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Abstract

A graph G is well-covered if all its maximal stable sets have the same size,
denoted by «(G) (M. D. Plummer, 1970). If s; denotes the number of stable
sets of cardinality k in graph G, and «(G) is the size of a maximum stable

a(G)
set, then I(G;z) = > spz® is the independence polynomial of G (I. Gutman
k=0
and F. Harary, 1983). J. I. Brown, K. Dilcher and R. J. Nowakowski (2000)
conjectured that I(G;x) is unimodal (i.e., there is some j € {0, 1, ..., a(G)} such
that so < ... <551 <85 > 841 > ... > S4(q)) for any well-covered graph G.
T. S. Michael and W. N. Traves (2002) proved that this assertion is true for
a(G) < 3, while for a(G) € {4,5,6,7} they provided counterexamples.

In this paper we show that for any integer o > 8, there exists a connected
well-covered graph G with o = «(G), whose independence polynomial is not
unimodal. In addition, we present a number of sufficient conditions for a graph
G with a(G) < 6 to have the unimodal independence polynomial.

key words: stable set, independence polynomial, unimodal sequence, well-
covered graph.

1 Introduction

Throughout this paper G = (V, E) is a finite, undirected, loopless and without multi-
ple edges graph with vertex set V = V(G) and edge set E = E(G). Kpn, Pp, Kny ny,...m,
denote respectively, the complete graph on n > 1 vertices, the chordless path on
n > 3 vertices, and the complete p-partite graph on nq +ng + ... +n, vertices, where
n; > 1,1 <4 <p.
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The disjoint union of the graphs G1, G is the graph G = G; UG5 having V(G) =
V(G1)UV(Gs2) and E(G) = E(G1) U E(G2). In particular, LinG denotes the disjoint
union of n > 1 copies of the graph G. The Zykov sum ([25], [26]) of two disjoint
graphs G1,Gs is the graph G; + G2 that has V(G1) U V(G2) as a vertex set and
E(G1)U E(G2) U{viva : v1 € V(G1),v2 € V(G2)} as an edge set.

A stable set in G is a set of pairwise non-adjacent vertices. The stability number
a(G) of G is the maximum size of a stable set in G. By w(G) we mean a(G), where
G is the complement of G.

A graph G is called well-covered if all its maximal stable sets are of the same
cardinality, (Plummer, [22]). If, in addition, G has no isolated vertices and its order
equals 2a(G), then G is very well-covered (Favaron, [6]). For instance, the graph
G*, obtained from G by appending a single pendant edge to each vertex of G ([5],
[24]), is well-covered (see, for example, [15]), and «(G*) = n. Moreover, G* is very
well-covered, since it is well-covered, it has no isolated vertices, and its order equals
2a(G*). The following result shows that, under certain conditions, any well-covered
graph equals G* for some graph G.

Theorem 1.1 [7] Let H be a connected graph of girth > 6, which is isomorphic to
neither C7 nor Ki. Then H is well-covered if and only if its pendant edges form a
perfect matching.

In other words, Theorem [l shows that apart from K; and C7, connected well-
covered graphs of girth > 6 are very well-covered. For example, a tree T' # K; could
be only very well-covered, and this is the case if and only if T'= G* for some tree G
(see also Ravindra, [23)]).

Let sg be the number of stable sets in G of cardinality k& € {0,1,...,a(G)}. The

(G)
polynomial I(G;z) = > spx

k=0
and Harary, [I0]). It is easy to deduce that

¥ is called the independence polynomial of G (Gutman

I1(Gy UGy;z) = I(Gryz)-I(Gox),
I(Gl—FGQ;I) = I(G1;$)+I(G2;$)—1

(see also [10], [2], [13]).
A finite sequence of real numbers (ag, a1, az, ..., a,) is said to be:

e unimodal if there is some k € {0, 1, ...,n}, called the mode of the sequence, such
that
ag < ... S ap-1 < Ak 2 Ayl 2 -0 2 gy,

e log-concave if a? > a;—1 - a;41 fori € {1,2,...,n —1}.

It is known that any log-concave sequence of positive numbers is also unimodal,
while the converse is not generally true.

A polynomial P = ag + a12 + asz? + ... + a,z™ is called unimodal (log-concave) if
the sequence of its coefficients is unimodal (log-concave, respectively). For instance,
the independence polynomial I(K; 3;2) = 1 + 4z + 322 + 23 is log-concave, while



I(Kys + (K3 UKy UKy UKs);x) =1+ 422 + 10722 4 2952° 4 3002

is unimodal, but it is not log-concave, because 1072 — 42 - 295 = —941.

Hamidoune [I2] proved that the independence polynomial of a claw-free graph
(i.e., a graph having no induced subgraph isomorphic to Kj 3) is log-concave, and
hence, unimodal. However, there are graphs whose independence polynomials are
not unimodal, e.g., I(Kr7o + (LU4K3);x) = 1 + 822 + 5422 + 10822 + 812 (for other
examples, see [I]). Nevertheless, in [] it is stated the following (still open) unimodality
conjecture for trees.

Conjecture 1.2 The independence polynomial of any tree is unimodal.

In [I7 and [I8], the unimodality of independence polynomials of a number of
well-covered trees (e.g., P* K7, ) is validated, using the result, mentioned above, on
claw-free graphs due to Hamidoune, or directly, by identifying the location of the
mode. These findings seem promising for proving Conjecture in the case of very
well-covered trees, since a tree T' is well-covered if and only if either T is a well-covered
spider (i.e., T € {Ky, K}, K7, :n > 1}), or T is obtained from a well-covered tree
H; and a well-covered spider Hs, by adding an edge joining two non-pendant vertices
belonging to Hy, Ha, respectively (see [16]). For instance, the trees presented in Figure
[ are well-covered as follows: Ty is a well-covered spider, while T} is an edge-join of
two well-covered spiders, namely, K7, and K7 ;.

T1 . T2

Figure 1: Two well-covered trees.

In [3] it was conjectured that the independence polynomial of any well-covered
graph is unimodal. Michael and Traves [Z1] proved that this assertion is true for
a(G) € {1,2,3}, but it is false for a(G) € {4,5,6,7}. Nevertheless, the conjecture of
Brown et al. is still open for very well-covered graphs.

In [20] it was shown that for any a > 1, there is a connected very well-covered
graph G with a(G) = «, whose independence polynomial is unimodal.

In this paper we prove that for any integer number o > 8, there exists a connected
well-covered graph G with a(G) = «, whose I(G;x) is not unimodal. We also give
a simple proof for the unimodality of the independence polynomial of a well-covered
graph G with a(G) < 3, while for a(G) € {4,5,6} a number of sufficient conditions
ensuring the unimodality of I(G;z) are presented.



2 The small stability number as a reason for well-
covered graphs to have unimodal independence
polynomials

Alavi et al. [1] showed that for any permutation o of {1,2,...,a} there is a graph G
with a(G) = « such that So(1) < 8g(2) < oo < Sg(a)-

Lemma 2.1 If a graph G satisfies w(G) < a = a(G), then so < Sq-1-

Proof. Let H = (A, B,W) be the bipartite graph defined as follows: X € A< X isa
stable set in G of size a(G) — 1, then Y € B < Y is a stable set in G of size a(G), and
XY eWe X CYinG. Since any Y € B has exactly «(G) subsets of size a(G)—1, it
follows that |W| = a(G)-s4. On the other hand, if X € A and X U{y1}, X U{y2} € B,
it implies y1y2 € E(G), because X is stable and |X U {y1,y2}| > a(G). Hence, any
X € A has at most w(G) neighbors. Consequently, [W| = a(G) - so < w(G) + Sa—1,
and this leads to s, < s4-1, since a(G) > w(G). B

The converse of Lemma Bl is not true, e.g., a(Ks —e) =2 < 3 = w(K4 —¢) and
I(K4—e;x) = 1 +4x + 22, where by K4 — e we mean the graph obtained from Ky by
deleting one of its edges.

Proposition 2.2 [27], [19] If G is a well-covered graph having o(G) = «,
then sop < s1 < ... < STa/2]-

Corollary 2.3 If G is a well-covered graph and w(G) < a(G) = 3, then I(G;z) is
log-concave.

Proof. Let I(G;x) = so+ s12 + s2x? + s323. By Proposition 22 and Lemma 1 we
get sg < s1 < s9 > s3, which implies that s% > s183. To complete the proof, let us
notice that s3 = [V(G)|> > |E(G)| = s2 = sos2. W

The roots of the independence polynomials of well-covered graphs are investigated
in a number of papers, as [3], E], B, [9], [T, [[9]. Brown et al. showed, by a nice
argument, that:

Lemma 2.4 [3] If a graph G has a(G) = 2, then I(G;x) has real roots.

The assertion fails for graphs with stability number greater than 2, e.g., I(K7 3; ).
Notice that the independence polynomials of the trees from Figure[ll are respectively

I(Ty;2) = 1+ 10z + 362 4+ 602> + 472 4 142°,
I(Ty;x) = 1+ 8x+21z? + 2323 4 92%,
while only for the first is true that all its roots are real. Let us observe that 73,75 are

well-covered and their polynomials are unimodal. Hence, Newton’s theorem (stating
that if a polynomial with positive coefficients has only real roots, then its coefficients



form a log-concave sequence) is not useful in solving Conjecture [C2 even for the
particular case of very well-covered trees.

Let us mention that there are connected graphs, with stability number equal to 3,
whose independence polynomials are:

e not unimodal, e.g.,
I(Koy + (K4 U K3 U K3));2) = 14 34z + 3322 4 362°;
e unimodal, but not log-concave, e.g.,

I(Kgs + (U3K7));x) = 1 + 1162 + 1472% + 34323,

e unimodal, but not log-concave, while the graphs are also well-covered, e.g.,
I((U3K10) + K3 3. ... 3;%) = 1 4 390z + 6602 + 11202°.
——

120

There are also well-covered connected graphs with stability number equal to 4,
whose independence polynomials are:

e not unimodal, e.g.,

I((UAK10) + Ky 4 . 4;7) = 1+ 72402 + 114002” + 112002” + 11800a*;
N—_——

1800
e unimodal, but not log-concave, e.g.,

I((VAK10) + Ky 4. 4;7) = 1+ 1402 + 7502 4 41002° + 100252";
N—_——

25
e log-concave, e.g.,

I((VAK10) + Ky 4. 4;%) = 1+ 80z + 6602” + 40402° 4 10010z".
N—_——

10

Let us observe that the product of two unimodal independence polynomials is not
always unimodal, e.g., I[(K10o + U3K7;x) = 1 + 121z + 14722 + 3432° and I(Koo +
U3K7;x) = 1+ 1112 + 14722 + 34323, while their product is not unimodal:

1 + 2322 + 1372522 + 3479022 + 1011852* + 1008422° + 11764925,

Theorem 2.5 [T])] The product of a log-concave polynomial by a unimodal polynomial
s unimodal, while the product of two log-concave polynomials is log-concave.



Theorem is best possible for independence polynomials, since the product of
a log-concave independence polynomial and a unimodal independence polynomial is
not always log-concave. For instance, I(K40+ U3K7;2) = 1461z + 14722 + 34323 is
log-concave, I(K110 +U3K7;z) = 1+ 1312 + 14722 + 34323 is unimodal, while their
product

14 192x + 828522 + 2891023 + 87465x* + 1008422° + 117649x°

is not log-concave.
Further we summarize some facts on graphs with small stability numbers.

Proposition 2.6 The following is a list of sufficient conditions ensuring that the
independence polynomial of a graph G is unimodal:

(i) any connected component H of G has a(H) < 2;

(ii) «(G) =3 and G is well-covered;

(i) a(G) =4, G is disconnected and well-covered;

(iv) &(G) =5,G = Hy U Hy,a(Hy) = 2 and Hy is well-covered;

(v) w(G@) < (G) <5 and G is well-covered;

(vi) a(G) = 6, G is disconnected and any component H of G with a(H) € {3,4,5}
is well-covered and satisfies w(H) < a(H).

Proof. (i) If Hy, Ho, ..., Hy, are the components of G and a(H;) < 2,1 <14 < k, then
I(G;x) is unimodal, by Newton’s Theorem, because I(G;z) = I(Hy;x) - ... - [(Hg; x)
and, consequently, by Lemma B4 all its roots are real.

(i) If G is disconnected, then I(G;x) is unimodal by part (7). Assume that G
is connected, and let I(G;x) = 1+ nx + s22? + s3>, where n is the order of G.
Any vertex v € V(G) is contained in some maximum stable set of G, since G is
well-covered. Hence, v has at least two neighbors in the complement G of G, which
ensures that n < ’E(a)‘ = $3. Consequently, I(G; x) is unimodal, with the mode 2 or
3, depending on max{sa, s3}, respectively. Let us mention that there are connected
well-covered graphs with stability number equal to 3, whose independence polynomial
has non-real roots, e.g., I(K333;2) =1+ 9z + 922 + 323 has non-real roots.

(ii) If G is disconnected and at least one of its components is a complete graph,
then G = K,UH and I(G;z) = I[(Kp;z)-I(H;x) = (1+px)- (1+ s12 + s22? + s323)is
unimodal, by Theorem ZA If none of its components is a complete graph, then G has
only two components, say Hy and Hs, and «(H;) = a(Hz2) = 2. Hence, by Lemma
B4 I(Hy;x), I(Ha;x) have only real roots. Therefore, I(G;x) = I(Hy;z) - I(Ha; x) is
unimodal, by Newton’s Theorem.

(iv) According to Lemma B and Newton’s Theorem, I(Hy;z) is log-concave.
Since G = H; U Hs, it follows that I(G;z) = I(Hy;x) - I(Hy;x). Hence, using part
(i1) and Theorem X we infer that I(G;z) is unimodal.

(v) Taking into account the parts (i), (ii), we may assume that o(G) € {4,5}.

Suppose that a(G) = 4. Then, I(G;z) = so + s17 + sox? + s32° + s42?, and,
according to Proposition Z2 we obtain that so < s1 < s9, since G is well-covered,
while by Lemma 2Tl it follows that s3 > s4, because w(G) < a(G). Therefore, I(G; x)
is unimodal, with the mode 2 or 3, depending on max{ss, s3}. Now, for a(G) = 5,



I(G;2) = sop + s12 + sox? + s32® + szt + s52® and Proposition implies that
S0 < 81 < s2 < s3, while Lemma ] assures that sy > ss5, since a(G) > w(G).
Consequently, I(G; ) is unimodal, with the mode 3 or 4, depending on max{ss, $4}.

(vi) If G has a component H with a(H) € {4,5}, this is unique, and o(G—H) < 2.
Consequently, by parts (i),(v) and Theorem B0 I(G;x) = I(H;x) - I(G — H;x) is
unimodal. If G has two components Hy, Hy with a(H;) = a(Hz) = 3, then Corollary
and Theorem ZH assure that I(G;x) = I(Hy;x) - [(Hz; z) is unimodal. The other
cases follow easily, by applying parts (1), (4i) and Theorem 20 &

3 A family of well-covered graphs having non-unimodal
independence polynomials

The independence polynomial of Hy, = (U4K190) + Ky 4 . 4.:n>11s
——

I(Hyz) = n-(14+2)*+(1+102)* —n
1+ (40 4 4n)x + (600 + 6n)x* + (4000 + 4n)z® + (10000 + n)z*.

Let us notice that «(H,) = 4 and H,, is well-covered. Since 40 + 4n < 600 + 6n is
true for any n > 1, it follows that I(H,;x) is not unimodal whenever

4000 4 4n < min{600 + 6n, 10000 + n},

which leads to 1700 < n < 2000, where the case n = 1701 is due to Michael and
Traves, [2I]. Moreover, I(H,;x) is not log-concave only for 23 < n < 2453.

Lemma 3.1 For any integer k > 0, the following polynomial is not unimodal.

k+4
> sia’t = (146844 2+ 10806 - 2% + 10804 - 2° + 11701 - z*) - (1 + 1000 - k - )" .
i=0

Proof. We show that sgio > Sk+3 < Sgra. Since the result is evident for £ = 0, we

may assume that k > 1.
Let us notice that:

Sppa = 11701-10%% . kF,
Sees = 10804-10%% . k¥ +11701-103*—1 . g+ = 1031 . kF . 10815701,
Swy2 = 10806 -10%F - k¥ + 10804 - 103*—1) . kF 4

+11701 - 103*=2 . gF=1 (k. —1) . 0.5
= 103*=2 . kF=1. (21633619701 - k — 11701) - 0.5.
Firstly, we have

Skia — Skgps = 11701-10%F . kF —103*=1 . kF . 10815701
1031 . k. 885299 > 0.



Secondly, we obtain

Shpo — spys = 10372 kE1(216336 19701 - k — 11701) - 0.5
—103*=1 . kF . 10815701
= 103k=2 . gk (2217701 - k — 11701) - 0.5 > 0,

which completes the proof. B

Gq = (HgK1000) U (U4K10 + Ky 4, .. 4)
———

1701
q times

Figure 2: Well-covered graphs with non-unimodal independence polynomials.

Theorem 3.2 For any integer k > 4, there is a well-covered graph G with o (G) = k,
whose independence polynomial is not unimodal.

Proof. Let ¢ = k —4 and G be the graph depicted in Figure P and formally defined
as follows:
Gq = (UgKi000) U (L4K10 + Ky 4 . 4)-
——

1701

It is easy to see that G, is a disconnected well-covered graph, a(G,) = k, and
its independence polynomial is not unimodal, because I(Gg;x) is identical to the
non-unimodal polynomial from Lemma Bl

Moreover, the graph G, + G is well-covered, connected, a(Gq + G4) = k, and its
independence polynomial is not unimodal, since I(Gy + Gg;x) =2-I(Gg;2) — 1. &



4 Conclusions

In this paper we demonstrated that for every integer k£ > 8 there exists a (dis)connected
well-covered graph G with «(G) = k, whose independence polynomial is not unimodal.
It is worth mentioning that all these graphs are not very well-covered. In other words,
the unimodality conjecture remains open for the case of very well-covered graphs.

References

[1] Y. Alavi, P. J. Malde, A. J. Schwenk, P. Erdds, The vertex independence sequence
of a graph is not constrained, Congressus Numerantium 58 (1987) 15-23.

[2] J. L. Arocha, Propriedades del polinomio independiente de un grafo, Revista
Ciencias Matematicas, vol. V (1984) 103-110.

[3] J. I. Brown, K. Dilcher, R. J. Nowakowski, Roots of independence polynomials of
well-covered graphs, Journal of Algebraic Combinatorics 11 (2000) 197-210.

[4] J. 1. Brown, R. J. Nowakowski, Bounding the roots of independence polynomials,
Ars Combinatoria 58 (2001) 113-120.

[5] R. Dutton, N. Chandrasekharan, R. Brigham, On the number of independent sets
of nodes in a tree, Fibonacci Quarterly 31 (1993) 98-104.

[6] O. Favaron, Very well-covered graphs, Discrete Mathematics 42 (1982) 177-187.

[7] A. Finbow, B. Hartnell and R. J. Nowakowski, A characterization of well-covered
graphs of girth 5 or greater, Journal of Combinatorial Theory B 57 (1993) 44-68.

[8] D. C. Fisher, A. E. Solow, Dependence polynomials, Discrete Mathematics 82
(1990) 251-258.

[9] M. Goldwurm, M. Santini, Cliqgue polynomials have a unique root of smallest
modulus, Information Processing Letters 75 (2000) 127-132.

[10] I. Gutman, F. Harary, Generalizations of the matching polynomial, Utilitas Math-
ematica 24 (1983) 97-106.

[11] H. Hajiabolhassan, M. L. Mehrabadi, On clique polynomials, Australasian Jour-
nal of Combinatorics 18 (1998) 313-316.

[12] Y. O. Hamidoune, On the number of independent k-sets in a claw-free graph,
Journal of Combinatorial Theory B 50 (1990) 241-244.

[13] C. Hoede, X. Li, Clique polynomials and independent set polynomials of graphs,
Discrete Mathematics 125 (1994) 219-228.

[14] J. Keilson, H. Gerber, Some results for discrete unimodality, Journal of the Amer-
ican Statistical Association 334 (1971) 386-389.



[15] V. E. Levit, E. Mandrescu, Well-covered and Konig-Egervdry graphs, Congressus
Numerantium 130 (1998) 209-218.

[16] V. E. Levit, E. Mandrescu, Well-covered trees, Congressus Numerantium 139
(1999) 101-112.

[17] V. E. Levit, E. Mandrescu, On well-covered trees with unimodal independence
polynomials, Congressus Numerantium 159 (2002) 193-202.

[18] V. E. Levit, E. Mandrescu, On unimodality of independence polynomials of some
well-covered trees, DMTCS 2003 (C. S. Calude et al. eds.), LNCS 2731, Springer-
Verlag (2003) 237-256.

[19] V. E. Levit, E. Mandrescu, On the roots of independence polynomi-
als of almost all very well-covered graphs, Los Alamos Archive, prE-print
arXiv:math.CO /0305227, 17 pages.

[20] V. E. Levit, E. Mandrescu, A family of well-covered graphs with wuni-
modal independence polynomials, Los Alamos Archive, prE-print arXiv:math.
CO0/0307012, 13 pages, Congressus Numerantium (2003) (accepted).

[21] T.S. Michael, W. N. Traves, Independence sequences of well-covered graphs: non-
unimodality and the Roller-Coaster conjecture, Graphs and Combinatorics (2002)
(to appear).

[22] M. D. Plummer, Some covering concepts in graphs, Journal of Combinatorial

Theory 8 (1970) 91-98.
[23] G. Ravindra, Well-covered graphs, J. Combin. Inform. System Sci. 2 (1977) 20-21.

[24] J. Topp, L. Volkman, On the well-coveredness of products of graphs, Ars Combi-
natoria 33 (1992) 199-215.

[25] A. A. Zykov, On some properties of linear complexes, Math. Sb. 24 (1949) 163-
188 (in Russian).

[26] A. A. Zykov, Fundamentals of graph theory, BCS Associates, Moscow, 1990.

10



	Introduction
	The small stability number as a reason for well-covered graphs to have unimodal independence polynomials
	A family of well-covered graphs having non-unimodal independence polynomials
	Conclusions

