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PERMUTATION STATISTICS ON INVOLUTIONS

W. M. B. DUKES

ABSTRACT. In this paper we look at polynomials arising from statistics
on the classes of involutions, I,,, and involutions with no fixed points,
Jn, in the symmetric group. Our results are motivated by F. Brenti’s
conjecture [3] which states that the Eulerian distribution of I, is log-
concave. Symmetry of the generating functions is shown for the statistics
d,maj and the joint distribution (d,maj). We show that exc is log-
concave on I, inv is log-concave on J, and d is partially unimodal on
both I,, and J,. We also give recurrences and explicit forms for the
generating functions of the inversions statistic on involutions in Coxeter
groups of types B,, and D,,. Symmetry and unimodality of inv is shown
on the subclass of signed permutations in D,, with no fixed points. In
light of these new results, we present further conjectures at the end of
the paper.

1. INTRODUCTION

In this paper we look at polynomials arising from statistics on the classes
of involutions and involutions with no fixed points in the symmetric group.

Let S, be the symmetric group on [1,n]. Call Des(o) :={i : 1 <i <
n and o; > 0,41} the descent set of o € S, and the number of descents is
denoted d(o) := |Des(o)|. We further define d;(c) := |{j > i :j € Des(o)}|,
the partial descents of o for 1 < i < n. The major index of o is maj(c) :=
> icDes(o) ¢ and the number of inversionsis inv(o) == {1 <i<j<n:o; >
0;}|. The number of excedances is exc(o) := |{1 <i < n:o; > i}| and weak
excedances is wexc(o) = [{1 < i < n:o0; > i}|. Let fiz(o) and trans(o)
denote the number of fixed points and transpositions of o, respectively. We
use the notation [z‘]P(z) for the coefficient of 2% in the polynomial P(x).

For a statistic stat : S,, — Ng, define the polynomials

I,itat(x) — sztat(a)7 jrftat(l‘) — Z mstat(a)’

O'EIn O'EJn

where I, := {0 € S, : ¢ =id} and J,, := {0 € I, : fiz(o) = 0}. For
an arbitrary collection S;, C Sy, the sequence of coefficients of »_ . s 24m)

is termed the Fulerian distribution of SI,. The results in this paper are
motivated by

Conjecture 1.1 (Brenti B]). The Eulerian distribution of I, is log-concave.

Key words and phrases. Permutation statistics. Involutions. FEulerian distribution.
Log-concave.
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We propose further conjectures concerning statistics on different classes
of involutions in the final section.

2. INVOLUTIONS IN THE SYMMETRIC GROUP
2.1. The excedances statistic.
Theorem 2.1. The coefficients of the polynomial Z5*“(x) are log-concave.

Proof. The number exc(o) is precisely the number of 2-cycles in an involu-
tion, so we have

[n/2]

I Z k' n—2k: ( )k (2.1)

It is an easy exercise to show log—concav1ty for 0 < j < |n/2] since we have
a direct expression for the coefficients. O

Note that the polynomials Z¢*“(z) are closely related to the Hermite poly-
nomials h,(x), whereby

Z M = exp(tz — t2/2)7

n!
n>0

via the equation Z¢%¢(x) = (—x)"hp(—1/2x). The Hermite polynomials are
known to be real-rooted (see for example Stanley [0, p. 505]).

The Schiitzenberger involution on tableaux, 7" — evac(T), maps invo-
lutions to involutions and wezc(evac(o)) = n — exc(o), since evac(o); =
n+1—ou41-4, so that ZV*¢(z) = "% (x 1), hence

Corollary 2.2. The coefficients of the polynomial Z*“(x) are log-concave.

2.2. The descents and major index statistics. In the spirit of Adin et.
al. [1], we define

. di(o dz(a dn—1(0)
Gn(x1, ...y Tp_1) E x] ERY

UEI’n

Theorem 2.3. The polynomial G, (z1,...,Tn—1) Satisfies

Gn(z1,..., 1) = 77 1:1:3 2. a:n_lgn(xl_l, . ,acgil).
Proof. If o0 € I, then the reading and insertion tableau associated with o
under Robinson-Schensted correspondence (Stanley [9, Ch. 7]) are identical.
That is, there is a bijection between I,, and all standard Young tableaux
(SYT) on [1,n].

Let o € I,, with associated SYT T'. The set Des(c) corresponds to those
entries ¢ in the tableau T such that (i + 1) is below and weakly to the left
of i. Let T be the tableau T reflected on its main diagonal. Notice that if
(i4+1) is below and weakly to the left of ¢ in 7', then (i + 1) is to the right of
and weakly above i in 7. The bijection between the class of SYT on [1, 7]
and involutions I,, shows that to T there corresponds a unique involution
ot € I, and has the property that {Des(c), Des(c)} is a partition of the
set [I,n — 1]. In this manner, the reflection operation is an involution on
involutions.



PERMUTATION STATISTICS ON INVOLUTIONS 3

It follows that
di(ct) = |{j>i:j€ Des(c")}
= |[{j>i:j & Des(0)}|
= n—i—|{j>i:j€ Des(o)}

= n—i—d;(o).
We have shown that if o € I,,, then there is a unique o € I,, such that
(di(oh),...,dn_1(c)) = (n—1—di(0),...,1 —dy_1(0)). O

Both polynomials Z%(q) and Z" aJ (q) are instances of the G polynomial
since Z%(q) = Gn(q,1,...,1) and Z,'"(q) = Gu(q,q, .. .,q). Comparing co-
efficients on both sides of the symmetric G relation yields

Corollary 2.4. The polynomials Z4(t) and I (t) are symmetric.

Symmetry of the polynomials Z¢(x) and J%(t) was conjectured by Du-
mont and first proven by Strehl [I1], using a method similar to that of the
previous theorem for the coefficients of Z%(z). A separate argument was
used to prove symmetry of jnd(t) because for o € J,, it is not necessarily
true that o+ € J,. Theorem allows us to show symmetry of the joint
distribution of (d, maj) on I,, since »_ o) gmai(o) — Gn(tq,q,...,q).

Corollary 2.5. The polynomial
Id maj t q Z td(a maj(o)

UEI’n

is symmetric in the sense that [t’qJ]Id maj (t,q) = [t”_l_iq(g)_j]fg’maj (t,q).

Hultman [8] recently proved that for any finite Coxeter system (W,.S),
the associated descent polynomial ) 9w () is symmetric where the sum
ranges over all w € W with w? = id,,. Désarménien and Foata [7] use an
elegant method involving Schur functions to derive the generating function

H, (21, 22,t,q)u™ 1 1
= tr— —_— (2.2
pRECC UL S S ) S

21U
n>0 >0 143 4)r41 0<i<j<r

where Hy(z1,22,t,q) == > ,cr. z{m(a)z;mns(a)td(”)qm“j(“), (a;q)o = 1 and

(a;¢)n = (1 —a)(1 —aq)--- (1 - aq"!). The generating functions for the

polynomials Z%(t), Z;;"” (q) are immediate from this:

Td(t)u" . 1 |
nz>:0 (]- — t)” = Zt <(1 _ u)r—i-l(l _ UQ)T(T+1)/2> 3 (23)

r>0

jﬁi tu™ ,
Z ﬁ - Zt < r(r+1)/2> (2.4)

n>0 r>0

T (q)u™ 1 1
3 '(q) _ Z(. 11 A=) (2.5)

= (¢:9)n = U q)rt+1 0<isi<r

By extracting the appropriate coefficients, we now show partial unimodality
of Z%(q) and J%(q). The onerous aspect of proving total unimodality using
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r+1)

these direct expressions seems to be the appearance of both r and ( 2

within binomial terms.

Theorem 2.6. For all 1 < i < n%9%5/10, [t]|J(t) < [t*T1T(t) and
[T ) > [T

Proof. Extracting the coefficient of u™ in Equation (Z4), one finds
n n p—1 p—k+1
P . » ok (n (ST +n/2 -1
T = P ant —Zt{ ot (e (Y .
p=1 p=1 k=0
Inverting this gives

fy = (027 L (M

=0

—_

For p > 2,

fn(p) = falp — 1)

p—1 . p—2 .
Z n+1 Z n+1
=1

i=1

p—2 .

n+p—1 n-+1

= Qpp—Qpp-1+ < p—1 >an,1 + E < i >(an,p—i - an,p—l—i)
=1

n+p—1

g anvp - an7p_1 + < p _ 1 >
S Qpp—Qppo1+ (n+1D(fulp—1) = fulp — 2)).

Thus anp — anp—1 = fulp) = fulp = 1) — (n+ 1) (fulp — 1) = fulp — 2)).

The right hand side of the previous inequality is positive for p not too large.

Notice that
P
falp—1) pP+p—2

n+2\?
> 1
- <+2p2>

which, in turn, is bounded below by n + 2 when p < n%925/10. The second
inequality follows from symmetry as shown in Strehl [IT]. O

Theorem 2.7. For all 1 < k < 0.175n%9L [t*=174(t) < [t*]Z%(t) and
[t I > [T

Proof. Extracting the coefficient of u" in Equation (Z3]) we find

n—1 n—1 k
STURED SERVIN 372 5 o) (ot ISR
k=0 k=0

=0 7
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where vy(n,0); = 1 and y(n,r) := ZZLZ{)% ("2 (H(T%l)_l) for » > 0. Thus

for 0 < k < n,
k
n-+1
Z< >/Bnkz

=0

and so

v(n, k) —~(nk—1)
k—

1
= (n * 2) (Bnk—i — Brg—1—-i) + <n _]: k)
—0

2

=2 .
= Buk— Bng—1+ Z (n + 't 1) (Bnk—1—i — Pnk—2—i) + <n N k)
=0

i+1 k
2t n+k

< ﬁn,k—ﬁn,k—1+(n+1)z< ; >(5nk 1-i ﬁn,k—Q—i)+< 1 >
=0

= Bok = Bonp-1+(n+1) <’y(n,k—1) (k- 2) — <n—|—k—1>>

k—1
N (n + k:>
k
< Bk — Bnk—1+ (n+1)y(n,k—1).

It suffices to show that for n and k as stated in the theorem, ~(n,k) >
(n+ 2)y(n,k —1). One may also write

_ g (1—|—u)k+1
/Y(n?k) - [ ](1_u2)(k+2)

and since n > k + 1 we have
|k+1/2]

k+1 ol 1
k) = <n—2Ln/2J+2z'>[u2(L " )](

i=0 1- UQ)(k+2)
k2]
y2(n/2)—) 1
= Z <n—2Ln/2J +21>[ ](1—u2)(k+2)

Now for all m > (n — k — 2)/2,
(B0 > () (G0
> (n+2) <(k+1) + m>

m+1

for k < 0.175n°%931 hence

[k/2] i s 1
vink) > (n+2) ZZ:; <n—2[n/2j —i—2z’>[U2(L - )]m

= (n+2)y(n,k—1),
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giving the first inequality. Again, symmetry of the Z¢(t) polynomial yields
the second inequality. O

2.3. The inversions statistic. The generating function for the inversions
statistic on involutions is intimately related to the g¢-Hermite polynomi-
als, as studied by Désarménien [6]. Let a,(k,j) be the number of invo-
lutions in I, with k fixed points and j inversions, and define Z,(z,q) :=
>k an(k,j)¢’x*. Désarménien [B, Eqns. 3.10,3.11] showed

_ q2n

1
Zn+l(m7Q) = xZn(x7Q) +4q < 1— q2 > Zn—l(x7Q)

for all n > 1 with Zy(z,q) = 1 and Z1(x,q) = z. Setting x = 1,0, yields the
following proposition.

Proposition 2.8. For alln > 0,
inv inv 1- q2(n+1) inv
ni2(@) = LY@ +a| — 5 Z 7" (),
where T (q), Zi"(q) :== 1 and for n > 0,
, 1 — g2(nt1) ,
mi2(d) = q g T (),

where Ji™(q) = 1.

The above recurrences can also be derived in a straightforward manner
using a special case of Equation ([B1]). The coefficients of Z:*?(q) are neither
log-concave nor unimodal (see Figure 1) but the recursion in the previous
proposition admits a solution as a matrix product, which may be of benefit
in approaching Conjecture EZIN(ii).

Proposition 2.9. Let g;(q) := Zé;o ¢ and A, (q) =[], ( g%q) [1) >,
(2

then T (q) = An(@)11 + An(q)2,1-

Proof. For all n > 2, we may write
n
Ti*(q) = [[Yi()
i=1

where YV, (q) = Z"(q)/Zi™ (q) and Z}™(q),Zi""(¢q) := 1. From the first
recurrence in Proposition the polynomial ), (q) satisfies the recurrence

V(@) = 1+ gn_1(q)/Vn_1(q) for all n > 2 where g,(¢) == q+ ¢+ ... +
¢?"3. Using this, the product Y;Vit1---), may be written in the form

ai(q)Vi(q) + Bi(q). Tt is easily seen that oy, (q) =1, B,(q) = 0 and

ai(q) | _ L1 @it1(q)
< Bi(q) > B < gi+1(q) 0 ) ( @:1((]) >
Thdtlls we have T, (q) = a1 (q)V1(q) + B1(q) = a1(q) +Bi(q), since Yi(q) =1,

<ZEZ;> - <gth) (1)><gth) (1)>"'<9n1(Q) (1)><(1)>
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O
Theorem 2.10. The coefficients of the polynomial J™"(q) are log-concave.

Proof. Solving the second recurrence in Proposition we get:

4 m-lq ¢22i+1)
T = " ] =
=1

Set u = ¢* and notice that the sequence of non-zero coefficients in J""(q)
1—u

. -1

is the same as [[;; .

u?*t1) /(1 — u) are non-negative log-concave sequences with no internal zero

coefficients. Thus using Stanley [I0, Prop. 2], the product of all such poly-

nomials will also be log-concave with no internal zero coefficients. O

The coefficients of the polynomials (1 —

3. INVOLUTIONS IN COXETER GROUPS OF TYPES B AND D

In this section we give recursive expressions for the inversion polynomials
of involutions for Coxeter groups of types B and D. We use the notation of
Bjorner and Brenti [2].

Coxeter groups of type B, the ‘signed permutations’, are defined as fol-
lows: let S5 be the group of all bijections 7 on the set [£n]\{0} such that
n(—a) = —m(a) for all a € [+n]. For 7 € SB, define

Ni(m(1),...,7(n)) = {1 <i<n:7(i) <0}

No(mw(1),...,m(n)) = |{1<i<j<n:w(i)+n(5) <0}
Let S2 be the subgroup of SZ consisting of all signed permutations 7 € S
such that there are an even number of negative entries in the window of
7, ie. SP .= {r € SB . Ni(r) = 0(mod 2)}. For completeness let us
also define those signed permutations containing an odd number of negative
signs in the window of 7, SO = SB\SP.

The inversions statistics on SZ and SP are defined slightly differently to
inv on Sy. From |2, Equations (8.1) and (8.18)],

invg(m) = inv(n(l),...,m(n)) + Ni(w(1),...,7(n))
+No(7(1),...,m(n))
invp(m) = dnv(w(l),...,7(n)) + Na(w(1),...,7(n)).
Let us mention that in the symmetric group setting,

> g™ = 2], .. [2n]

TeSE

Z gmr = [2]¢[4]q - - - [2n — 2]q[n]4-

resp

where [i]l, =1+ ¢+ ¢*+ ... + ¢! (see [Z, Theorem 7.1.5.])
Define IP := {7 € S8 : 72 = id}, IP .= {x € SP : 72 = id} and
IO := IP\ID. Let
() = 3 ¢,

welB
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with ZD,(¢q) and ZO,(q) similarly defined. To aid the proof of the fol-
lowing two theorems, we introduce some notation concerning the recursive
construction of these signed permutations.

Let m € IZ and denote by #"+1:7+1) the signed permutation 7’ € IZ,
such that 7/(i) = «(i), for 1 < i,< n and 7/(n +1) = n+ 1. Similarly let
7(—(+1)n+D) he the signed permutation 7' € I2,; such that 7/(i) = 7 (i) for
1<i<nand 7(n+1)=—(n+1).

For 7 € IB and k € [£(n+1)]—{0}, let *"*2) be the signed permutation
m' € IB., such that

o 7'(|k]) = (n+2)sgn(k), 7’ (n +2) =k,
e for all 1 <i<n,

m(i+1fi > [k]])) = (i) + sgn(w(@) 1w ()] = [k

where sgn( ) = +1if a > 0 and —1 otherwise. Consequently I7 ,, ID,
and 19 o May be constructed recursively,
InB-i-Q — U {ﬁ (n+2,n+2) 7ﬁ(—(n+2),n+2)} W
TI'EI,,?_‘_l
n+1
L_Ij {ﬁ(k,n+2)’ﬁ(—k,n+2)} (31)

k=1
7r€IB

InD+2 — U { (n+2, n+2} W U { —(n+2), n+2} W
mell el

n+1

L_Ij {ﬁ(k,n+2) 7 ﬁ(—k,n—i—2)} (32)

k=1

7\'6[7?

[r?+2 _ U {ﬁ(n+2,n+2)} W U {ﬁ(_(”+2)7”+2)} W

relf, el |

n+1
L_Ij {f(k,n+2)’ f(—k,n+2)}‘ (3'3)

WEIQ
Theorem 3.1. For alln > 2,
g(1+¢*)(1 = ¢*")
1—¢?
with initial polynomials TBa(q) = 14 2q + 2¢> + ¢*, IB3(q) = 14 3¢+ ¢* +
3¢3 +2¢* +2¢° +3¢° + ¢" + 3¢ + ¢°.
Proof. Using Equation (B1]),

; =(n+2,n+2) ; =(—(n+2),n+2)
Tyuale) = 3 gy o)
7r615+1

IBpi2(q) = (1+¢*""*)IBnia(q) + IBn(q)

n+1
: —=(k,n+2) ; —=(—k,n+2)
+Z Z qzan(w + )+qznv3(ﬂ + )

k=1relB



PERMUTATION STATISTICS ON INVOLUTIONS 9

If 7 € I, then invp(F" 272 = invp(n(1),...,7(n + 1),n +2) =
invg(r) and invg(F 242 = inyp(n) + 2n + 3. Similarly if 7 € 15
and 1 < k < n + 1, then invp(@*F"*2) = invp(r) 4+ 2n + 3 — 2k and
invg (@142 = invg(r) + 2k + 1. Hence

IBn+2(q) — Z qian(W)+qian(7r)+2n+3
”elfﬂ
n+1
+Z Z qian(w)+2n—2k+3 +qinv3(ﬂ)+2k+1
k=1relB

n+1

= (14 ¢")IBuii(q) + IBu(q) D (g2~ %43 4 ¢+,
k=1

0

We may express ZB,(q) in a somewhat closed form, as was done in
Proposition B3 for all n > 3, IB,,(q) = (Va(@)1,1 + Vn(@)2,1)(1 + 2¢ +
2¢3 + ¢*) where

7 wilg) 1 >
V, =
(@) g( vi(q) 0
and u;(q) =1+ ¢* 1, vi(q) == (1 +¢*)(1 — 20V /(1 = ¢?).
Theorem 3.2. For alln > 2,

1— 2n
IDnt1(g) = IDn(q)+¢*"IOn(q) + <q2("_1) + 61(1_722)> IDn-1(q)

_ 2n 2(n—1) q(l — q2n)
ZO0n11(q) = ZOn(q) +q"IDnlq) + | ¢ T Z0,-1(q)

with initial polynomials TDy(q),ZO2(q) = 1+q+q¢%, ID3(q) = (1+q+¢*+
¢*)(1+¢%) +2q and ZO3(q) = (1 +q +¢* + ¢*)(1 + ¢°) + 2¢°.
Proof. Using Equation (B2),

IDua(q) = Y g™ 4 37 o)
mell relf,
n+1
+Z Z qinvp(f(k””'z)) _i_qinvD(?(_k’”*'Q)).
k=1 reIP

Ifm e 1P, 19, then invp (F"27+2) = invp(r) and invp (7~ ("F2n+2)) =
invp(m) + 2(n + 1). Also if 7 € IP, then invp(@HF"+2)) = 2n — 2k + 3 +
invp(m) and invp (FF"+2)) = invp () + 2n. Hence,

IDn+2(q) — Z qin’UD(Tf) + Z qinvD(w)+2(n+1)
rel? | relf
n+1

+Z Z qinvD(ﬂ) (q2n—2k+3 + q2n)'

k=1 reIll
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The second recurrence is derived in the same manner by using Equation

B3). O

Let JP C I denote the class of all signed permutations such that
m(i) # +i for all i € [1,n] and consider the generating function JD,(q) :=

ZTI’EJD qim)D(w)'
Theorem 3.3. For all even n > 2,

n/2—1

n 1+q4i 1_(]
jpn(q = /2 H 1)(_q2

4i+2)

Proof. Since JP is a subclass of I” and from the characterization in Equa-
tion ([B.2), one has

IDnia(q) = Z e FEITAD) L inup (R (9
n =

WGJTI?JFQ

7e(i,n+3)(4,n+4) i 7e(i,n+4)(4,n+3)
+ Z Z < invp (T )+qznvD(w )

1<i<y<n+2 reJpP
+qinvD(ﬁ(*iv"+3)(ﬂln+4)) + qinvD(ﬁ(*i1"+4)(ﬂ\n+3))
+q

+q

invp (Thn+3)(—int4)) + qznvD( w(in+4)(—dn+3))
invp (I3 (—in+4) +qim,D(ﬁ(—i,n+4)(—j,n+4>))
Now if 7 € JP. , then invp (7 37+4)) = invp(7)+1 and invp (- +3)n+4)) =

invp(m) 4+ 4n + 9. A careful analysis shows that for 7 € JP and 1 <4,j <
n+2,i# ],

invp (FEEHNETDY = inyp(r) +4n — 2(i 4 §) + 10+ 2 - 1[i > j]
invp (@Y = inyp(n) +4n + 200+ 5) +2 -2 1[i > j]
invp (T (=im+3)(J, "+4)) = dnuvp(m)+4n+2(i—j)+6+2-1[i > j]
inop (RO DY = inup(r) +An +2(5 — i) + 6 — 2 1[i > j].

Thus we have

an+4(q)
= IDnta(@)(q+¢"") + TDul(q) x
Z ((qm +q12)q4n—2(i+j) + (q2 + 1)q4n+2(i+j)
1<i<j<n+2
+(gb +q8)q4n+2(i—j) +(q° +q4)q4n+2(j—i))
q4(q4(n+1) _ 1)(q2n+4 _ 1)(q2n + 1)
(¢* —1)2 '

The result follows by inserting the expression from the theorem, we omit
the details. O

= JDnt2(q)(q + ¢ ) + TDn(q)

Notice that if n/2 is even (resp. odd) then the coefficients of odd (resp.
even) powers of ¢ in JD,,(q) are zero.
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Theorem 3.4. The coefficients of the even (resp. odd) powers of q in
JIDyn(q) are symmetric and unimodal when n/2 is even (resp. odd).

Proof. From Stanley [I0, Proposition 1], we have that if A(q) and B(q) are
symmetric and unimodal polynomials, both with non-negative coefficients,
then A(q)B(q) is also symmetric and unimodal. From the expression in
Theorem B3 one may write JD,y2(q) = (¢ + ¢> + ... + ¢ + 2¢*" ! +
2+ + ¢TI D, (q). The result follows inductively. O

The generating function of the descent polynomial over involutions of
Coxeter groups of types B, and D, is also seen to be symmetric, as was
mentioned in Section 2, thanks to Hultman’s [§] result.

4. COMMENTS

Unlike the Eulerian polynomial, whose roots are all real and from which
log-concavity of the coefficients follows, the roots of all polynomials with
the statistics mentioned above are not real for n < 14. Furthermore, they
do not lie in the nice triangular 7 /3 region of the complex plane about the
negative real-line from which it would be possible to infer log-concavity (see
Stanley [I0, Prop. 7].) Log-concavity of the coefficients holds numerically
for all n < 14. We extend the original conjecture,

Conjecture 4.1. For alln > 4,

(i) the sequence {[¢"|Zn"™ (q)}z(i% is log-concave,
(ii) for2 <i < (5) —2 (see Figure 1)

(@1 (@) = (a1 (@) (d 1T (9)),
(iil) the sequences {[¢*]InvZ(q)}i>0 and {[¢* 1| InvB(q)}iso are uni-
modal,
(iv) the sequences {[q*|InvP(q)}i>0 and {[¢* ) Inv?(q)}iso are uni-
modal,
(v) the sequences {[¢*]Inv?(q)}is0 and {[¢*TInvd(q)}i>0 are uni-
modal.

We list here those polynomials for n = 10 to exemplify these conjectures,

Td(z) = 1+ 25z+2892> + 13972° + 30362* + 30362° + 13972° + 28927 + 2525 + 2°.
I55°(x) = 14 45z + 6302 4 31502 4 47252 4 9452°.
IR (x) = 14az+22° +42° + 72" +122° + 192° + 2927 4 444° + 642° + 892'° + 119"

+158z2 + 20123 + 2502 4 3042™° + 3582¢ + 41227 + 4642 + 5082'° + 5462%°

+5722%" + 584277 + 58427 + 5722%* + 54627 + 50822° + 464277 + 41227° + 3582
+3042°° + 2502%" + 201237 + 1582 + 1192%* + 8923° + 642°¢ + 44257 4 2928
+19z39 + 12z40 =+ 7z41 + 4r42 + 2r43 + r44 + r45.

Tit%(w) = 14 9x+ 282> +432° + 64z + 982" + 11425 + 16527 + 1792° + 2342° + 2542"°

29

+299z" + 33322 4 3532™% 4 4082 + 3922™° + 4712"¢ + 41127 + 5132 + 409z°

+52922° + 38022 + 51727 + 33527 4 4782%* + 2812%° + 4172%¢ + 225277 + 3432%°
+1712%° + 2642°° + 12423 + 1892°% + 8523 4 12323* + 562°° + 72456 4 3527
+372%% + 202%° + 1620 + 102*! + 52*% + 42*® + 2% 4 215,

IBio(z) = 1+10z+ 362>+ 732° +1572* +3072° 4+ 45625 + 80727 + 1121 2% + 1629 2°
+2323 20 + 2835 2"t + 4124 212 + 4508 2% + 6468 2 + 6715 2% + 9256 ¢
+9469 27 + 12333 2% 4 12712 2° + 15500 2%° + 16306 2>* + 18560 222 + 20048 23
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+21334 22 + 23730 2%° + 23626 22 4 27127 27 + 25285 2%° 4 29989 2.2% 4 26242 25°
+32053 23 + 26550 2°? + 33126 3% + 26310 2%* + 33138 23° 4 25641 2°¢ + 32124 27
+24639 238 + 30194 2°° + 23393 2*° 4 27534 2" + 21953 2*? 4 24364 2*° + 20369 2**
+20935 2*° + 18657 2*® + 17519 2*7 4 16839 £*® + 14343 2*° 4 14925 2°° + 11549 2°*
+12956 252 + 9199 °% + 10967 2°* + 7288 2°° + 9019 2°° + 57622°7 + 7178 28
+4563 2°° 4 5525 2°° + 3633 25" + 4107 2% + 2909 %% + 2962 z%* + 2331 2%°

+2084 2% + 1858 2°7 + 1444 2% + 1460 2%° + 98627 + 1123271 + 671272 + 83427
+4542™ + 58927 +31227% + 394277 +2172"% + 25527% 4 156 2%° + 156 25"
+1112%% + 91 2% + 7923 + 522%° + 56 2% +302%7 + 40258 + 1725 + 26 2*°
+10$91 + 15I92 4 5I93 4 5I94 4 3I95 4 2I96 4 3I97 4 IQB + 3I99 + leO.

IDio(xz) = 1+ 10z + 35z° + 612> + 972" + 1582° + 2042° + 30827 + 3702° + 4952° + 5952'°
+7342" 4 88722 + 1034z + 12292 + 13812 + 160726 + 1764z + 201428
+2182z"° + 24322° + 2606z%" + 2827222 + 30122%° + 31752 + 33772%° + 345122°
+36632>7 + 36542 + 386322° + 37812 + 397043 + 38192%% + 3964433 4 376623
+38592°% + 36422°% + 3670237 + 34322°° + 34022°° + 31562*° + 30852 + 28442*°
+27362*% + 25112** + 23784*° + 21882 + 203627 + 18772*® + 17072*° + 15682°°
+13962°" + 12842°% + 11282°% + 10352°* + 8992°° + 8182°¢ + 7082°7 + 6422°8
+553z° + 4972% 4 4282°%" + 3802°%? + 3222%° + 2842%* + 2362%° + 2062°° + 16827
+1422% + 1162% 4 98270 + 812" + 6822 + 542" + 4627 + 3627° + 3227° + 23277
+21278 + 1827 4 142%° + 1123 + 8232 4 52% 4 423% 4 2235 4 286 4 2257 4 28
13259 4 290,

TO10(z) = 1+ 8z + 2327+ 412° + 772* + 1202° + 1802° + 26827 + 3322° + 4612° + 5472"°
+718z + 83522 4 10402™% + 11812 + 14072'° + 15692'® + 180827 + 199428
+22362° + 244827 + 26722 + 2875277 + 307822% + 32452%* + 342127° 4 354522°
+3679227 + 3758z%% + 38474° + 387720 + 392643 + 389927 + 3906433 4 382623
+379723% + 36642°° + 3610237 + 34222 + 335843° + 31282*° + 30672 + 280027
+27442*% + 24612** + 2408z*° + 21382 + 20802*7 + 18352*® + 17592*° + 15422°°
+14462°" + 12682°2 + 1164z°% + 10252°* + 9192°° + 8122°° 4 7082°7 + 6342°8
+5352°9 4 49125° 4 4002°" + 3742°% + 2062%% + 2842%* + 2182%° + 2142°%° + 1562°7
+1502%® + 1102% 4 10427 + 812" + 722" + 542" + 462" + 342"° + 2827% 4 23277
+17278 + 1627 4 102%° + 1123 + 6252 4+ 723 + 423 4 4235 4 286 4 2257 4 28

+I89 + w90 .
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