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Abstract

A graph G is well-covered if all its maximal stable sets have the same size,
denoted by α(G) (M. D. Plummer, 1970). If sk denotes the number of stable
sets of cardinality k in graph G, and α(G) is the size of a maximum stable

set, then I(G;x) =
α(G)∑

k=0

skx
k is the independence polynomial of G (I. Gutman

and F. Harary, 1983). J. I. Brown, K. Dilcher and R. J. Nowakowski (2000)
conjectured that I(G;x) is unimodal (i.e., there is some j ∈ {0, 1, ..., α(G)} such
that s0 ≤ ... ≤ sj−1 ≤ sj ≥ sj+1 ≥ ... ≥ sα(G)) for any well-covered graph G.
T. S. Michael and W. N. Traves (2002) proved that this assertion is true for
α(G) ≤ 3, while for α(G) ∈ {4, 5, 6, 7} they provided counterexamples.

In this paper we show that for any integer α ≥ 8, there exists a connected
well-covered graph G with α = α(G), whose independence polynomial is not
unimodal. In addition, we present a number of sufficient conditions for a graph
G with α(G) ≤ 6 to have the unimodal independence polynomial.

key words: stable set, independence polynomial, unimodal sequence, well-

covered graph.

1 Introduction

Throughout this paper G = (V,E) is a finite, undirected, loopless and without multi-
ple edges graph with vertex set V = V (G) and edge setE = E(G). Kn, Pn,Kn1,n2,...,np

denote respectively, the complete graph on n ≥ 1 vertices, the chordless path on
n ≥ 3 vertices, and the complete p-partite graph on n1 + n2 + ...+ np vertices, where
ni ≥ 1, 1 ≤ i ≤ p.
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The disjoint union of the graphs G1, G2 is the graph G = G1 ⊔G2 having V (G) =
V (G1) ∪ V (G2) and E(G) = E(G1) ∪E(G2). In particular, ⊔nG denotes the disjoint
union of n > 1 copies of the graph G. The Zykov sum ([25], [26]) of two disjoint
graphs G1, G2 is the graph G1 + G2 that has V (G1) ∪ V (G2) as a vertex set and
E(G1) ∪ E(G2) ∪ {v1v2 : v1 ∈ V (G1), v2 ∈ V (G2)} as an edge set.

A stable set in G is a set of pairwise non-adjacent vertices. The stability number
α(G) of G is the maximum size of a stable set in G. By ω(G) we mean α(G), where
G is the complement of G.

A graph G is called well-covered if all its maximal stable sets are of the same
cardinality, (Plummer, [22]). If, in addition, G has no isolated vertices and its order
equals 2α(G), then G is very well-covered (Favaron, [6]). For instance, the graph
G∗, obtained from G by appending a single pendant edge to each vertex of G ([5],
[24]), is well-covered (see, for example, [15]), and α(G∗) = n. Moreover, G∗ is very
well-covered, since it is well-covered, it has no isolated vertices, and its order equals
2α(G∗). The following result shows that, under certain conditions, any well-covered
graph equals G∗ for some graph G.

Theorem 1.1 [7] Let H be a connected graph of girth ≥ 6, which is isomorphic to
neither C7 nor K1. Then H is well-covered if and only if its pendant edges form a
perfect matching.

In other words, Theorem 1.1 shows that apart from K1 and C7, connected well-
covered graphs of girth ≥ 6 are very well-covered. For example, a tree T 6= K1 could
be only very well-covered, and this is the case if and only if T = G∗ for some tree G

(see also Ravindra, [23]).
Let sk be the number of stable sets in G of cardinality k ∈ {0, 1, ..., α(G)}. The

polynomial I(G;x) =
α(G)∑

k=0

skx
k is called the independence polynomial of G (Gutman

and Harary, [10]). It is easy to deduce that

I(G1 ⊔G2;x) = I(G1;x) · I(G2;x),

I(G1 +G2;x) = I(G1;x) + I(G2;x)− 1

(see also [10], [2], [13]).
A finite sequence of real numbers (a0, a1, a2, ..., an) is said to be:

• unimodal if there is some k ∈ {0, 1, ..., n}, called the mode of the sequence, such
that

a0 ≤ ... ≤ ak−1 ≤ ak ≥ ak+1 ≥ ... ≥ an,

• log-concave if a2i ≥ ai−1 · ai+1 for i ∈ {1, 2, ..., n− 1}.

It is known that any log-concave sequence of positive numbers is also unimodal,
while the converse is not generally true.

A polynomial P = a0 + a1x+ a2x
2 + ...+ anx

n is called unimodal (log-concave) if
the sequence of its coefficients is unimodal (log-concave, respectively). For instance,
the independence polynomial I(K1,3;x) = 1 + 4x+ 3x2 + x3 is log-concave, while
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I(K25 + (K3 ⊔K4 ⊔K5 ⊔K5);x) = 1 + 42x+ 107x2 + 295x3 + 300x4

is unimodal, but it is not log-concave, because 1072 − 42 · 295 = −941.
Hamidoune [12] proved that the independence polynomial of a claw-free graph

(i.e., a graph having no induced subgraph isomorphic to K1,3) is log-concave, and
hence, unimodal. However, there are graphs whose independence polynomials are
not unimodal, e.g., I(K70 + (⊔4K3);x) = 1 + 82x + 54x2 + 108x3 + 81x4 (for other
examples, see [1]). Nevertheless, in [1] it is stated the following (still open) unimodality
conjecture for trees.

Conjecture 1.2 The independence polynomial of any tree is unimodal.

In [17] and [18], the unimodality of independence polynomials of a number of
well-covered trees (e.g., P ∗

n ,K
∗
1,n) is validated, using the result, mentioned above, on

claw-free graphs due to Hamidoune, or directly, by identifying the location of the
mode. These findings seem promising for proving Conjecture 1.2 in the case of very
well-covered trees, since a tree T is well-covered if and only if either T is a well-covered
spider (i.e., T ∈ {K1,K

∗
1 ,K

∗
1,n : n ≥ 1}), or T is obtained from a well-covered tree

H1 and a well-covered spider H2, by adding an edge joining two non-pendant vertices
belonging toH1, H2, respectively (see [16]). For instance, the trees presented in Figure
1 are well-covered as follows: T2 is a well-covered spider, while T1 is an edge-join of
two well-covered spiders, namely, K∗

1,2 and K∗
1,1.

✇ ✇ ✇ ✇
✇ ✇ ✇ ✇
✇ ✇

T1

✇ ✇ ✇
✇ ✇ ✇
✇ ✇

T2

Figure 1: Two well-covered trees.

In [3] it was conjectured that the independence polynomial of any well-covered
graph is unimodal. Michael and Traves [21] proved that this assertion is true for
α(G) ∈ {1, 2, 3}, but it is false for α(G) ∈ {4, 5, 6, 7}. Nevertheless, the conjecture of
Brown et al. is still open for very well-covered graphs.

In [20] it was shown that for any α ≥ 1, there is a connected very well-covered
graph G with α(G) = α, whose independence polynomial is unimodal.

In this paper we prove that for any integer number α ≥ 8, there exists a connected
well-covered graph G with α(G) = α, whose I(G;x) is not unimodal. We also give
a simple proof for the unimodality of the independence polynomial of a well-covered
graph G with α(G) ≤ 3, while for α(G) ∈ {4, 5, 6} a number of sufficient conditions
ensuring the unimodality of I(G;x) are presented.
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2 The small stability number as a reason for well-

covered graphs to have unimodal independence

polynomials

Alavi et al. [1] showed that for any permutation σ of {1, 2, ..., α} there is a graph G

with α(G) = α such that sσ(1) < sσ(2) < ... < sσ(α).

Lemma 2.1 If a graph G satisfies ω(G) ≤ α = α(G), then sα ≤ sα−1.

Proof. Let H = (A,B,W) be the bipartite graph defined as follows: X ∈ A ⇔ X is a
stable set in G of size α(G)−1, then Y ∈ B ⇔ Y is a stable set in G of size α(G), and
XY ∈ W ⇔ X ⊂ Y in G. Since any Y ∈ B has exactly α(G) subsets of size α(G)−1, it
follows that |W| = α(G)·sα. On the other hand, if X ∈ A and X∪{y1}, X∪{y2} ∈ B,
it implies y1y2 ∈ E(G), because X is stable and |X ∪ {y1, y2}| > α(G). Hence, any
X ∈ A has at most ω(G) neighbors. Consequently, |W| = α(G) · sα ≤ ω(G) · sα−1,
and this leads to sα ≤ sα−1, since α(G) ≥ ω(G).

The converse of Lemma 2.1 is not true, e.g., α(K4 − e) = 2 < 3 = ω(K4 − e) and
I(K4 − e;x) = 1+ 4x+ x2, where by K4 − e we mean the graph obtained from K4 by
deleting one of its edges.

Proposition 2.2 [21], [19] If G is a well-covered graph having α(G) = α,
then s0 ≤ s1 ≤ ... ≤ s⌈α/2⌉.

Corollary 2.3 If G is a well-covered graph and ω(G) ≤ α(G) = 3, then I(G;x) is
log-concave.

Proof. Let I(G;x) = s0 + s1x+ s2x
2 + s3x

3. By Proposition 2.2 and Lemma 2.1, we
get s0 ≤ s1 ≤ s2 ≥ s3, which implies that s22 ≥ s1s3. To complete the proof, let us

notice that s21 = |V (G)|
2
≥

∣
∣E(G)

∣
∣ = s2 = s0s2.

The roots of the independence polynomials of well-covered graphs are investigated
in a number of papers, as [3], [4], [8], [9], [11], [19]. Brown et al. showed, by a nice
argument, that:

Lemma 2.4 [3] If a graph G has α(G) = 2, then I(G;x) has real roots.

The assertion fails for graphs with stability number greater than 2, e.g., I(K1,3;x).
Notice that the independence polynomials of the trees from Figure 1, are respectively

I(T1;x) = 1 + 10x+ 36x2 + 60x3 + 47x4 + 14x5,

I(T2;x) = 1 + 8x+ 21x2 + 23x3 + 9x4,

while only for the first is true that all its roots are real. Let us observe that T1, T2 are
well-covered and their polynomials are unimodal. Hence, Newton’s theorem (stating
that if a polynomial with positive coefficients has only real roots, then its coefficients
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form a log-concave sequence) is not useful in solving Conjecture 1.2, even for the
particular case of very well-covered trees.

Let us mention that there are connected graphs, with stability number equal to 3,
whose independence polynomials are:

• not unimodal, e.g.,

I(K24 + (K4 ⊔K3 ⊔K3));x) = 1 + 34x+ 33x2 + 36x3;

• unimodal, but not log-concave, e.g.,

I(K95 + (⊔3K7));x) = 1 + 116x+ 147x2 + 343x3;

• unimodal, but not log-concave, while the graphs are also well-covered, e.g.,

I((⊔3K10) +K3, 3, ..., 3
︸ ︷︷ ︸

120

;x) = 1 + 390x+ 660x2 + 1120x3.

There are also well-covered connected graphs with stability number equal to 4,
whose independence polynomials are:

• not unimodal, e.g.,

I((⊔4K10) +K4, 4, ..., 4
︸ ︷︷ ︸

1800

;x) = 1 + 7240x+ 11400x2 + 11200x3 + 11800x4;

• unimodal, but not log-concave, e.g.,

I((⊔4K10) +K4, 4, ..., 4
︸ ︷︷ ︸

25

;x) = 1 + 140x+ 750x2 + 4100x3 + 10025x4;

• log-concave, e.g.,

I((⊔4K10) +K4, 4, ..., 4
︸ ︷︷ ︸

10

;x) = 1 + 80x+ 660x2 + 4040x3 + 10010x4.

Let us observe that the product of two unimodal independence polynomials is not
always unimodal, e.g., I(K100 + ⊔3K7;x) = 1 + 121x+ 147x2 + 343x3 and I(K90 +
⊔3K7;x) = 1 + 111x+ 147x2 + 343x3, while their product is not unimodal:

1 + 232x+ 13725x2 + 34790x3 + 101185x4 + 100842x5 + 117649x6.

Theorem 2.5 [14] The product of a log-concave polynomial by a unimodal polynomial
is unimodal, while the product of two log-concave polynomials is log-concave.

5



Theorem 2.5 is best possible for independence polynomials, since the product of
a log-concave independence polynomial and a unimodal independence polynomial is
not always log-concave. For instance, I(K40 +⊔3K7;x) = 1+ 61x+147x2 +343x3 is
log-concave, I(K110 + ⊔3K7;x) = 1 + 131x+ 147x2 + 343x3 is unimodal, while their
product

1 + 192x+ 8285x2 + 28910x3 + 87465x4 + 100842x5 + 117649x6

is not log-concave.
Further we summarize some facts on graphs with small stability numbers.

Proposition 2.6 The following is a list of sufficient conditions ensuring that the
independence polynomial of a graph G is unimodal:

(i) any connected component H of G has α(H) ≤ 2;
(ii) α(G) = 3 and G is well-covered;
(iii) α(G) = 4, G is disconnected and well-covered;
(iv) α(G) = 5, G = H1 ⊔H2, α(H1) = 2 and H2 is well-covered;
(v) ω(G) ≤ α(G) ≤ 5 and G is well-covered;
(vi) α(G) = 6, G is disconnected and any component H of G with α(H) ∈ {3, 4, 5}

is well-covered and satisfies ω(H) ≤ α(H).

Proof. (i) If H1, H2, ..., Hk are the components of G and α(Hi) ≤ 2, 1 ≤ i ≤ k, then
I(G;x) is unimodal, by Newton’s Theorem, because I(G;x) = I(H1;x) · ... · I(Hk;x)
and, consequently, by Lemma 2.4, all its roots are real.

(ii) If G is disconnected, then I(G;x) is unimodal, by part (i). Assume that G

is connected, and let I(G;x) = 1 + nx + s2x
2 + s3x

3, where n is the order of G.
Any vertex v ∈ V (G) is contained in some maximum stable set of G, since G is
well-covered. Hence, v has at least two neighbors in the complement G of G, which
ensures that n ≤

∣
∣E(G)

∣
∣ = s2. Consequently, I(G;x) is unimodal, with the mode 2 or

3, depending on max{s2, s3}, respectively. Let us mention that there are connected
well-covered graphs with stability number equal to 3, whose independence polynomial
has non-real roots, e.g., I(K3,3,3;x) = 1 + 9x+ 9x2 + 3x3 has non-real roots.

(iii) If G is disconnected and at least one of its components is a complete graph,
then G = Kp⊔H and I(G;x) = I(Kp;x) ·I(H ;x) = (1+px) · (1+s1x+s2x

2+s3x
3)is

unimodal, by Theorem 2.5. If none of its components is a complete graph, then G has
only two components, say H1 and H2, and α(H1) = α(H2) = 2. Hence, by Lemma
2.4, I(H1;x), I(H2;x) have only real roots. Therefore, I(G;x) = I(H1;x) · I(H2;x) is
unimodal, by Newton’s Theorem.

(iv) According to Lemma 2.4 and Newton’s Theorem, I(H1;x) is log-concave.
Since G = H1 ⊔ H2, it follows that I(G;x) = I(H1;x) · I(H1;x). Hence, using part
(ii) and Theorem 2.5, we infer that I(G;x) is unimodal.

(v) Taking into account the parts (i),(ii), we may assume that α(G) ∈ {4, 5}.
Suppose that α(G) = 4. Then, I(G;x) = s0 + s1x + s2x

2 + s3x
3 + s4x

4, and,
according to Proposition 2.2, we obtain that s0 ≤ s1 ≤ s2, since G is well-covered,
while by Lemma 2.1, it follows that s3 ≥ s4, because ω(G) ≤ α(G). Therefore, I(G;x)
is unimodal, with the mode 2 or 3, depending on max{s2, s3}. Now, for α(G) = 5,
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I(G;x) = s0 + s1x + s2x
2 + s3x

3 + s4x
4 + s5x

5 and Proposition 2.2 implies that
s0 ≤ s1 ≤ s2 ≤ s3, while Lemma 2.1 assures that s4 ≥ s5, since α(G) ≥ ω(G).
Consequently, I(G;x) is unimodal, with the mode 3 or 4, depending on max{s3, s4}.

(vi) If G has a component H with α(H) ∈ {4, 5}, this is unique, and α(G−H) ≤ 2.
Consequently, by parts (i),(v) and Theorem 2.5, I(G;x) = I(H ;x) · I(G − H ;x) is
unimodal. If G has two components H1, H2 with α(H1) = α(H2) = 3, then Corollary
2.3 and Theorem 2.5 assure that I(G;x) = I(H1;x) · I(H2;x) is unimodal. The other
cases follow easily, by applying parts (i),(iii) and Theorem 2.5.

3 A family of well-covered graphs having non-unimodal

independence polynomials

The independence polynomial of Hn = (⊔4K10) +K4, 4, ..., 4
︸ ︷︷ ︸

n

, n ≥ 1 is

I(Hn;x) = n · (1 + x)4 + (1 + 10x)4 − n

= 1 + (40 + 4n)x+ (600 + 6n)x2 + (4000 + 4n)x3 + (10000 + n)x4.

Let us notice that α(Hn) = 4 and Hn is well-covered. Since 40 + 4n < 600 + 6n is
true for any n ≥ 1, it follows that I(Hn;x) is not unimodal whenever

4000 + 4n < min{600 + 6n, 10000+ n},

which leads to 1700 < n < 2000, where the case n = 1701 is due to Michael and
Traves, [21]. Moreover, I(Hn;x) is not log-concave only for 23 < n < 2453.

Lemma 3.1 For any integer k ≥ 0, the following polynomial is not unimodal.

k+4∑

i=0

six
i =

(
1 + 6844 · x+ 10806 · x2 + 10804 · x3 + 11701 · x4

)
· (1 + 1000 · k · x)k .

Proof. We show that sk+2 > sk+3 < sk+4. Since the result is evident for k = 0, we
may assume that k ≥ 1.

Let us notice that:

sk+4 = 11701 · 103k · kk,

sk+3 = 10804 · 103k · kk + 11701 · 103(k−1) · kk = 103(k−1) · kk · 10815701,

sk+2 = 10806 · 103k · kk + 10804 · 103(k−1) · kk +

+11701 · 103(k−2) · kk−1 · (k − 1) · 0.5

= 103(k−2) · kk−1 · (2 16336 19701 · k − 11701) · 0.5.

Firstly, we have

sk+4 − sk+3 = 11701 · 103k · kk − 103(k−1) · kk · 10815701

= 103(k−1) · kk · 885299 > 0.
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Secondly, we obtain

sk+2 − sk+3 = 103(k−2) · kk−1 · (2 16336 19701 · k − 11701) · 0.5

−103(k−1) · kk · 10815701

= 103(k−2) · kk−1 · (2217701 · k − 11701) · 0.5 > 0,

which completes the proof.

Gq = (⊔qK1000) ⊔ (⊔4K10 +K4, 4, ..., 4
︸ ︷︷ ︸

1701

)

q times
︷ ︸︸ ︷

✫✪
✬✩
K1000

✇ ✇ ✇ ✇ ✫✪
✬✩
K1000

✚✙
✛✘

✚✙
✛✘

K10 K10

✬
✫

✩
✪

K4, 4, ..., 4
︸ ︷︷ ︸

1701

✚✙
✛✘

✚✙
✛✘

K10 K10

Figure 2: Well-covered graphs with non-unimodal independence polynomials.

Theorem 3.2 For any integer k ≥ 4, there is a well-covered graph G with α (G) = k,
whose independence polynomial is not unimodal.

Proof. Let q = k− 4 and Gq be the graph depicted in Figure 2, and formally defined
as follows:

Gq = (⊔qK1000) ⊔ (⊔4K10 +K4, 4, ..., 4
︸ ︷︷ ︸

1701

).

It is easy to see that Gq is a disconnected well-covered graph, α(Gq) = k, and
its independence polynomial is not unimodal, because I(Gq ;x) is identical to the
non-unimodal polynomial from Lemma 3.1.

Moreover, the graph Gq +Gq is well-covered, connected, α(Gq +Gq) = k, and its
independence polynomial is not unimodal, since I(Gq +Gq;x) = 2 · I(Gq;x)− 1.
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4 Conclusions

In this paper we demonstrated that for every integer k ≥ 8 there exists a (dis)connected
well-covered graphG with α(G) = k, whose independence polynomial is not unimodal.
It is worth mentioning that all these graphs are not very well-covered. In other words,
the unimodality conjecture remains open for the case of very well-covered graphs.
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Numerantium 130 (1998) 209-218.

[16] V. E. Levit, E. Mandrescu, Well-covered trees, Congressus Numerantium 139
(1999) 101-112.

[17] V. E. Levit, E. Mandrescu, On well-covered trees with unimodal independence
polynomials, Congressus Numerantium 159 (2002) 193-202.

[18] V. E. Levit, E. Mandrescu, On unimodality of independence polynomials of some
well-covered trees, DMTCS 2003 (C. S. Calude et al. eds.), LNCS 2731, Springer-
Verlag (2003) 237-256.

[19] V. E. Levit, E. Mandrescu, On the roots of independence polynomi-
als of almost all very well-covered graphs, Los Alamos Archive, prE-print
arXiv:math.CO/0305227, 17 pages.

[20] V. E. Levit, E. Mandrescu, A family of well-covered graphs with uni-
modal independence polynomials, Los Alamos Archive, prE-print arXiv:math.
CO/0307012, 13 pages, Congressus Numerantium (2003) (accepted).

[21] T. S. Michael, W. N. Traves, Independence sequences of well-covered graphs: non-
unimodality and the Roller-Coaster conjecture, Graphs and Combinatorics (2002)
(to appear).

[22] M. D. Plummer, Some covering concepts in graphs, Journal of Combinatorial
Theory 8 (1970) 91-98.

[23] G. Ravindra, Well-covered graphs, J. Combin. Inform. System Sci. 2 (1977) 20-21.

[24] J. Topp, L. Volkman, On the well-coveredness of products of graphs, Ars Combi-
natoria 33 (1992) 199-215.

[25] A. A. Zykov, On some properties of linear complexes, Math. Sb. 24 (1949) 163-
188 (in Russian).

[26] A. A. Zykov, Fundamentals of graph theory, BCS Associates, Moscow, 1990.

10


	Introduction
	The small stability number as a reason for well-covered graphs to have unimodal independence polynomials
	A family of well-covered graphs having non-unimodal independence polynomials
	Conclusions

