n$ as well.

We note here that since our permutations are involutions, we clearly require $n+k$ to be even in all theorems below.

[^1]In the proofs below, we will use the following properties of standard Young tableaux. (For proofs of these properties see $[\mathrm{K}],[\mathrm{K} 2]$, and $[\mathrm{S}]$.) Let \mathcal{Y}_{π} be the Young tableaux corresponding (via the Robinson-Schensted algorithm) to $\pi \in S_{n}$. Let \mathcal{Y}_{π} have shape $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right)$, where λ_{i} is the length of the $i^{\text {th }}$ row.

1. λ_{1} is the maximum length of an increasing subsequence of π.
2. The length of the first column of \mathcal{Y}_{π} is the maximum length of a decreasing subsequence of π.
3. If π is an involution, then the number of fixed points of π equals the number of odd length columns in \mathcal{Y}_{π}.
4. For $i \leq \frac{n}{2}$, the number of standard Young tableaux of shape ($n-i, i$) (or its transpose via changing columns into rows) is $\binom{n}{i}-\binom{n}{i-1}$.

Theorem 2.1 For $n \geq 1$,

$$
\begin{aligned}
i_{n}^{0}(123)=i_{n}^{2}(123) & = \begin{cases}\binom{n-1}{\frac{n}{2}} & \text { for } n \text { even } \\
0 & \text { for } n \text { odd }\end{cases} \\
i_{n}^{1}(123) & = \begin{cases}\binom{n}{\frac{n-1}{2}} & \text { for } n \text { odd } \\
0 & \text { for } n \text { even }\end{cases} \\
i_{n}^{k}(123) & =0 \text { for } k \geq 3
\end{aligned}
$$

Proof. Clearly for $k \geq 3$ we have an occurrence of 123 . Hence, it remains to prove the formulas for $k=0,1,2$.

Consider first $k=0$ so that n is even. Let $\pi \in I_{n}^{0}(123)$. Since π is 123 -avoiding, the longest increasing subsequence of π has length at most 2 . Keeping in mind that π has no fixed point, we use the above properties of standard Young tableaux to see that

$$
i_{n}^{0}(123)=\sum_{\substack{j=0 \\ j \text { even }}}^{\frac{n}{2}}\left(\binom{n}{j}-\binom{n}{j-1}\right)=\binom{n-1}{\frac{n}{2}}
$$

Next, consider $k=2$, so that again n is even. Since the total number of standard Young tableaux of two columns on $\{1,2, \ldots, n\}$ with n even is $\binom{n}{\frac{n}{2}}$, we have

$$
i_{n}^{2}(123)=\binom{n}{\frac{n}{2}}-\binom{n-1}{\frac{n}{2}}=\binom{n-1}{\frac{n}{2}-1}=\binom{n-1}{\frac{n}{2}}
$$

For $k=1$ we consider $i_{n-1}^{1}(123)$, which is equal to the number of standard Young tableaux on $\{1,2, \ldots, n\}$ with at most 2 columns, with n odd (so that exactly one of the columns is of odd length). Hence,

$$
i_{n}^{1}(123)=\sum_{j=0}^{\frac{n-1}{2}}\left(\binom{n-1}{j}-\binom{n}{j-1}\right)=\binom{n}{\frac{n-1}{2}} .
$$

Remark. The case $i_{n}^{1}(123)$ also follows from Theorem 1.1 (originally done in $[\mathrm{SiS}]$).
We now provide two bijections between $I_{n}^{0}(123)$ and $I_{n}^{2}(123)$ since we see that they are enumerated by the same sequence.

The first bijection uses standard Young tableaux. For $\pi \in S_{n}$, denote by $S Y T(\pi)$ the standard Young tableau created by the Robinson-Schensted algorithm. Let $S Y T_{n}(2)$ be the set of all standard Young tableaux on n elements with at most 2 columns with the lengths of the columns having the same parity. Now, let $\pi \in I_{n}^{0}(123)$ and consider $S Y T(\pi)$. From the properties of standard Young tableaux we see that $S Y T(\pi)$ has one or two columns, each of even length. Note that n must be the bottom entry in one of the columns. Let $\gamma: S Y T_{n}(2) \rightarrow S Y T_{n}(2)$ be the map which takes n and places it on the bottom of the other column (even if empty). For example,

$$
\gamma\left(\begin{array}{ll}
1 & 3 \\
2 & 4 \\
5 & \\
6 &
\end{array}\right)=\left(\begin{array}{ll}
1 & 3 \\
2 & 4 \\
5 & 6
\end{array}\right)
$$

It is easy to check that for $\pi \in I_{n}^{0}(123), \gamma\left(S T Y_{n}(\pi)\right)=S T Y_{n}(\tau)$ with $\tau \in I_{n}^{2}(123)$ and that γ is a bijection.

The second bijection we present uses Dyck paths. For completeness we make the following definition.

Definition 2.2 Let $i \geq j \geq 0$ and $i+j \geq 2$ be even. A partial Dyck path is a path in \mathbb{R}^{2} from $(0,0)$ to (i, j) with $j>0$ consisting of a sequence of steps of length $\sqrt{2}$ and slope ± 1 which does not fall below the x-axis. We denote these two types of steps by $(1,1)$ and $(1,-1)$, called up-steps and down-steps, respectively. If $j=0$ we call the path a (standard) Dyck path.

Notation. We will denote the set of partial/standard Dyck paths from $(0,0)$ to (i, j) by $D(i, j)$.

We now describe, for completeness, a bijection from $S_{n}(123)$ to $D(2 n, 0)$ due to Krattenthaler [Kr].

Let $\mathcal{K}: S_{n}(123) \rightarrow D(2 n, 0)$ be the bijection defined as follows. Let $\pi_{1} \pi_{2} \cdots \pi_{n}=\pi \in$ $S_{n}(123)$. Determine the right-to-left maxima of π, i.e. $m=\pi_{i}$ is a right-to-left maximum if $m>\pi_{j}$ for all $j>i$. Let π have right-to-left maxima $m_{1}<m_{2}<\cdots<m_{s}$, so that we may write

$$
\pi=w_{s} m_{s} w_{s-1} m_{s-1} \cdots w_{1} m_{1},
$$

where the w_{i} 's are possibly empty. Generate a Dyck path from $(0,0)$ to $(2 n, 0)$ as follows. Read π from right to left. For each m_{i} do $m_{i}-m_{i-1}$ up-steps (where we define $m_{0}=0$). For each w_{i} do $\left|w_{i}\right|+1$ down-steps.

Using Krattenthaler's bijection, it is easy to check the following.

1. $\left.\mathcal{K}\right|_{I_{n}(123)}$ produces a Dyck path that is symmetric about the line $x=n$.
2. $\left.\mathcal{K}\right|_{I_{n}^{0}(123)}$ produces a Dyck path that has an even number of peaks.
3. $\left.\mathcal{K}\right|_{I_{n}^{2}(123)}$ produces a Dyck path that has an odd number of peaks.

For example, to prove 2 and 3 , we note that for all i, π_{i} is right-to-left maximum if and only if $i=1$, and that if there are two fixed points then the righthand fixed point is a right-to-left maximum but the lefthand fixed point is not.

Using facts $1-3$, we define $\Gamma: I_{n}^{0}(123) \rightarrow I_{n}^{2}(123)$ as follows. Let $\pi \in I_{n}^{0}(123)$ and generate $\mathcal{K}(\pi)$, which by the above properties must have a valley on the line $x=n$, i.e. it must have a down-step which ends on the line $x=n$ followed by an up-step. To apply Γ, turn the down-step into an up-step and the up-step into a down-step. It is easy to check that Γ is a bijection.

In the next theorem we find the surprising fact that $i_{n}^{k}(132)=i_{n}^{k}(321)$ for all $0 \leq k \leq n$.
Theorem 2.3 Let $\alpha \in\{132,213,321\}$. For $0 \leq k \leq n$,

$$
i_{n}^{k}(\alpha)= \begin{cases}\frac{k+1}{n+1}\binom{n+1}{\frac{n-k}{2}} & \text { for } n+k \text { even } \\ 0 & \text { for } n+k \text { odd }\end{cases}
$$

Proof. Due to Theorems 1.2 and 1.3, all that remains is to prove the formula for the pattern 321. The proof for 321 uses the properties of standard Young tableaux. Since $\pi \in I_{n}^{k}(321)$ may not contain a decreasing subsequence of length greater than 2, we see that the Young tableaux corresponding to π has shape $\left(n-\frac{n-k}{2}, \frac{n-k}{2}\right)$. Thus,

$$
i_{n}^{k}(321)=\binom{n}{\frac{n-k}{2}}-\binom{n}{\frac{n-k}{2}-1}
$$

which simplifies to the stated formula.

We see, in particular, from Theorem 2.3, that the 321-avoiding derangement involutions of $\{1,2, \ldots, 2 n\}$ and the 321-avoiding involutions of $\{1,2, \ldots, 2 n-1\}$ with exactly one fixed point are both enumerated by $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$, the Catalan numbers. To the best of the authors' knowledge, these are new manifestation of the Catalan numbers. Below, we provide a bijective explanation of this fact, as a special case of the more general bijection δ defined below.

It is well-known that $|D(n, k)|=\frac{k+1}{n+1}\binom{n+1}{\frac{n-k}{2}}$ (with $n+k$ even), the formula given in Theorem 2.3. Knowing this, we give a bijection from $I_{n}^{k}(321)$ to $D(n, k)$. Note that $D(n, k)=\emptyset$ if $k<0$ or $k>n$.

Let $\pi \in I_{n}^{k}(321)$ with $n+k$ even and define the map $\delta: I_{n}^{k}(321) \rightarrow D(n, k)$ as follows. Write $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$. If $\pi_{i}-i \geq 0$ then the $i^{\text {th }}$ step in $\delta(\pi)$ is an up-step. If $\pi_{i}-i<0$ then the $i^{\text {th }}$ step in $\delta(\pi)$ is a down-step.

We first show that $\delta(\pi) \in D(n, k)$ (i.e., that it does not fall below the x-axis and that it ends at $(n, k))$. Since π is an involution, if we ignore all fixed points in π, by the definition of δ, each down-step must be coupled with a remaining up-step to its left. Hence, for each $1 \leq i \leq n,\left|\left\{j: \pi_{j} \geq j, j \leq i\right\}\right| \geq\left|\left\{j: \pi_{j}<j, j \leq i\right\}\right|$ thereby showing that $\delta(\pi)$ does not fall below the x-axis. Since k is the number of fixed points in π and we have k more up-steps than down-steps in $\delta(\pi)$, our ending height of $\delta(\pi)$ is clearly k, thereby showing that $\delta(\pi) \in D(n, k)$.

To finish showing that δ is a bijection we provide δ^{-1}. Let $d \in D(n, k)$. Number the steps of d from left to right by $1,2, \ldots, n$. Proceeding from right to left across d, couple each down-step with the closest uncoupled up-step to its left. Take the two step numbers and create a transposition. For the uncoupled up-steps (if any), take the step number of and create a fixed point. Once we have traversed d we will have an involution with k fixed points.

We now show that the resulting involution is 321-avoiding. We may decompose d as

$$
u^{i_{1}} P u^{i_{2}} P u^{i_{3}} \cdots u^{i_{k}} P u^{i_{k+1}}
$$

with $k \geq 1, i_{1}, i_{2}, \ldots, i_{k+1} \geq 0$, and where u^{j} stands for a sequence of j consecutive up-steps and the P 's are nonempty Dyck paths. Hence, each occurrence of u in this decomposition is an uncoupled up-step and yields a fixed point in $\delta^{-1}(d)$. Furthermore, any transposition in π comes from an up-step and down-step that both reside within the same P.

Note that a 321 occurrence, if it exists, may contain at most one fixed point. Hence, a 321 occurrence must come from at least two transposition, say $(a b)$ and $(c d)$. Furthermore, from the description of δ^{-1}, we see that $(a b)$ and $(c d)$ must come from the same P in the decomposition given above since if $(a b)$ comes from a P to the left of the P from which $(c d)$ comes, then necessarily $a, b<c, d$ and neither c nor d can be the smallest element of the 321 pattern.

First, let z be a fixed point $(x y)$ and $(u v)$ be transpositions in $\delta^{-1}(d)$, where $(x y)$ and (uv) come from the same P in the decomposition above. From this decomposition and the description of δ^{-1} we see that either $z<x, y, u, v$ or $z>x, y, u, v$. If $z<x, y, u, v$ then we have either a 123 or a 132 pattern. If $z>x, y, u, v$ then we have either a 123 or a 213 pattern. Hence a fixed point and at most two transpositions cannot create a 321 pattern.

We now let $(x y)$ and $(u v)$ be transpositions in $\delta^{-1}(d)$ which come from the same P in the decomposition given above. Without loss of generality, let $x<u$. From the description of δ^{-1} we must have $x<u<y<v$. This ordering yields a 3412 pattern, and thus no occurrence of 321 . Hence, any possible 321 occurrence must consist of one number from each of three transpositions $(x y),(u v)$, and $(w z)$. We may assume that $x<u<w$ and conclude that $x<u<w<y<v<z$. This yields a 456123 pattern, and thus no occurrence of 321 .

An example is in order. Consider $\pi=34125768 \in I_{8}^{2}(321)$. Then $\delta(\pi)$ is the partial Dyck path shown below.

For the inverse, we traverse the above partial Dyck path from right to left to get the involution (in cycle notation) $(8)(67)(5)(24)(13)=34125768$.

We may also use a bijection to $D(n, k)$ to offer an alternative proof for the patterns 132 and 213 (which by Theorem 1.3 are essentially the same). Let $\pi \in I_{n}^{k}(213)$ with $n+k$ even and consider the bijection $\zeta: I_{n}^{k}(213) \rightarrow D(n, k)$ defined as follows.

Create two columns, the left column designated the up column, denoted $U C$, and the right column designated the down column, denoted $D C$. Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$. Read π from left to right while performing the following algorithm.
I. If $\pi_{i}=i$, move to the next row, place i in $U C$, and move down another row.
II. If $\pi_{i}>i$, let x be the largest entry in $D C^{\prime}$'s row. If x does not exist, set $x=0$.
a) If $\pi_{i}>x$, place π_{i} in $D C$ and i in $U C$.
b) If $\pi_{i}<x$, move to the next row and place π_{i} in $D C$ and i in $U C$. Furthermore, move any element $y \in D C, y<\pi_{i}$, that is in a row above π_{i} to the row in which π_{i} was placed.

After placing all elements of π into $U C$ or $D C$, compute $\left(u_{1}, u_{2}, \ldots, u_{t}\right)$ and $\left(d_{1}, d_{2}, \ldots, d_{t}\right)$, where u_{i} is the number of entries in the $i^{\text {th }}$ row of $U C$ and d_{i} is the number of entries in
the $i^{\text {th }}$ row of $D C$. (Note that some of the d_{i} 's may be 0 .) The partial Dyck path given by $u^{u_{1}} d^{d_{1}} u^{u_{2}} d^{d_{2}} \cdots u^{u_{t}} d^{d_{t}}$, where u^{j} is j consecutive up-steps and d^{j} is j consecutive down-steps, is $\zeta(\pi)$

To show that ζ is a bijection, we give ζ^{-1}. Let $d \in D(n, k)$. Traversing d from left to right label the up-steps in order (starting with 1). Once this is done, traversing d from right to left, label the down-steps in order starting with the next number (one more than the number of up-steps in d).

Call an up-step and a down-step to the right of the up-step matching if the line segment connecting their midpoints does not intersect the partial Dyck path. Using the labeling of steps given above, create a transposition of the labels for every pair of matching up-steps and down-steps. If an up-step has no matching down-step, create a fixed point with its label.

We now provide a sketch that the resulting permutation is 213 -avoiding. We may decompose d as

$$
u^{i_{1}} P u^{i_{2}} P u^{i_{3}} \cdots u^{i_{k}} P u^{i_{k+1}},
$$

with $k \geq 1, i_{1}, i_{2}, \ldots, i_{k+1} \geq 0$, and where u^{j} stands for a sequence of j consecutive up-steps and the P 's are nonempty Dyck paths. Hence, each occurrence of u in this decomposition is an unmatched up-step and yields a fixed point in $\delta^{-1}(d)$. Furthermore, any transposition in $\delta^{-1}(d)$ comes from an up-step and down-step that both reside within the same P.

Let f be a fixed point $\delta^{-1}(d)$. Note that all elements to the left of f in $\delta^{-1}(d)$ are either fixed points or are larger than f. It follows that a 213 occurrence cannot contain two fixed points. Also, if x and y are not fixed points, then only $x f y$ may be a 213 pattern. However, this implies that $(x y)$ is not a transposition, i.e., that $(x a)$ and $(y b)$ are the transpositions (with $a \neq y)$. Further, ($x a$) must come from a P in the decomposition to the left of the up-step corresponding to f and $(y b)$ must come from a P in the decomposition to the right of the up-step corresponding to f. But this implies that $x>y, b$ and so $x f y$ is not an occurrence of 213. Thus, a 213 occurrence cannot contain a fixed point.

Now assume that $(x y)$ and $(u v), x<u$, create a 213 pattern. The only ordering which yields a 213 pattern is $x<y<u<v$. However, this is not possible since we have an up-step (corresponding to u) with a higher label than a down-step (corresponding to y).

The last remaining case to consider is $(x y),(u v),(w z), x<u<w$, creating a 213 pattern. We must have the ordering $x<u<w<v<y<z$ in order to have a 213 pattern (in fact, two such patterns). However, such an ordering is not possible since the path matching u and v will intersect one of the paths matching x and y or w and z.

To illustrate ζ, consider the following example. Let $\pi=689751423 \in I_{9}^{1}(213)$. We find that
our up and down columns are

UC	DC
$1,2,3$	8,9
4	6,7
5	

From here we get $\left(u_{1}, u_{2}, u_{3}\right)=(3,1,1)$ and $\left(d_{1}, d_{2}, d_{3}\right)=(2,2,0)$. Hence, $\zeta(\pi)$ is the partial Dyck path given below (ignoring the labels and dotted lines).

For the inverse, note that a dotted line connects an up-step with its matching down-step (if it exists). Using this information and the labels on the above partial Dyck path we can immediately construct (in cycle notation) (16)(28)(39)(47)(5) $=689751423$.

The next theorem finishes this section.
Theorem 2.4 Let $\alpha \in\{231,312\}$. For $n \geq 1$ and $0 \leq k \leq n$,

$$
i_{n}^{k}(\alpha)= \begin{cases}2^{\frac{n-k-2}{2}}\left(\left(\frac{n+k}{2} \frac{n-k}{2}\right)+\left(\frac{n+k-2}{2}\right)\right) & \text { for } n+k \text { even } \\ 0 & \text { for } n+k \text { odd }\end{cases}
$$

Proof. In [SiS] it is remarked that $S_{n}(\{231,312\})=I_{n}(231)$. Hence, $S_{n}^{k}(\{231,312\})=$ $I_{n}^{k}(231)$ for all $0 \leq k \leq n$. This last equality, coupled with Theorem 2.8 in [MR], gives the stated formula.

3. Involutions Containing a Length Three Pattern Exactly Once

We can see from the conjugation given in Theorem 1.3 that $i_{n}^{k}(\emptyset ; 132)=i_{n}^{k}(\emptyset ; 213)$ and $i_{n}^{k}(\emptyset ; 231)=i_{n}^{k}(\emptyset ; 312)$ for all $0 \leq k \leq n$. In this section, we show that these are the only equalities for patterns of length three. We note again that since our permutations are involutions, we clearly require $n+k$ to be even in all theorems below.

Theorem 3.1 For $n \geq 1$,

$$
\begin{array}{ll}
i_{n}^{3}(\emptyset ; 123)=\frac{3}{n}\binom{n}{\frac{n-3}{2}} & \text { for } n \geq 3 \text { odd, and } \\
i_{n}^{k}(\emptyset ; 123)=0 & \text { otherwise } .
\end{array}
$$

Proof. We start with some at-first-sight unrelated results.
Recall that $D(i, j)$ is the set of partial/standard Dyck paths from $(0,0)$ to (i, j). Define $d(n, j)$ to be the size of $D(2 n-j-1, j-1)$ for $j \geq 0$. Since a step ending at $(2 n-j-1, j-1)$ is either a down-step from $(2 n-j-2, j)$ or an up-step from $(2 n-j-2, j-2)$ we see that

$$
\begin{equation*}
d(n, j)=d(n, j+1)+d(n-1, j-1) . \tag{3.1}
\end{equation*}
$$

By definition we have $d(n, 1)=C_{n-1}$. From (3.1) we get $d(n, 2)=C_{n-1}$ as well. Rearranging (3.1) and making the change of variables $j \mapsto j+1$ and $n \mapsto n+1$ we get

$$
\begin{equation*}
d(n, j)=d(n+1, j+1)-d(n+1, j+2) . \tag{3.2}
\end{equation*}
$$

From (3.2) we have

$$
\sum_{j=2}^{n} d(n, j)=\sum_{j=2}^{n}(d(n+1, j+1)-d(n+1, j+2))=d(n+1,3)
$$

Applying (3.1) again we see that

$$
\begin{equation*}
\sum_{j=2}^{n} d(n, j)=d(n+1,3)=d(n+1,2)-d(n, 1)=C_{n}-C_{n-1} \tag{3.3}
\end{equation*}
$$

Now consider $\mathcal{K}: S_{n}(123) \rightarrow D(2 n, 0)$, Krattenthaler's bijection as described in section 2.
Let π have right-to-left maxima $m_{1}<m_{2}<\cdots<m_{s}$, so that we may write

$$
\pi=w_{s} m_{s} w_{s-1} m_{s-1} \cdots w_{1} m_{1}
$$

where the w_{i} 's are possibly empty.
We notice that if $\pi_{j}=n$ then since $m_{s}=n$ we have $\left|w_{s}\right|=j-1$. We consider the adumbrated permutation (which is technically not a permutation, but obviously corresponds uniquely to a permutation of the same length)

$$
\pi^{\star}=m_{s} w_{s-1} m_{s-1} \cdots w_{1} m_{1}
$$

(i.e. π with w_{s} removed). Using the algorithmic steps of \mathcal{K}, we may abuse notation and write $\mathcal{K}\left(\pi^{\star}\right)$ to mean $\mathcal{K}(\pi)$ with its last step removed. This partial Dyck path is in $D(2 n-$ $j-1, j-1)$. To see this, note that $\mathcal{K}\left(\pi^{\star}\right)$ ends at $(2 n-j, j)$ but the last step must be an up-step. Hence, the number of permutations in $S_{n}(123)$ with $\pi(j)=n$ is $d(n, j)$ for any $1 \leq j \leq n$.

At last we turn our attention to $I_{n}^{k}(\emptyset ; 123)$. We first argue that if $k \neq 3$ then $i_{n}^{k}(\emptyset ; 123)=0$. Clearly, if $k>3$ we have more than one occurrence of 123 . Hence, we assume $k<3$. Let $\pi \in I_{n}^{k}(\emptyset ; 123)$ with $k<3$ and let our 123 pattern be the subsequence $a b c$ in π. It is easy to see that if we let $\pi=\pi(1) b \pi(2)$ then $\pi(1)$ is a permutation of $\{a, b+1, b+2, \ldots, c-1, c+1, \ldots, n\}$ and $\pi(2)$ is a permutation of $\{1,2, \ldots, a-1, a+1, \ldots, b-1, c\}$. Since π is an involution, we see that we must have both a and c as fixed points. This in turn implies that b must be fixed, since b is preceded by $b-1$ entries, contradicting our assumption that $k<3$.

Thus, we restrict our attention to $k=3$, whereby our 3 fixed points create the single 123 occurrence. Call these fixed points $a<b<c$. From above we see that we must have $b=\frac{n+1}{2}$ and n odd in order for b to be a fixed point.

Since we are restricted to involutions, the placement of $1,2, \ldots, b-1, c$ completely defines $\pi \in I_{n}^{3}(\emptyset ; 123)$. Thus, $1,2, \ldots, b-1, c$ must be 123 -avoiding and can be identified uniquely with some $\tau \in S_{b}(123)$ with $\tau(j)=b$, where $j=j^{\prime}-(b-1)$ and j^{\prime} is defined by $\pi^{-1}(c)$. Since $\tau(1)=a$ we must have $\tau(1) \neq c$ so that $j \neq 1$. Since the number of permutations in $S_{n}(123)$ with $\pi(j)=n$ is $d(n, j)$ and $b=\frac{n+1}{2}$ we have, using (3.3),

$$
\begin{equation*}
i_{n}^{3}(\emptyset ; 123)=\sum_{j=2}^{\frac{n+1}{2}} d\left(\frac{n+1}{2}, j\right)=C_{\frac{n+1}{2}}-C_{\frac{n-1}{2}} \tag{3.4}
\end{equation*}
$$

which simplifies to the stated formula.
As a consequence of Theorem 3.1, we obtain the following obvious corollary.
Corollary 3.2 For $n \geq 3, i_{n}(\emptyset ; 123)=\frac{3}{n}\binom{n}{\frac{n-3}{2}}$.
The next theorem for the pattern 132 was first proved in [GM]. This combined with Theorem 1.3 yields the following theorem, which we include for completeness.

Theorem 3.3 For $n \geq 3,0 \leq k \leq n$, and $\alpha \in\{132,213\}$,

$$
i_{n}^{k}(\emptyset ; \alpha)= \begin{cases}\frac{k+1}{n-1}\binom{n-1}{\frac{n+k}{2}} & \text { for } n+k \text { even and } k \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Summing $i_{n}^{k}(\emptyset ; \alpha)$ for $\alpha \in\{132,213\}$ over k gives us the following result, first given in [GM].

Corollary 3.4 For $n \geq 3$ and $\alpha \in\{132,213\}, i_{n}(\emptyset ; \alpha)=\binom{n-2}{\left\lfloor\frac{n-3}{2}\right\rfloor}$.
Theorem 3.5 For $n \geq 4,0 \leq k \leq n$, and $\alpha \in\{231,312\}$,

$$
i_{n}^{k}(\emptyset ; \alpha)= \begin{cases}(k-1) 2^{\frac{n-k-6}{2}}\left(\binom{\frac{n+k}{2}-2}{\frac{n-k}{2}-1}+2\binom{\frac{n+k}{2}-3}{\frac{n-k}{2}-1}+\binom{\frac{n+k}{2}-4}{\frac{n-k}{2}-1}\right) & \text { for } n+k \text { even } \\ 0 & \text { for } n+k \text { odd }\end{cases}
$$

Proof. Let $a(n, k)=i_{n}^{k}(\emptyset ; 231)$ and $b(n, k)=i_{n}^{k}(231)$ for $0 \leq k \leq n$. Let $\pi \in I_{n}^{k}(\emptyset ; 231)$. Write $\pi=\pi(1) n \pi(2) j$; if $j=1$ then $\pi(1)=\emptyset$ and if $j=n$ then $\pi(2)=\emptyset$.

For $j=n$ we clearly have $\pi(1) \in I_{n-1}^{k-1}(\emptyset ; 231)$. For $j<n$ we consider two cases: the 231 pattern is to the left of n and the 231 pattern is to the right of n. We argue that the 231 pattern cannot include n. To see this, assume otherwise and let $y n x$ be the 231 pattern. If $x \neq j$ we must have $j>y$ so that $x<j$ and $(x y)$ is not a transposition of π. This implies that $\pi^{-1}(x) n x$ and $y n x$ are distinct 231 patterns (since $(x y)$ is not a transposition of π), a contradiction. If $x=j$ then we have $j<y$. Since $(j n)$ is a transposition of π, we know that $\pi^{-1}(y) \neq j$. Hence, $y n j$ and $y n \pi^{-1}(y)$ are two distinct occurrences of 231, again a contradiction.

First, consider the case where $\pi(1)$ contains the pattern. Note that we must have $\pi(2)=$ $(n-1)(n-2) \cdots(j+2)(j+1)$ and that $\pi(1) \in I_{j-1}^{k-1} \cup I_{j-1}^{k}$, depending upon the parity of $n+j$. Hence, this case contributes

$$
\sum_{\substack{j=1 \\ n+j \text { even }}}^{n-2} a(j-1, k-1)+\sum_{\substack{j=1 \\ n+j \text { odd }}}^{n-1} a(j-1, k) .
$$

Next, consider the case where $\pi(2) j$ contains the pattern. In this case it is easy to see that $\pi(2)=(n-2)(n-1)$ and that $j=n-3$. Thus, this case contributes $b(n-4, k-2)$ to the total.

Summing over all j we get

$$
a(n, k)=a(n-1, k-1)+b(n-4, k-2)+\sum_{\substack{j=1 \\ n+j \text { even }}}^{n-2} a(j-1, k-1)+\sum_{\substack{j=1 \\ n+j \text { odd }}}^{n-1} a(j-1, k)
$$

which, using $b(n, k)=2 b(n-2, k)+b(n-1, k-1)$ given in [MR], yields

$$
\begin{equation*}
a(n, k)=2 a(n-2, k)+a(n-1, k-1)+b(n-6, k-2)+b(n-5, k-3) . \tag{3.5}
\end{equation*}
$$

Define the generating functions $A_{k}(x)=\sum_{n \geq 0} a(n, k) x^{n}$ and $B_{k}(x)=\sum_{n \geq 0} b(n, k) x^{n}$. Using $b(n, k)=2 b(n-2, k)+b(n-1, k-1)$ it is easy to show that

$$
\begin{equation*}
B_{k}(x)=\frac{x^{k}\left(1-x^{2}\right)}{\left(1-2 x^{2}\right)^{k+1}} \tag{3.6}
\end{equation*}
$$

Since $b(n, k)=s_{n}^{k}(231,312)$ (shown in the proof of Theorem 2.4) we have (from Theorem 2.9 in [MR])

$$
\begin{equation*}
B_{k}(x)=\sum_{\substack{n \geq 1 \\ n+k \text { even }}} 2^{\frac{n-k-2}{2}}\left(\binom{\frac{n+k}{2}}{\frac{n-k}{2}}+\binom{\frac{n+k-2}{2}}{\frac{n-k}{2}}\right) x^{n} . \tag{3.7}
\end{equation*}
$$

From (3.5) we have $A_{k}(x)=2 x^{2} A_{k}(x)+x A_{k-1}(x)+x^{6} B_{k-2}(x)+x^{5} B_{k-3}(x)$. Using (3.5) and (3.6) we get

$$
A_{k}(x)=\frac{(k-1) x^{k+2}\left(1-x^{2}\right)^{2}}{\left(1-2 x^{2}\right)^{k}}=(k-1) x^{3}\left(1-x^{2}\right) B_{k-1}(x) .
$$

To obtain the stated formula for $a(n, k)$, we extract the coefficient of x^{n} in $A_{k}(x)$ using the above equation and (3.7) and simplify.

Summing $i_{n}^{k}(\emptyset ; \alpha)$ for $\alpha \in\{231,312\}$ over k gives us the following nice formula.
Corollary 3.6 For $n \geq 5$ and $\alpha \in\{231,312\}, i_{n}(\emptyset ; \alpha)=(n-1) 2^{n-6}$.

Remark. For $n=4,6,8, \ldots, i_{n}(\emptyset ; \alpha)=i_{2 n-4}^{2}(\emptyset ; \alpha)$ for $\alpha \in\{231,312\}$.
The last remaining pattern to consider in this section is 321 .
Theorem 3.7 For $n \geq 3,0 \leq k \leq n$,

$$
i_{n}^{k}(\emptyset ; 321)=\frac{k(k+3)}{n+1}\binom{n+1}{\frac{n-k}{2}-1}
$$

Proof. Let $i(n, k)=i_{n}^{k}(\emptyset ; 321)$. We first show that

$$
i(n, k)=\sum_{\substack{f=1 \\ f \text { odd }}}^{n-k} i(n-f, k-1) C_{\frac{f-1}{2}}+\sum_{\substack{f=2 \\ f \text { even }}}^{n-k} i_{n-f}^{k}(321) C_{\frac{f}{2}},
$$

which is equivalent, by Theorem 2.3, to

$$
\begin{equation*}
i(n, k)=\sum_{\substack{f=1 \\ f \text { odd }}}^{n-k} i(n-f, k-1) C_{\frac{f-1}{2}}+\sum_{\substack{f=2 \\ f \text { even }}}^{n-k} \frac{k+1}{n-f+1}\binom{n-f+1}{\frac{n-k-f}{2}} C_{\frac{f}{2}}, \tag{3.8}
\end{equation*}
$$

where we have initial conditions $i(n, 0)=0$ for all $n \geq 3$.
To see that $i(n, 0)=0$ for all n let $c b a$ be the 321 pattern in π. In order to avoid another 321 pattern, to the left (right) of b we cannot have an element larger (smaller) than b, except c (a) itself. Hence, b is a fixed point. Thus, the restriction of having exactly one 321 pattern implies a fixed point must be present (see Theorem 6.4 in [RSZ] for further details). Hence, we may let f be the smallest fixed point in $\pi \in I_{n}^{k}(\emptyset ; 321)$. We separate the argument into two cases: f odd and f even.

First, let f be odd and write $\pi=\pi(1) f \pi(2)$. In order for π to contain exactly one occurrence of 321 we must have $\pi(1) \in I_{f-1}^{0}(321)$ and $\pi(2) \in I_{n-f}^{k-1}(\emptyset ; 321)$. To see that we require $\pi(1) \in I_{f-1}^{0}(321)$ assume otherwise, that is that $\pi(1)$ is not an involution. Since π is an involution and f is odd, there exist $x \neq y$ both in $\pi(1)$ with $x, y>f$. This produces two occurrences of 321: $x f \pi(x)$ and $y f \pi(y)$, a contradiction. (As an aside, this shows that an odd fixed point cannot be part of a 321 occurrence.) Next, since $\pi(1) \in I_{f-1}^{0}(321)$, we necessarily must have $\pi(2) \in I_{n-f}^{k-1}(\emptyset ; 321)$. Summing over valid f and using Theorem 2.3 (for $k=0$) we get

$$
\sum_{\substack{f=1 \\ f \text { odd }}}^{n-k} i(n-f, k-1) C_{\frac{f-1}{2}}
$$

in this case.
Next, consider f even. Again, write $\pi=\pi(1) f \pi(2)$. Since π is an involution and f is even we must have $x \in \pi(1)$ with $x>f$. This gives the 321 occurrence $x f \pi(x)$. Thus, only one such x may exist. Furthermore, $\pi(2)$ must be 321 -avoiding. Now, consider the f leftmost entries in $\pi: \tau=\tau(1) x \tau(2) f$. Note that τ is a 321-avoiding permutation on f elements. Furthermore, τ does not contain the element $\pi^{-1}(x)$. Thus, τ is a permutation of $\left\{1,2, \ldots, \pi^{-1}(x)-1, \pi^{-1}(x)+1, \ldots, f-1, f, x\right\}$. By letting $i \in \tau$ become $i-1$ if $\pi^{-1}(x)+1 \leq$ $i \leq f$ and letting x become f we obtain $\tau^{\star} \in I_{f}^{0}(321)$. Next consider $\pi(2)^{\star}=x \pi(2)$, i.e. $\pi(2)$ with x in the first position. As before, $\pi(2)^{\star}$ may be identified with $\sigma \in I_{n-f+1}^{k-1}(321)$ with the added condition that $\sigma(1) \neq 1$ since we know that $\pi(2)^{\star}(1)=x>\pi^{-1}(x)$. Next, we have that the number of 321 -avoiding involutions of $\{1,2, \ldots, n-f+1\}$ with $k-1$ fixed points and 1 not a fixed point is $i_{n-f+1}^{k-1}(321)-i_{n-f}^{k-2}(321)$ (where $i_{n-f}^{k-2}(321)$ counts the number of such permutations with 1 being a fixed point). Noting that $i_{n}^{k-1}(321)-i_{n-1}^{k-2}(321)=i_{n-1}^{k}(321)$ and summing over valid f we get

$$
\sum_{\substack{f=2 \\ f \text { even }}}^{n-k} i_{n-f}^{k}(321) C_{\frac{f}{2}} .
$$

Combining the two cases' results proves (3.8).
We must now show that (3.8) along with the initial conditions yields $i(n, k)=\frac{k(k+3)}{n+1}\binom{n+1}{\frac{n-k}{2}-1}$.

We first show that

$$
\frac{k+3}{n+1}\binom{n+1}{\frac{n-k}{2}-1}=\sum_{\substack{f=2 \\ f \text { even }}}^{n-k} \frac{k+1}{n-f+1}\binom{n-f+1}{\frac{n-k-f}{2}} C_{\frac{f}{2}}
$$

i.e., that

$$
\begin{equation*}
\frac{k+3}{n+1}\binom{n+1}{\frac{n-k}{2}-1}=\sum_{i=1}^{\frac{n-k}{2}} \frac{k+1}{n-2 i+1}\binom{n-2 i+1}{\frac{n-k-2 i}{2}} C_{i} . \tag{3.9}
\end{equation*}
$$

For $0 \leq k \leq n$, denote the lefthand side of (3.9) by $f(n, k)$ and the righthand side of (3.9) by $g(n, k)$. It is straightforward to show that for $k \geq 1, f(n, k)=f(n-1, k+1)+f(n-1, k-1)$ and $g(n, k)=g(n-1, k+1)+g(n-1, k-1)$, where we define $f(n, k)=0$ and $g(n, k)=0$ if $n<k$. Since $f(2,2)=g(2,2)$, to prove that (3.9) holds it is sufficient to show that $f(n, 0)=g(n, 0)$ for all $n \geq 2$.

By Theorem 3.1, we see that $f(n, 0)=\frac{3}{n+1}\binom{n+1}{\frac{n}{2}-1}=i_{n}^{3}(\emptyset ; 123)$. From (3.4), this gives us $f(n, 0)=C_{\frac{n}{2}+1}-C_{\frac{n}{2}}$, where C_{n} is the Catalan number. Next, since

$$
\begin{aligned}
g(n, 0) & =\sum_{i=1}^{\frac{n}{2}} \frac{1}{n-2 i+1}\binom{n-2 i+1}{\frac{n}{2}-i} C_{i} \\
& =\sum_{i=1}^{\frac{n}{2}} C_{\frac{n}{2}-i} C_{i} \\
& =\sum_{i=0}^{\frac{n}{2}} C_{\frac{n}{2}-i} C_{i}-C_{\frac{n}{2}} \\
& =C_{\frac{n}{2}+1}-C_{\frac{n}{2}} \\
& =f(n, 0)
\end{aligned}
$$

we have proven (3.9).
We now have

$$
\begin{equation*}
i(n, k)=\sum_{\substack{f=1 \\ f \text { odd }}}^{n-k} i(n-f, k-1) C_{\frac{f-1}{2}}+\frac{k+3}{n+1}\binom{n+1}{\frac{n-k}{2}-1}, \tag{3.10}
\end{equation*}
$$

with initial conditions $i(n, 0)=0$ for all $n \geq 2$.
We use this and induction on $n+k$ to prove that $i(n, k)=\frac{k(k+3)}{n+1}\binom{n+1}{\frac{n}{2}-1}$. Since this holds for $i(1,1)$ and $i(2,0)$, we may assume that $i(n-f, k-1)=\frac{(k-1)(k+2)}{n-f+1}\binom{n-f+1}{\frac{n-f-k-1}{2}}$. Substitution into (3.10) gives

$$
i(n, k)=\sum_{i=1}^{\frac{n-k}{2}} \frac{(k-1)(k+2)}{n-2 i+2}\binom{n-2 i+2}{\frac{n-k}{2}-i} C_{i-1}+\frac{k+3}{n+1}\binom{n+1}{\frac{n-k}{2}-1}
$$

Hence, we must show that

$$
\begin{equation*}
\sum_{i=1}^{\frac{n-k}{2}} \frac{k+2}{n-2 i+2}\binom{n-2 i+2}{\frac{n-k}{2}-i} C_{i-1}=\frac{k+3}{n+1}\binom{n+1}{\frac{n-k}{2}-1} \tag{3.11}
\end{equation*}
$$

Denote by $h(n, k)$ the lefthand side of (3.11) and keep $f(n, k)$ as the notation for the righthand side of (3.11). It is straightforward to show that $h(n, k)=h(n-1, k+1)+h(n-1, k-1)$ and that $h(1,1)=f(1,1)$ and $h(2,2)=f(2,2)$. To prove (3.11), it is sufficient to show that $h(n, 0)=f(n, 0)$ for all $n \geq 2$. Since

$$
\begin{aligned}
h(n, 0) & =\sum_{i=1}^{\frac{n}{2}} \frac{2}{n-2 i+2}\binom{n-2 i+2}{\frac{n}{2}-i} C_{i-1} \\
& =\sum_{i=0}^{\frac{n}{2}-1} \frac{2}{n-2 i}\binom{n-2 i}{\frac{n}{2}-i-1} C_{i} \\
& =\sum_{i=0}^{\frac{n}{2}-1} C_{\frac{n}{2}-i} C_{i} \\
& =\sum_{i=0}^{\frac{n}{2}} C_{\frac{n}{2}-i} C_{i}-C_{\frac{n}{2}} \\
& =C_{\frac{n}{2}+1}-C_{\frac{n}{2}} \\
& =f(n, 0)
\end{aligned}
$$

we have proven (3.11), thereby proving the theorem.
From the proof of Theorem 3.7 we obtain Corollary 3.9 below, for which we have need of the following definition.

Definition 3.8 Let $d p(n, k) \in D(n, k)$ and let $d p_{x}(n)$ be a Dyck path with $2 n$ steps starting at $(x, 0)$. For $1 \leq i \leq \frac{n-k}{2}$, we call a lattice path which results from $d p(n-2 i, k) \cup d p_{n-2 i}(i) a$ modified Dyck path with a single drop from height k, and denote the set of all such modified Dyck paths by $\operatorname{MDP}(n ; k)$.

Using this definition, we can give the following, the proof of which is a direct consequence of (3.9).

Corollary 3.9 For $n \geq 2$ and $0 \leq k \leq n$ with $n+k$ even, $|M D P(n ; k)|=\frac{k+3}{n+1}\binom{n+1}{\frac{n-k}{2}-1}$.
Comparing Corollary 3.9 with the number of partial Dyck paths, we find that $|M D P(n ; k)|=$ $|D(n, k+2)|$. We explain this via a bijection.

Let $p d p(n-2 i, k) \circ d p(i)$ be the decomposition of an element in $M D P(n ; k)$ where $p d p$ stands for partial Dyck path and $d p$ stands for (standard) Dyck path. To obtain an element in $D(n, k+2)$ we perform the following steps.

Concatenate one up-step to the end of $p d p(n-2 i, k)$. To the end of this new up-step concatenate $d(i)$ and remove the last step of $d(i)$ (necessarily a down-step). The result is an element of $D(n, k+2)$.

For the inverse, perform the following steps to $p d p(n, k+2) \in D(n, k+2)$. Add a down-step to the end of $p d p(n, k+2)$. Next, traverse $p d p(n, k+2)$ from left to right and locate the last occurrence of two consecutive up-steps whose second step has ending point on the line $y=k+2$. From these two up-steps, remove the up-step closest to the origin. We now have a partial Dyck path ending at height k and a Dyck path lying $k+1$ units above the x-axis. Move the Dyck path left 1 unit and down $k+1$ units. The result is a member of $M D P(n ; k)$.

We illustrate this bijection with an example. Consider the following member of $M D P(10 ; 2)$.

We add an up-step to the end of the partial Dyck path and remove the last step of the modified Dyck path to get the following lattice path.

To create an element of $D(n, k+2)$ we concatenate the Dyck path with its last step removed to the end of the partial Dyck path and get the following.

References

[GM] O. Guibert and T. Mansour, Restricted 132-involutions and Chebyshev polynomials, arXiv:math.CO/0201136 (2002).
[GM2] O. Guibert and T. Mansour, Some statistics on restricted 132 involutions, arXiv:math.CO/0206169 (2002).
[K] D. E. Knuth, The Art of Computer Programming, vol. 3, Addison-Wesley, Reading, MA, 1973.
[K2] D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacif. J. Math. 34 (1970), 709-727.
[Kr] C. Krattenthaler, Permutations with restricted patterns and Dyck paths, Advances in Applied Math. 27 (2001), 510-530.
[MR] T. Mansour and A. Robertson, Refined restricted permutations avoiding subsets of patterns of length three, arXiV:math.CO/0204005 (2002).
[RSZ] A. Robertson, D. Saracino, and D. Zeilberger, Refined restricted permutations, arXiv:math.CO/0203022 (2002).
[S] C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961), 179-191.
[SiS] R. Simion and F. Schmidt, Restricted permutations, European Journal of Combinatorics 6 (1985), 383-406.
[Z] D. Zeilberger, Rodica Simion (1955-2000): An (almost) perfect enumerator and human being, Shalosh B. Ekhad's and Doron Zeilberger's Personal Journal, http://www.math.rutgers.edu/~zeilberg/pj.html.

Appendix

Below we provide values of $i_{n}^{k}(\alpha)$ and $i_{n}^{k}(\emptyset ; \alpha)$ for small n and all $\alpha \in S_{3}$.

χ^{k}	0	1	2	3	4	5	6	7	8
0	1								
1	0	1							
2	1	0	1						
3	0	3	0	0					
4	3	0	3	0	0				
5	0	10	0	0	0	0			
6	10	0	10	0	0	0	0		
7	0	35	0	0	0	0	0	0	
8	35	0	35	0	0	0	0	0	0
$\mathbf{i}_{\mathbf{n}}^{\mathbf{k}}(\mathbf{1 2 3})$									

$n \backslash k$	0	1	2	3	4	5	6	7	8
0	1								
1	0	1							
2	1	0	1						
3	0	2	0	1					
4	2	0	3	0	1				
5	0	5	0	4	0	1			
6	5	0	9	0	5	0	1		
7	0	14	0	14	0	6	0	1	
8	14	0	28	0	20	0	7	0	1
$\mathbf{i}_{\mathbf{n}}^{\mathbf{k}}(\mathbf{1 3 2})=$	$\mathbf{i}_{\mathbf{n}}^{\mathbf{k}}(\mathbf{3 2 1})=\mathbf{i}_{\mathbf{n}}^{\mathbf{k}}(\mathbf{2 1 3})$								

$n \backslash k$	0	1	2	3	4	5	6	7	8
0	1								
1	0	1							
2	1	0	1						
3	0	3	0	1					
4	2	0	5	0	1				
5	0	8	0	7	0	1			
6	4	0	18	0	9	0	1		
7	0	20	0	32	0	11	0	1	
8	8	0	56	0	50	0	13	0	1

n									
n	k	0	1	2	3	4	5	6	7

n^{\prime}	k	0	1	2	3	4	5	6	7
0	0								
1	0	0							
2	0	0	0						
3	0	1	0	0					
4	0	0	1	0	0				
5	0	2	0	1	0	0			
6	0	0	3	0	1	0	0		
7	0	5	0	4	0	1	0	0	
8	0	0	9	0	5	0	1	0	0

$\mathbf{i}_{\mathbf{n}}^{\mathbf{k}}(\emptyset ; \mathbf{1 3 2})=\mathbf{i}_{\mathbf{n}}^{\mathbf{k}}(\emptyset ; \mathbf{2 1 3})$

$n \chi^{k}$	0	1	2	3	4	5	6	7	8
0	0								
1	0	0							
2	0	0	0						
3	0	0	0	0					
4	0	0	1	0	0				
5	0	0	0	2	0	0			
6	0	0	2	0	3	0	0		
7	0	0	0	8	0	4	0	0	
8	0	0	5	0	18	0	5	0	0
$\mathbf{i}_{\mathbf{n}}^{\mathbf{k}}(\emptyset ; \mathbf{2 3 1})=$	$\mathbf{i}_{\mathbf{n}}^{\mathbf{k}}(\emptyset ; \mathbf{3 1 2})$								

$\mathbf{i}_{\mathbf{n}}^{\mathbf{k}}(\emptyset ; \mathbf{1 2 3})$

$\mathbf{i}_{\mathbf{n}}^{\mathbf{k}}(\emptyset ; \mathbf{3 2 1})$

[^0]: ${ }^{1}$ Homepage: http://math.colgate.edu/~aaron/

[^1]: ${ }^{2}$ Rodica Simion did not like the SS acronym due to its unpleasant connotation (see [Z]). Hence, we use the nonstandard SiS and hope that others will as well.

