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An umbral setting for cumulants and factorial moments

E. Di Nardo, D. Senato ∗

Abstract

We provide an algebraic setting for cumulants and factorial moments through
the classical umbral calculus. Main tools are the compositional inverse of the
unity umbra, connected with the logarithmic power series, and a new umbra
here introduced, the singleton umbra. Various formulae are given expressing
cumulants, factorial moments and central moments by umbral functions.
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1 Introduction

The purpose of this paper is mostly to show how the classical umbral calculus gives

a lithe algebraic setting in handling cumulants and factorial moments. The classical

umbral calculus consists of a symbolic technique dealing with sequences of numbers

an indexed by nonnegative integers n = 0, 1, 2, 3, . . . , where the subscripts are treated

as if they were powers. This kind of device was extensively used since the nineteenth

century although the mathematical community was sceptic of it, owing to its lack

of foundation. To the best of our knowledge, the method was first proposed by Rev.

John Blissard in a series of papers as from 1861 (cf. [5] for the full list of papers),

nevertheless it is impossible to put the credit of the original idea down to him since

the Blissard’s calculus has its mathematical source in symbolic differentiation. In

the thirties, Bell [1] reviewed the whole subject in several papers, restoring the

purport of the Blissard’s idea and in [2] he tried to give a rigorous foundation of the

mystery at the ground of the umbral calculus but his attempt did not have a hold.

Indeed, in the first modern textbook of combinatorics [12] Riordan often employed

this symbolic method without giving any formal justification. It was first Gian-

Carlo Rota to disclose the “umbral magic art” of shifting from an to an bringing

to the light the underlying linear functional (cf. [15]). This idea led Rota and his

collaborators to conceive a beautiful theory (cf. [10] and [14]) which has originated

a large variety of applications (see [4] for a list of papers updated to 2000). Some

years later, Roman and Rota [13] gave rigorous form to the umbral tricks in the

setting of Hopf algebra (see also [9]). But in 1994 Rota himself wrote (cf. [18]): “...

Although the notation of Hopf algebra satisfied the most ardent advocate of spic-and-span

rigor, the translation of “classical” umbral calculus into the newly found rigorous language

made the method altogether unwieldy and unmanageable. Not only was the eerie feeling
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of witchcraft lost in the translation, but, after such a translation, the use of calculus to

simplify computation and sharpen our intuition was lost by the wayside...” Then, in the

paper [18] The Classical Umbral Calculus (1994) Rota, together with Taylor, tries

to restore the feeling meant by the founders of the umbral calculus keeping new

notation both minimal and indispensable to avoid the misunderstanding of the past.

In this new setting, the basic device is to represent an unital sequence of numbers by

a symbol α, named umbra, i.e. to associate the sequence 1, a1, a2, . . . to the sequence

1, α, α2, . . . of powers of α through an operator E that looks like the expectation of

random variables (r.v.’s). This new way of dealing with sequences of numbers has

been applied to combinatorial and algebraic subjects (cf. [17], [23] and [8]), wavelet

theory (cf. [19]) and difference equations (cf. [24]). Besides it has led to a nimble

language for r.v.’s theory, as showed in [16] and [5].

The present work is inspired by this last point of view. As a matter of fact,

an umbra looks as the framework of a random variable (r.v.) with no reference to

any probability space, someway getting closer to statistical methods. However, the

use of symbolic methods in statistics is not a novelty: for instance Stuart and Ord

[22] resort to such a technique in handling moments about a point. In addition in

the umbral calculus, questions as convergence of series are no matter, as showed

hereafter dealing with cumulants.

Among the sequences of numbers related to r.v.’s, cumulants play a central role

characterizing all r.v.’s occurring in the classical stochastic processes. For instance,

a r.v. having Poisson distribution of parameter x is the unique probability distri-

bution for which all its cumulants are equal to x. It seems therefore that a r.v.

is better described by its cumulants than by its moments. Moreover, due to their

properties of additivity and invariance under translation, the cumulants are not nec-

essarily connected with the moments of any probability distribution. We can define

cumulants κj of any sequence an, n = 1, 2, 3, ... by

∞
∑

n=0

ant
n

n!
= exp







∞
∑

j=1

κjt
j

j!







in disregard of questions of whether any series converges. By this approach, many

difficulties connected to the “problem of cumulants” smooth out, where with “prob-

lem of cumulants” we refer to characterizations of sequences that are cumulants of

some probability distributions. The simplest example is that the second cumulant

of a probability distribution must always be nonnegative, and is zero only if all of

the higher cumulants are zero. Cumulants are subject to no such constraints when

they are analyzed by an algebraic point of view. What is more, in statistics they

do not play any dual role compared to factorial moments. Whereas the algebraic

setting here proposed comes to the light their close relationship through an umbral

analogy with the well known complementary notions of compound and randomized

Poisson r.v.’s (cf. [6])

Umbral notations are introduced in Section 2 by means of r.v.’s semantics. Our

intention by this way is to make the reader comfortable with the umbral system of

calculation without require any prior knowledge. We only skip some technical proofs

of formal matters on which the reader is referred to citations. We also resume the

theory of Bell umbrae, completely developed in [5], that not only gives the umbral
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counterpart of the family of Poisson r.v.’s but it allows an umbral expression of the

functional composition of exponential power series. Section 3 is devoted to a new

umbra, named singleton umbra, playing a dual role compared to the Bell umbra.

Their relationship is encoded by the compositional inverse of the unity umbra. The

singleton umbra is the keystone of the umbral presentation of cumulants and factorial

moments.

In the last two sections we give various umbral formulae for cumulants and

factorial moments that parallel those known in statistics but simplify the proofs as

well as the forms. This happens for instance for the equations expressing cumulants

in terms of moments (and vice-versa) and also for their recursive formulas. Inversion

theorems allowing to obtain an umbra from its cumulants or factorial moments are

also stated.

In 1929, Fisher [7] introduced the k−statistics as new symmetric functions of the

random sample. The aim of Fisher was to estimate the cumulants without using

the moment estimators. He used only combinatorial methods. The k−statistics are

related to the power sum symmetric functions whose variables are the r.v.’s of the

sample, but these expressions are very unhandy. We believe that the umbral calculus

may seek to simplify the expression of the k−statistics (as well as the h−statistics

for the central moments) taking into account its combinatorial nature.

2 Umbrae and random variables

In the following, we resume terminology, notations and some basic definitions of

the classical umbral calculus, as it has been introduced by Rota and Taylor in [18]

and further developed in [5]. Fundamental is the idea of associating a sequence of

numbers 1, a2, a3, . . . to an indeterminate α which is said to represent the sequence.

This device is familiar in probability when ai represents the i−th moment of a

r.v. X. In this case, the sequence 1, a1, a2, . . . results from applying the expectation

operator E to the sequence 1,X,X2, . . . consisting of powers of the r.v. X.

More formal, an umbral calculus consists of the following data:

a) a set A = {α, β, . . .}, called the alphabet, whose elements are named umbrae;

b) a commutative integral domain R whose quotient field is of characteristic zero;

c) a linear functional E, called evaluation, defined on the polynomial ring R[A] and

taking values in R such that

i) E[1] = 1;

ii) E[αiβj · · · γk] = E[αi]E[βj ] · · ·E[γk] for any set of distinct umbrae in A

and for i, j, . . . , k nonnegative integers (uncorrelation property);

d) an element ǫ ∈ A, called augmentation [13], such that E[ǫn] = δ0,n, for any

nonnegative integer n, where

δi,j =

{

1 if i = j
0 if i 6= j

i, j ∈ N ;
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e) an element u ∈ A, called unity umbra [5], such that E[un] = 1, for any nonnega-

tive integer n.

A sequence a0 = 1, a1, a2, . . . in R is umbrally represented by an umbra α when

E[αi] = ai, for i = 0, 1, 2, . . . .

The elements ai are called moments of the umbra α on the analogy of r.v.’s theory.

The umbra ǫ can be view as the r.v. which takes the value 0 with probability 1 and

the umbra u as the r.v. which takes the value 1 with probability 1. Note that the

uncorrelation property among umbrae parallels the analogue one for r.v.’s as well

as it is E[αn+k] 6= E[αn]E[αk]. Remark as this setting gets out of the well-known

“moment problem” for r.v.’s.

Example 2.1 Bell umbra.

The Bell umbra β is the umbra such that

E[(β)n] = 1 n = 0, 1, 2, . . .

where (β)0 = 1 and (β)n = β(β − 1) · · · (β − n+ 1) is the lower factorial. It results

E[βn] = Bn where Bn is the n−th Bell number (cf. [5]), i.e. the number of the

partitions of a finite nonempty set with n elements or the n−th coefficient in the

Taylor series expansion of the function exp(et − 1). So β is the umbral counterpart

of the Poisson r.v. with parameter 1.

We call factorial moments of an umbra α the elements

a(n) =

{

1, n = 0
E[(α)n], n > 0

where (α)n = α(α − 1) · · · (α − n + 1) is the lower factorial. So the definition of β

in example 2.1 could be reformulated as follows: the Bell scalar umbra is the umbra

whose factorial moments are b(n) = 1 for any nonnegative integer n.

2.1 Similar umbrae and dot-product

The notion of similarity among umbrae comes in handy in order to manipulate

sequences such
n
∑

i=0

(

n
i

)

aian−i, n ∈ N (1)

as moments of umbrae. The sequence (1) cannot be represented by using only the

umbra α with moments a0 = 1, a1, a2, . . . . Indeed, being α correlated to itself, the

product aian−i cannot be written as E[αiαn−i]. So we need two distinct umbrae

having the same sequence of moments, as it happens for similar r.v.’s. Therefore, if

we choose an umbra α′ uncorrelated with α but with the same sequence of moments,

it is
n
∑

i=0

(

n
i

)

aian−i = E

[

n
∑

i=0

(

n
i

)

αi(α′)n−i

]

= E[(α + α′)n]. (2)
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Then the sequence (1) represents the moments of the umbra (α + α′). A way to

formalize this matter is to define two equivalence relations among umbrae.

Two umbrae α and γ are umbrally equivalent when

E[α] = E[γ],

in symbols α ≃ β. They are similar when

αn ≃ γn, n = 0, 1, 2, . . .

in symbols α ≡ γ. We note that equality implies similarity which implies umbral

equivalence. The converses are false. Then, we shall denote by the symbol n.α the

dot-product of n and α, an auxiliary umbra (cf. [18]) similar to the sum α′ + α′′ +

. . . + α′′′ where α′, α′′, . . . , α′′′ are a set of n distinct umbrae each similar to the

umbra α. So the sequence in (2) is umbrally represented by the umbra 2.α. We

assume that 0.α is an umbra similar to the augmentation ǫ.

We shall hereafter consider the dot product of n and α as an umbra if we saturate

the alphabet A with sufficiently many umbrae similar to any expression whatever.

For a formal definition of a saturated umbral calculus see [18]. It can be shown that

saturated umbral calculi exist and that every umbral calculus can be embedded in

a saturated umbral calculus.

The following statements are easily to be proved:

Proposition 2.2 (i) If n.α ≡ n.β for some integer n 6= 0 then α ≡ β;

(ii) if c ∈ R then n.(cα) ≡ c(n.α) for any nonnegative integer n;

(iii) n.(m.α) ≡ (nm).α ≡ m.(n.α) for any two nonnegative integers n,m;

(iv) (n + m).α ≡ n.α + m.α′ for any two nonnegative integers n,m and any two

distinct umbrae α ≡ α′;

(v) (n.α + n.β) ≡ n.(α + β) for any nonnegative integer n and any two distinct

umbrae α and β.

Two umbrae α and γ are said to be inverse to each other when α + γ ≡ ε. We

denote the inverse of the umbra α by −1.α′, with α ≡ α′. Recall that, in dealing

with a saturated umbral calculus, the inverse of an umbra is not unique, but any

two inverse umbrae of the same umbra are similar.

Example 2.3 Uniform umbra.

The Bernoulli umbra (cf. [18]) represents the sequence of Bernoulli numbers Bn

such that
∑

k≥0

(

n
k

)

Bk = Bn.

The inverse of the Bernoulli umbra is the umbral counterpart of the uniform r.v.

over the interval [0, 1] (cf. [23]).
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2.2 Generating functions

The formal power series in R[A][[t]]

u+
∑

n≥1

αn t
n

n!
(3)

is the generating function (g.f.) of the umbra α, and it is denoted by eαt. The notion

of umbrally equivalence and similarity can be extended coefficientwise to formal

power series R[A][[t]] (see [24] for a formal construction). So it results

α ≡ β ⇔ eαt ≃ eβt.

Moreover, any exponential formal power series1 in R[[t]]

f(t) = 1 +
∑

n≥1

an
tn

n!

can be umbrally represented by a formal power series (3) in R[A][[t]]. In fact, if the

sequence 1, a1, a2, . . . is umbrally represented by α then

f(t) = E[eαt] i.e. f(t) ≃ eαt,

assuming that we naturally extend E to be linear. We will say that f(t) is umbrally

represented by α. Note that, from now on, when there is no mistaking, we will just

say that f(t) is the g.f. of α. For example the g.f. of the augmentation umbra ǫ is 1

as well as the g.f. of the unity umbra u is ex.

Getting back to a r.v. X, recall that when E[exp(tX)] is a convergent function

f(t), it admits an exponential expansion in terms of the moments which are com-

pletely determined by the related distribution function (and vice-versa). In this case

the moment generating function (m.g.f.) encodes all the information of X and the

notion of similarity among r.v.’s corresponds to that of umbrae.

The first advantage of the umbral notation introduced for g.f.’s is the represen-

tation of operations among g.f.’s with operations among umbrae. For example the

multiplication among exponential g.f.’s is umbrally represented by a summation of

the corresponding umbrae:

g(t)f(t) ≃ e(α+γ)t with f(t) ≃ eαt, g(t) ≃ eγt. (4)

Via (4), the g.f. of n.α is f(t)n. If α is an umbra with g.f. f(t), the inverse um-

bra −1.α′ has g.f. [f(t)]−1. The summation among exponential g.f.’s is umbrally

represented by a disjoint sum of umbrae. The disjoint sum (respectively disjoint

difference) of α and γ is the umbra η (respectively ι) with moments

ηn ≃

{

u, n = 0
αn + γn, n > 0

(

respectively ιn ≃

{

u, n = 0
αn − γn, n > 0

)

,

in symbols η ≡ α+̇γ (respectively ι ≡ α−̇γ). By the definition, it follows

f(t)± [g(t)− 1] ≃ e(α±̇γ)t.

1Observe that with this approach we disregard of questions of whether any series converges.
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Example 2.4 Unbiased estimators.

Suppose to make the disjoint sum of n times the umbra α.We will denote this umbra

by +̇nα. Its g.f. is 1 + n[f(t) − 1]. The umbra +̇nα has the following probabilis-

tic counterpart. Let {Xi}
n
i=1 be a random sample of independent and identically

distributed (i.i.d.) r.v’s. As it is well-known the power sum symmetric functions

Sr =
n
∑

i=1

Xr
i

gives the unbiased estimators Sr/n of the moments of Xi. But E[(+̇nα)
r] = n ar,

hence the umbral corresponding of the power sum symmetric functions sequence Sr
is the umbra +̇nα.

2.3 Auxiliary umbrae

In the following, suppose α an umbra with g.f. f(t) and γ an umbra with g.f. g(t).

The introduction of the g.f. device leads to the definition of new auxiliary umbrae

useful for the development of the system of calculation. For this purpose, we should

replace R with whatever polynomial ring having coefficients in R and a number

of indeterminates according to necessity. In this paper, we deal with R[x, y]. This

allows to define the dot-product of x and α via g.f., i.e. x.α is the auxiliary umbra

having generating function

e(x.α) ≃ f(t)x.

The Proposition 2.2 still holds replacing n with x and m with y. Then, an umbra is

said to be scalar if the moments are elements of R while it is said to be polynomial

if the moments are polynomials.

Example 2.5 Bell polynomial umbra.

The Bell polynomial umbra φ is the umbra having factorial moments equal to xn (cf.

[5]). This umbra has g.f. exp[x(et − 1)] so that φ ≡ x.β, where β is the Bell umbra.

It turns out that the Bell polynomial umbra x.β is the umbral counterpart of the

Poisson r.v. with parameter x.

Example 2.6 Moments about a point.

The moments E[(X − a)n] about a point a ∈ R of a r.v. X are easily represented

by umbrae through the following definition: the umbra αa having moments about a

point a ∈ R is defined as

αa ≡ α− a.u. (5)

If a, b ∈ R and b− a = c, then

αa ≡ α− (b+ c).u ≡ αb + c.u,

is the umbral version of the equations giving the moments about a in terms of the

moments about b (cf. [22] for another symbolic expression).

The dot-product γ.α of two umbrae is the auxiliary umbra having g.f.

e(γ.α)t ≃ [f(t)]γ ≃ eγ log f(t) ≃ g [log f(t)] .

7



The moments of the dot-product γ.α are (cf. [5])

E[(γ.α)n] =
n
∑

i=0

g(i)Bn,i(a1, a2, . . . , an−i+1) n = 0, 1, 2, . . . (6)

where g(i) are the factorial moments of the umbra γ, Bn,i are the (partial) Bell

exponential polynomials (cf. [12]) and ai are the moments of the umbra α. Observe

that E[γ.α] = g1 a1 = E[γ]E[α.] The following properties hold (cf. [5]):

Proposition 2.7 a) if η.α ≡ η.γ then α ≡ γ;

b) if c ∈ R then η.(cα) ≡ c(η.α) for any two distinct umbrae α and η;

c) if γ ≡ γ′ then (α+ η).γ ≡ α.γ + η.γ′;

d) η.(γ.α) ≡ (η.γ).α.

Observe that from property b) it follows

α.x ≡ α.(xu) ≡ x(α.u) ≡ xα. (7)

Remark 1 The auxiliary umbra γ.α is the umbral version of a random sum. Indeed

the m.g.f. g[log f(t)] corresponds to the r.v. SN = X1+X2+ · · ·+XN where N is a

discrete r.v. having m.g.f. g(t) and Xi are i.i.d. r.v.’s having m.g.f. f(t). The right-

distributive property of the dot-product γ.α runs in parallel with the probability

theory because the random sum SN+M is similar to SN + SM , where N and M are

independent discrete r.v.’s. The left-distributive property of the dot-product γ.α

does not hold as well as it happens in the r.v.’s theory. In fact, let Z = X + Y be

a r.v. with X and Y independent r.v.’s. As it is easy to verify, the random sum

SN = Z1 + Z2 + · · ·+ZN , with Zi i.i.d. r.v.’s similar to Z, is not similar to the r.v.

SX
N + SY

N with SX
N = X1 +X2 + · · ·+XN , and Xi i.i.d. r.v.’s similar to X and with

SY
N = Y1 + Y2 + · · ·+ YN and Yi i.i.d. r.v.’s similar to Y.

Example 2.8 Randomized Poisson r.v.

Let us consider the Bell polynomial umbra x.β. If in the place of x we put a generic

umbra α, we get the auxiliary umbra α.β whose factorial moments are

(α.β)n ≃ αn n = 0, 1, 2, . . .

and moments given by the exponential umbral polynomials (cf. [5])

(α.β)n ≃ Φn(α) ≃
n
∑

i=0

S(n, i)αi n = 0, 1, 2, . . . . (8)

Its g.f. is f [et−1]. The umbra α.β represents a random sum of independent Poisson

r.v.’s with parameter 1 indexed by an integer r.v. Y, i.e. a randomized Poisson r.v.

with parameter Y.
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As suggested in [14], there is a connection between compound Poisson processes and

polynomial sequence of binomial type, i.e. sequence {pn(x)} of polynomials with

degree n satisfying the identities

pn(x+ y) =
n
∑

i=0

(

n
i

)

pi(x)pn−i(y)

for any n (cf. for instance [10]). Two different approaches can be found in [3]

and in [21]. A natural device to make clear this connection is the α−partition

umbra β.α, introduced in [5]. Its g.f. is exp[f(t) − 1] and it suggests to interpret

a partition umbra as a compound Poisson r.v. with parameter 1. As well-known,

a compound Poisson r.v. with parameter 1 is introduced as a random sum SN =

X1 + X2 + · · · + XN where N has a Poisson distribution with parameter 1. The

umbra β.α fits perfectly this probabilistic notion taking into consideration that the

Bell scalar umbra β plays the role of a Poisson r.v. with parameter 1. What’s

more, since the Poisson r.v. with parameter x is umbrally represented by the Bell

polynomial umbra x.β, a compound Poisson r.v. with parameter x is represented by

the polynomial α−partition umbra x.ψ ≡ x.β.α with g.f. exp[x(f(t)−1)]. The name

“partition umbra” has a probabilistic ground. Indeed the parameter of a Poisson r.v.

is usually denoted by x = λt, with t representing a time interval, so that when this

interval is partitioned into non-overlapping ones, their contributions are stochastic

independent and add to SN . This last circumstance is umbrally expressed by the

relation

(x+ y).β.α ≡ x.β.α+ y.β.α (9)

giving the binomial property for the polynomial sequence represented by x.β.α. In

terms of g.f.’s, the formula (9) means that

hx+y(t) = hx(t)hy(t) (10)

where hx(t) is the g.f. of x.β.α. Viceversa every g.f. hx(t) satisfying the equality

(10) is the g.f. of a polynomial α−partition umbra. The α−partition umbra repre-

sents the sequence of partition polynomials Yn = Yn(a1, a2, . . . , an) (or complete Bell

exponential polynomials [12]), i.e.

E[(β.α)n] =
n
∑

i=0

Bn,i(a1, a2, . . . , an−i+1) = Yn(a1, a2, . . . , an), (11)

where ai are the moments of the umbra α. Moreover every α−partition umbra

satisfies the relation

(β.α)n ≃ α′(β.α+ α′)n−1 α ≡ α′, n = 0, 1, 2, . . . (12)

and conversely (see [5] for the proof). The previous property will allow an useful

umbral characterization of the cumulant umbra (see corollary 4.12 in section 4.) The

umbra β.α plays a central role also in the umbral representation of the composition of

exponential g.f.’s. Indeed, the composition umbra of α and γ is the umbra τ ≡ γ.β.α.

The umbra τ has g.f. g[f(t)− 1] and moments

E[τn] =
n
∑

i=0

giBn,i(a1, a2, . . . , an−i+1) (13)

9



with gi and ai moments of the umbra γ and α respectively. We denote by α<−1> the

compositional inverse of α, i.e. the umbra having g.f. f−1(t) such that f−1[f(t)−1] =

f [f−1(t)−1] = 1+ t. For an intrinsic umbral expression of the compositional inverse

umbra see [5], where it is also stated an umbral version of the Lagrange inversion

formula.

Example 2.9 Randomized compound Poisson r.v.

As already underlined in example 2.8, the umbra γ.β represents a randomized Pois-

son r.v. Hence it is natural to look at the composition umbra as a compound

randomized Poisson r.v., i.e. a random sum indexed by a randomized Poisson r.v.

Moreover, being (γ.β).α ≡ γ.(β.α) (cf. statement d) of Proposition 2.7), the previ-

ous relation allows to see this r.v. from another side: the umbra γ.(β.α) generalizes

the concept of a random sum of i.i.d. compound Poisson r.v. with parameter 1 in-

dexed by an integer r.v. X, i.e. a randomized compound Poisson r.v. with random

parameter X.

At the end, the symbol α.n denotes an auxiliary umbra similar to the product

α′α′′ · · ·α′′′ where α′, α′′, . . . , α′′′ are a set of n distinct umbrae each similar to the

umbra α. We assume that α.0 is an umbra similar to the unity umbra u. The mo-

ments of α.n are:

E[(α.n)k] = E[(αk).n] = ank , k = 0, 1, 2, . . . , (14)

i.e. the n−th power of the moments of the umbra α. Thanks to this notation in [5],

the umbral expression of the Bell exponential polynomials was given as follows:

Bn,i(a1, a2, . . . , an−i+1) ≃

(

n
i

)

α.i(i.α)n−i (15)

whenever a1 6= 0 and where α is the umbra with moments

E [αn] =
an+1

a1(n+ 1)
, n = 1, 2, . . . . (16)

Example 2.10 The central umbra.

We call central umbra the umbra αa1 having moments about a1 = E[α]. From (5), the

classical relation between moments and central moments of a r.v. has the following

umbral expression:

(αa1)n ≃
n
∑

k=0

(

n
k

)

(−1)n−k(α′)kα.(n−k), α ≡ α′ n = 1, 2, . . .

being E[(a1.u)
k] = ak1 = E[α.k] from (14).

3 The singleton umbra

The singleton umbra plays a dual role compared to the Bell umbra, even if it has

not a probabilistic counterpart. Besides, the singleton umbra turns out to be an

effective symbolic tool in order to umbrally represent some well-known r.v.’s as well

as cumulants and factorial moments.
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Definition 3.1 (The singleton umbra) An umbra χ is said to be a singleton um-

bra if

χn ≃ δ1,n n = 1, 2, · · · .

The g.f. of the singleton umbra χ is 1 + t.

Example 3.2 Gamma r.v.

The m.g.f. of a Gamma r.v. with parameters a and c is

M(t) =
1

(1− ct)a
.

This g.f. is umbrally represented by the inverse of −c(a.χ) (see (ii) of Proposition

2.2 replacing n by a ∈ R).

Table 1 lights up the duality between the singleton umbra χ and the Bell umbra β.

Umbra Generating function

χ (1 + t) = 1 +
∑∞

n=1 [
∑n

k=1 s(n, k)]
tn

n!

x.χ (1 + t)x = 1 +
∑∞

n=1

[

∑n
k=1 s(n, k)x

k
]

tn

n!

α.χ f [log(1 + t)]
χ.α 1 + log[f(t)]

β ee
t−1 = 1 +

∑∞
n=1 [

∑n
k=1 S(n, k)]

tn

n!

x.β ex(e
t−1) = 1 +

∑∞
n=1

[

∑n
k=1 S(n, k)x

k
]

tn

n!

α.β f(et − 1)

β.α ef(t)−1

Table 1.

The connection between the singleton umbra χ and the Bell umbra β is made

clear in the following proposition.

Proposition 3.3 Let χ be the singleton umbra, β the Bell umbra and u<−1> the

compositional inverse of the unity umbra u. It results

χ ≡ u<−1>.β ≡ β.u<−1>, (17)

β.χ ≡ u ≡ χ.β. (18)

Proof. The g.f. of u<−1>.β.u is 1 + t, being u<−1> and u compositional inverses.

So equivalence (17) follows by property a) of proposition 2.7 being

u<−1>.β.u ≡ χ ≡ χ.u

Equivalence (18) follows via g.f.’s in Table 1.

Distributive properties of the singleton umbra respect to the sum and the disjoint

sum of umbrae are given in the following.

Proposition 3.4 It results

χ.(α + γ) ≡ χ.α+̇χ.γ (19)

(α+̇γ).χ ≡ α.χ+̇γ.χ. (20)

11



Proof. Let f(t) be the g.f. of α and g(t) the g.f. of γ. Equivalence (19) follows

observing that the g.f. of χ.(α+β) is 1+ log[f(t)g(t)] = 1+ log[f(t)] + log[g(t)], i.e.

the g.f. of χ.α+̇χ.β. Equivalence (20) follows observing that the g.f. of (α+̇β).χ is

f [log(1 + t)] + g[log(1 + t)]− 1, i.e. the g.f. of α.χ+̇β.χ.

The notion of mixture of r.v.’s has an umbral counterpart in the disjoint sum +̇.

Indeed let {αi}
n
i=1 be n umbrae and {pi}

n
i=1 ∈ R be n weights such that

n
∑

i=1

pi = 1.

The mixture umbra γ of {αi}
n
i=1 is the following weighted disjoint sum of {αi}

n
i=1

γ ≡ χ.p1.β.α1+̇χ.p2.β.α2+̇ . . . +̇χ.pn.β.αn (21)

where β is the Bell umbra and χ is the singleton umbra. From (19) equivalence (21)

can be rewritten as

γ ≡ χ.(p1.β.α1 + p2.β.α2 + . . . + pn.β.αn).

Since the g.f. of
∑n

i=1 pi.β.αi is exp(
∑n

i=1 pi[fi(t)− 1]), where fi(t) is the g.f. of αi,

from Table 1 it follows that the g.f. of γ is
∑n

i=1 pifi(t).

Example 3.5 Bernoulli umbral r.v.

Let us consider the Bernoulli r.v. X of parameter p. Its m.g.f. is g(t) = q+p et with

q = 1 − p. The Bernoulli umbral r.v. is the mixture of the umbra ε and the unity

umbra u :

ξ ≡ χ.q.β.ε+̇χ.p.β.u.

Recalling that χ.q.β.ε ≡ ε it is

ξ ≡ χ.p.β.

Indeed it is

E[eξ t] = 1 + log[ep(e
t−1)] = q + p et.

Example 3.6 Binomial umbral r.v.

As it is well-known a binomial r.v. Y with parameters n ∈ N, p ∈ [0, 1], is the sum

of n i.i.d. Bernoulli r.v.’s having parameter p. Then the binomial umbral r.v. is

n.ξ ≡ n.χ.p.β.

The parallelism is evident if we recall that the m.g.f. of the binomial r.v. Y is

f(t) = (q + pet)n.

4 The cumulant umbra

For a r.v. having moments a1, a2, . . . , an and cumulants κ1, κ2, . . . , κn it is

an =
∑

π

cπκπ and κn =
∑

π

dπaπ (22)
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the sums here are taken over the partitions π = [jm1

1 , jm2

2 , . . . , jmk

k ] of the integer n,

and

cπ =
n!

(j1!)m1(j2!)m2 · · · (jk!)mk

1

m1!m2! · · ·mk!

dπ = cπ(−1)νπ−1(νπ − 1)! and νπ = m1 +m2 + · · ·+mk

aπ =
∏

j∈π

aj and κπ =
∏

j∈π

κj.

In this section we show how the umbral calculus simplifies the above expressions, as

well as the recursive formulae which give moments in terms of cumulants.

Let α be an umbra with g.f. f(t).

Definition 4.1 The cumulant of an umbra α is the umbra κα defined by

κα ≡ χ.α

where χ is the singleton umbra.

Definition 4.1 gives the umbral version of the second equality in (22). Moreover the

first moment of the cumulant umbra κα is a1, i.e. the first moment of the umbra α,

being E[κα] = E[χ]E[α] = E[α] = a1.

Example 4.2 Cumulant of the umbra ε.

Since ε ≡ χ.ε, the umbra ε is the cumulant umbra of itself, i.e. κε ≡ ε.

Example 4.3 Cumulant of the umbra u.

Since χ ≡ χ.u, the umbra χ is the cumulant umbra of the umbra u, i.e. κu ≡ χ.

Example 4.4 Cumulant of the Bell umbra.

Since u ≡ χ.β (see (18)), the umbra u is the cumulant umbra of the Bell umbra β,

i.e. κβ ≡ u. From example 2.1, the Poisson r.v. of parameter 1 has cumulants equal

to 1.

Proposition 4.5 The cumulant umbra κα has g.f.

k(t) = 1 + log[f(t)]. (23)

Proof. See Table 1.

Example 4.6 Cumulant of the singleton umbra.

Since 1 + log(1 + t) is the g.f. of the umbra u<−1>, this umbra is the cumulant

umbra of the umbra χ, i.e. κχ ≡ u<−1>.

Example 4.7 Cumulant of the Bernoulli umbral r.v.

From example 3.5, the cumulant umbra of the Bernoulli umbral r.v. is χ.(χ.p.β) ≡

u<−1>.p.β.
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Example 4.8 Cumulant of the Binomial umbral r.v.

From example 3.6, the cumulant umbra of the Binomial umbral r.v. is χ.(n.χ.p.β),

i.e.

χ.(χ′.p.β′ + χ′′.p.β′′ + · · · + χ′′′.p.β′′′),

where χ′, χ′′, . . . , χ′′′ are a set of n distinct umbrae each similar to the singleton

umbra χ as well as β′, β′′, . . . , β′′′ are a set of n distinct umbrae each similar to the

Bell umbra β. From (19) and recalling examples 2.4 and 4.6, it results

χ.n.χ.p.β ≡ χ.χ′.p.β′+̇χ.χ′′.p.β′′+̇ · · · +̇χ.χ′′′.p.β′′′ ≡ +̇nu
<−1>.p.β.

This parallels the analogous result in probability theory.

From (23), the moments of the cumulant umbra κα are

(ka)n = E[κnα] =

[

dn

dtn
log{f(t)}

]

t=0

that is equivalent to the definition of the n−th cumulant of a r.v. X having m.g.f.

f(t).

To state the explicit version of the second equality in (22)

kn =
n
∑

i=1

(−1)i−1(i− 1)!Bn,i(a1, a2, . . . , an−i+1) (24)

giving cumulants in terms of moments, usually requires laborious computations (cf.

for example [11]). The umbral definition of cumulants allows a simple proof of (24).

Indeed, being χ ≡ u<−1>.β, the cumulant umbra of α is the umbral composition of

u<−1> and α :

κα ≡ u<−1>.β.α

and then its moments are given by (13). Equality (24) follows recalling that the

moments of u<−1> are the coefficient of the exponential expansion

1 + log(1 + t) = 1 +
∞
∑

i=1

(−1)i−1(i− 1)!
ti

i!
.

Similarly, the three main algebraic properties of cumulants can be easily recovered

from next theorem.

Theorem 4.9 It is

a) (the additivity property)

χ.(α+ γ) ≡ χ.α+̇χ.γ, (25)

i.e. the cumulant umbra of a sum of two umbrae is equal to the disjoint sum

of the two corresponding cumulant umbrae;

b) (the semi-invariance under traslation property) for any c ∈ R

χ.(α+ c.u) ≡ χ.α+̇χ.c;
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c) (the homogeneity property) for any c ∈ R

χ.(c α) ≡ c(χ.α).

Proof. Property a) follows from (19). Property b) follows from (25), setting γ ≡

c.u for any c ∈ R. At the end, property c) follows from b) of proposition 2.7.

Example 4.10 Cumulant of the central umbra.

The sequence of cumulants related to the central umbra αa1 is the same of α except-

ing the first equal to 0. Indeed, by the additivity property of the cumulant umbra

it is

χ.(α− a1.u) ≡ χ.α−̇χ.a1.

The results follows from (7).

The umbral version of the first equality in (22) is given in the following theorem.

Theorem 4.11 (Inversion theorem) Let κα be the cumulant umbra of α, then

α ≡ β.κα

where β is the Bell umbra.

Proof. It is

β.κα ≡ β.u<−1>.β.α ≡ χ.β.α ≡ u.α ≡ α.

The inversion theorem allows to calculate the moments of the umbra α according to

its cumulants. Recalling (11) it is

an = Yn[(ka)1, (ka)2, . . . , (ka)n] (26)

with an the n−th moment of the umbra α and (ka)n the n−th moment of the umbra

κα. Equation (26) is the explicit version of the first equality in (22).

Remark 2 The complete Bell polynomials in (11) are a polynomial sequence of

binomial type. Since from the inversion theorem any umbra α could be seen as

the partition umbra of its cumulant κα, it is possible to prove a more general result:

every polynomial sequence of binomial type is completely determined by its sequence

of formal cumulants. Indeed, in [5] it is proved that any polynomial sequence of

binomial type represents the moments of a polynomial umbra x.α and viceversa. So

from the inversion theorem any polynomial sequence of binomial type represents the

moments of a polynomial umbra x.β.κα.

The next corollary follows from (12) and from the inversion theorem.

Corollary 4.12 If κα is the cumulant umbra of α, then

αn ≃ κα(κα + α)n−1 (27)

for any nonnegative integer n.
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Equivalences (27) were assumed by Shen and Rota in [16] as definition of the cumu-

lant umbra. In terms of moments, equivalences (27) give

an =
n−1
∑

j=0

(

n− 1
j

)

aj(ka)n−j

that is largely used in statistic framework [20].

Example 4.13 Lévy process.

Let (Xt, t ≥ 0) be a real-value Lévy process, i.e. a process starting from 0 and with

stationary and independent increments. According to the Lévy-Khintchine formula

(cf. [6]), if we assume that Xt has a convergent m.g.f. in some neighbourhood of 0,

it is

E[eθXt ] = etk(θ) (28)

where k(θ) is the cumulant g.f. of X1. The inversion theorem gives the umbral

version of equation (28):

t.α ≡ t.β.κα.

4.1 Cumulants of the Poisson r.v.’s

From example 2.9, the umbra γ.β.α corresponds to a compound randomized Poisson

r.v., i.e. a random sum SN = X1 + · · · +XN with N a randomized Poisson r.v. of

parameter the r.v. Y. In particular α corresponds to X and γ corresponds to Y.

Since χ.(γ.β.α) ≡ κγ .β.α the cumulant umbra of the composition of α and γ is the

composition of α and κγ . Then from (13), the cumulants of a compound randomized

Poisson r.v. are given by

n
∑

i=1

kiBn,i(a1, a2, . . . , an−i+1) (29)

where ai are the moments of the r.v. X and ki are the cumulants of the r.v. Y. Now

set γ ≡ x.u in γ.β.α. This means to consider a r.v. Y such that P (Y = x) = 1. Then,

the random sum SN becomes a compound Poisson r.v. of parameter x corresponding

to the polynomial α−partition umbra x.β.α, with α the umbral counterpart of X.

and cumulants
n
∑

i=1

kiBn,i(a1, a2, . . . , an−i+1) ≃ xan. (30)

Indeed (30) follows from (29) since the moments ki of χ.x are equal to 0, except

the first equal to x. If x = 1 the cumulant of α−partition umbra is α so that the

moments of X are the cumulants of the corresponding compound Poisson r.v. Now,

in x.β.α take α ≡ u. From (30), the cumulants of the Bell polynomial umbra x.β

are equals to x as well as for the Poisson r.v. of parameter x.

At the end, in γ.β.α set α ≡ u. The cumulant umbra of γ.β is κγ .β with κγ the

cumulant umbra of γ. Its probabilistic counterpart is a randomized Poisson r.v. of

parameter the r.v. Y, corresponding to the umbra γ. From (8) the cumulants of a

randomized Poisson r.v. of parameter the r.v. Y are the moments of κγ .β, i.e.

n
∑

i=0

S(n, i)ki
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with ki the cumulants of the r.v. Y.

5 The factorial umbra

The factorial moments of a r.v. do not play a very prominent role in statistics, but

they provide very concise formulae for the moments of some discrete distributions,

like the binomial one.

Let α be an umbra with g.f. f(t).

Definition 5.1 An umbra ϕα is said to be an α−factorial umbra if

ϕα ≡ α.χ

where χ is the singleton umbra.

Example 5.2 ε−factorial umbra.

Since ε ≡ ε.χ, the ε−factorial umbra is similar to the umbra ε, i.e. ϕε ≡ ε.

Example 5.3 u−factorial umbra.

Since χ ≡ u.χ, the u−factorial umbra is similar to the umbra χ, i.e. ϕu ≡ χ.

Example 5.4 β−factorial umbra.

Since u ≡ β.χ from (18), the β−factorial umbra is similar to the unity umbra u, i.e.

ϕβ ≡ u. From example 2.1, the Poisson r.v. of parameter 1 has factorial moments

equal to 1.

Example 5.5 χ−factorial umbra.

From example 4.6, it is χ.χ ≡ u<−1>. The χ−factorial umbra turns out to be u<−1>,

i.e. ϕχ ≡ u<−1>.

Proposition 5.6 The α−factorial umbra has g.f.

g(t) = f [log(1 + t)] . (31)

Proof. See Table 1.

The α−factorial umbra has moments equal to the factorial moments of the umbra

α, as the following proposition shows.

Proposition 5.7 Let ϕα be an α−factorial umbra. Then

ϕn
α ≃ (α)n, n = 0, 1, 2, . . . .

Proof. By equation (6) and definition 5.1 it is

E[(ϕα)
n] = E[(α.χ)n] =

n
∑

k=0

(a)kBn,k(δ1,1, δ1,2, . . . , δ1,n−k+1) (32)
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where (a)k are the factorial moments of the umbra α and δ1,i are the moments of

the umbra χ. By (15) it results

Bn,k(δ1,1, δ1,2, . . . , δ1,n−k+1) ≃

(

n
k

)

χ.k(k.χ)n−k.

Since the umbra χ has moments equal to 0 and χ.k ≃ 1, then

Bn,k(δ1,1, δ1,2, . . . , δ1,n−k+1) =

{

0, if n > k
1, if n = k.

(33)

Hence the equation (32) becomes E[(ϕα)
n] = (a)n.

Example 5.8 Factorial umbra of the central umbra.

From property c) of Proposition 2.7, it is

αa1 .χ ≡ (α− a1.u).χ ≡ α.χ− a1.χ
′ ≡ ϕα − ϕa1.u,

with χ′ ≡ χ. Then the factorial umbra of the central umbra αa1 is the difference

between the factorial umbra of α and the factorial umbra of the umbra having

moments equal to a1. By (31) its g.f. results f [log(1 + t)](1 − t)a1 .

Example 5.9 Factorial moments of the binomial r.v.

Since the factorial moments characterize the binomial r.v., we show how to evaluate

them by umbral methods. As showed in example 3.6, the umbral counterpart of the

binomial r.v. is n.χ.p.β. Due to (18) and (7) the corresponding factorial umbra is

n.(χ.p.β).χ ≡ n.χ.p ≡ p(n.χ). Its g.f. is

g(t) = (1 + t p)n =
n
∑

j=0

(n)jp
j t

j

j!

and so the factorial moments are (n)jp
j. If n = 1, the factorial umbra is pχ and

from example 3.5 the first factorial moment of the Bernoulli r.v. is equal to p while

the others are equal to 0.

Example 5.10 Factorial umbra of the cumulant umbra.

If κα is the cumulant umbra of α, then κα.χ is the factorial cumulant umbra of α,

with g.f. 1 + log[f(1 + t)] by (31).

The following theorem allows to obtain the umbra α from its factorial umbra ϕα.

Theorem 5.11 (Inversion theorem) Let ϕα be the factorial umbra of α. It is

α ≡ ϕα.β

with β the Bell umbra.

Proof. By the Proposition 3.3 it results

ϕα.χ ≡ α.χ.β ≡ α.
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5.1 Factorial moments of the Poisson r.v.’s

Being (γ.β.α).χ ≡ γ.β.(ϕα) the factorial umbra of the umbral composition γ.β.α is

the umbral composition of γ and the factorial umbra of α. From (13) the compound

randomized Poisson r.v. SN = X1+ · · ·+XN with N a Poisson r.v. with parameter

the r.v. Y has factorial moments

n
∑

k=1

gkBn,k[(µ)1, (µ)2, . . . , (µ)n−k+1] (34)

where (µ)i are the factorial moments of the r.v. X and gk are the moments of the

r.v. Y . Now setting γ ≡ x.u in γ.β.α, we have gk = xk. Then from (34)

n
∑

k=1

xkBn,k[(µ)1, (µ)2, . . . , (µ)n−k+1] (35)

are the factorial moments of a compound Poisson r.v. with parameter x. Set α ≡ u

in x.β.α. We have (x.β.u).χ ≡ x.β.χ ≡ x.u so that the factorial moments of x.β.α

are equals to xn as well as for its probabilistic counterpart, the Poisson r.v. with

parameter x.

At the end set α ≡ u in γ.β.α. We have (γ.β.u).χ ≡ γ.β.χ ≡ γ so that the

factorial moments of γ.β are equals to the moments of γ. Then a randomized Poisson

r.v. with parameter a r.v. Y has factorial moments equal to the moments of the

r.v. Y.
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