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PERMUTATION STATISTICS ON INVOLUTIONS

W. M. B. DUKES

Abstract. In this paper we look at polynomials arising from statistics
on the classes of involutions, In, and involutions with no fixed points,
Jn, in the symmetric group. Our results are motivated by F. Brenti’s
conjecture [3] which states that the Eulerian distribution of In is log-
concave. Symmetry of the generating functions is shown for the statistics
d,maj and the joint distribution (d,maj). We show that exc is log-
concave on In, inv is log-concave on Jn and d is partially unimodal on
both In and Jn. We also give recurrences and explicit forms for the
generating functions of the inversions statistic on involutions in Coxeter
groups of types Bn and Dn. Symmetry and unimodality of inv is shown
on the subclass of signed permutations in Dn with no fixed points. In
light of these new results, we present further conjectures at the end of
the paper.

1. Introduction

In this paper we look at polynomials arising from statistics on the classes
of involutions and involutions with no fixed points in the symmetric group.

Let Sn be the symmetric group on [1, n]. Call Des(σ) := { i : 1 ≤ i <
n and σi > σi+1} the descent set of σ ∈ Sn and the number of descents is
denoted d(σ) := |Des(σ)|. We further define di(σ) := |{j ≥ i : j ∈ Des(σ)}|,
the partial descents of σ for 1 ≤ i < n. The major index of σ is maj(σ) :=
∑

i∈Des(σ) i and the number of inversions is inv(σ) := |{1 ≤ i < j ≤ n : σi >

σj}|. The number of excedances is exc(σ) := |{1 ≤ i ≤ n : σi > i}| and weak
excedances is wexc(σ) := |{1 ≤ i ≤ n : σi ≥ i}|. Let fix(σ) and trans(σ)
denote the number of fixed points and transpositions of σ, respectively. We
use the notation [xi]P (x) for the coefficient of xi in the polynomial P (x).

For a statistic stat : Sn → N0, define the polynomials

Istat
n (x) :=

∑

σ∈In

xstat(σ), J stat
n (x) :=

∑

σ∈Jn

xstat(σ),

where In := {σ ∈ Sn : σ2 = id} and Jn := {σ ∈ In : fix(σ) = 0}. For

an arbitrary collection S′
n ⊆ Sn, the sequence of coefficients of

∑

π∈S′
n
xd(π)

is termed the Eulerian distribution of S′
n. The results in this paper are

motivated by

Conjecture 1.1 (Brenti [3]). The Eulerian distribution of In is log-concave.

Key words and phrases. Permutation statistics. Involutions. Eulerian distribution.
Log-concave.
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We propose further conjectures concerning statistics on different classes
of involutions in the final section.

2. Involutions in the Symmetric group

2.1. The excedances statistic.

Theorem 2.1. The coefficients of the polynomial Iexc
n (x) are log-concave.

Proof. The number exc(σ) is precisely the number of 2-cycles in an involu-
tion, so we have

Iexc
n (x) =

⌊n/2⌋
∑

k=0

n!

k!(n− 2k)!

(x

2

)k
. (2.1)

It is an easy exercise to show log-concavity for 0 ≤ j < ⌊n/2⌋ since we have
a direct expression for the coefficients. �

Note that the polynomials Iexc
n (x) are closely related to the Hermite poly-

nomials hn(x), whereby

∑

n≥0

hn(x)t
n

n!
= exp(tx− t2/2),

via the equation Iexc
n (x) = (−x)nhn(−1/2x). The Hermite polynomials are

known to be real-rooted (see for example Stanley [10, p. 505]).
The Schützenberger involution on tableaux, T → evac(T ), maps invo-

lutions to involutions and wexc(evac(σ)) = n − exc(σ), since evac(σ)i =
n+ 1− σn+1−i, so that Iwexc

n (x) = xnIexc
n (x−1), hence

Corollary 2.2. The coefficients of the polynomial Iwexc
n (x) are log-concave.

2.2. The descents and major index statistics. In the spirit of Adin et.
al. [1], we define

Gn(x1, . . . , xn−1) :=
∑

σ∈In

x
d1(σ)
1 x

d2(σ)
2 · · · x

dn−1(σ)
n−1 .

Theorem 2.3. The polynomial Gn(x1, . . . , xn−1) satisfies

Gn(x1, . . . , xn−1) = xn−1
1 xn−2

2 · · · xn−1Gn(x
−1
1 , . . . , x−1

n−1).

Proof. If σ ∈ In then the reading and insertion tableau associated with σ
under Robinson-Schensted correspondence (Stanley [9, Ch. 7]) are identical.
That is, there is a bijection between In and all standard Young tableaux
(SYT) on [1, n].

Let σ ∈ In with associated SYT T . The set Des(σ) corresponds to those
entries i in the tableau T such that (i + 1) is below and weakly to the left
of i. Let T⊥ be the tableau T reflected on its main diagonal. Notice that if
(i+1) is below and weakly to the left of i in T , then (i+1) is to the right of
and weakly above i in T⊥. The bijection between the class of SYT on [1, n]
and involutions In shows that to T⊥ there corresponds a unique involution
σ⊥ ∈ In, and has the property that {Des(σ),Des(σ⊥)} is a partition of the
set [1, n − 1]. In this manner, the reflection operation is an involution on
involutions.
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It follows that

di(σ
⊥) = |{j ≥ i : j ∈ Des(σ⊥)}|

= |{j ≥ i : j 6∈ Des(σ)}|

= n− i− |{j ≥ i : j ∈ Des(σ)}|

= n− i− di(σ).

We have shown that if σ ∈ In, then there is a unique σ⊥ ∈ In such that
(d1(σ

⊥), . . . , dn−1(σ
⊥)) = (n− 1− d1(σ), . . . , 1− dn−1(σ)). �

Both polynomials Id
n(q) and Imaj

n (q) are instances of the G polynomial

since Id
n(q) = Gn(q, 1, . . . , 1) and Imaj

n (q) = Gn(q, q, . . . , q). Comparing co-
efficients on both sides of the symmetric G relation yields

Corollary 2.4. The polynomials Id
n(t) and Imaj

n (t) are symmetric.

Symmetry of the polynomials Id
n(x) and J d

n (t) was conjectured by Du-
mont and first proven by Strehl [11], using a method similar to that of the
previous theorem for the coefficients of Id

n(x). A separate argument was
used to prove symmetry of J d

n (t) because for σ ∈ Jn, it is not necessarily
true that σ⊥ ∈ Jn. Theorem 2.3 allows us to show symmetry of the joint
distribution of (d,maj) on In since

∑

σ∈In
td(σ)qmaj(σ) = Gn(tq, q, . . . , q).

Corollary 2.5. The polynomial

Id,maj
n (t, q) =

∑

σ∈In

td(σ)qmaj(σ)

is symmetric in the sense that [tiqj ]Id,maj
n (t, q) = [tn−1−iq(

n

2)−j]Id,maj
n (t, q).

Hultman [8] recently proved that for any finite Coxeter system (W,S),
the associated descent polynomial

∑

w tdW (w) is symmetric where the sum
ranges over all w ∈ W with w2 = idw. Désarménien and Foata [7] use an
elegant method involving Schur functions to derive the generating function

∑

n≥0

Hn(z1, z2, t, q)u
n

(t; q)n
=

∑

r≥0

tr
1

(z1u; q)r+1

∏

0≤i<j≤r

1

1− u2z2qi+j
(2.2)

where Hn(z1, z2, t, q) :=
∑

σ∈In
z
fix(σ)
1 z

trans(σ)
2 td(σ)qmaj(σ), (a; q)0 = 1 and

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1). The generating functions for the

polynomials Id
n(t), I

maj
n (q) are immediate from this:

∑

n≥0

Id
n(t)u

n

(1− t)n
=

∑

r≥0

tr
(

1

(1− u)r+1(1− u2)r(r+1)/2

)

; (2.3)

∑

n≥0

J d
n (t)u

n

(1− t)n
=

∑

r≥0

tr
(

1

(1− u2)r(r+1)/2

)

; (2.4)

∑

n≥0

Imaj
n (q)un

(q; q)n
=

∑

r≥0

1

(u; q)r+1

∏

0≤i<j≤r

1

(1− u2qi+j)
. (2.5)

By extracting the appropriate coefficients, we now show partial unimodality
of Id

n(q) and J d
n (q). The onerous aspect of proving total unimodality using
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these direct expressions seems to be the appearance of both r and
(

r+1
2

)

within binomial terms.

Theorem 2.6. For all 1 ≤ i ≤ n0.925/10, [ti]J d
n (t) < [ti+1]J d

n (t) and
[tn+1−i]J d

n (t) > [tn+2−i]J d
n (t).

Proof. Extracting the coefficient of un in Equation (2.4), one finds

J d
n (t) =

n
∑

p=1

αn,pt
p =

n
∑

p=1

tp

{

p−1
∑

k=0

(−1)k
(

n+ 1

k

)(
(p−k+1

2

)

+ n/2− 1

n/2

)

}

.

Inverting this gives

fn(p) :=

(
(p+1

2

)

+ n/2− 1

n/2

)

=

p−1
∑

i=0

(

n+ i

n

)

αn,p−i.

For p ≥ 2,

fn(p)− fn(p − 1)

= αn,p − αn,p−1 +

p−1
∑

i=1

(

n+ i

i

)

αn,p−i −

p−2
∑

i=1

(

n+ i

i

)

αn,p−1−i

= αn,p − αn,p−1 +

(

n+ p− 1

p− 1

)

αn,1 +

p−2
∑

i=1

(

n+ i

i

)

(αn,p−i − αn,p−1−i)

≤ αn,p − αn,p−1 +

(

n+ p− 1

p− 1

)

αn,1 + (n+ 1)

p−2
∑

i=1

(

n+ i

i

)

(αn,p−i − αn,p−1−i)

≤ αn,p − αn,p−1 + (n+ 1)(fn(p − 1)− fn(p− 2)).

Thus αn,p − αn,p−1 ≥ fn(p) − fn(p − 1) − (n + 1)(fn(p − 1) − fn(p − 2)).
The right hand side of the previous inequality is positive for p not too large.
Notice that

fn(p)

fn(p − 1)
≥

(

1 +
n

p2 + p− 2

)p

≥

(

1 +
n+ 2

2p2

)p

which, in turn, is bounded below by n+ 2 when p ≤ n0.925/10. The second
inequality follows from symmetry as shown in Strehl [11]. �

Theorem 2.7. For all 1 ≤ k ≤ 0.175n0.931, [tk−1]Id
n(t) < [tk]Id

n(t) and
[tn−1−k]Id

n(t) > [tn−k]Id
n(t).

Proof. Extracting the coefficient of un in Equation (2.3) we find

Id
n(t) =

n−1
∑

k=0

βn,kt
k =

n−1
∑

k=0

tk







k
∑

j=0

(

n+ 1

j

)

(−1)jγ(n, k − j)
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where γ(n, 0);= 1 and γ(n, r) :=
∑⌊n/2⌋

i=0

(n−2i+r
r

)(i+(r+1
2 )−1

i

)

for r > 0. Thus
for 0 ≤ k ≤ n,

γ(n, k) =
k
∑

i=0

(

n+ i

i

)

βn,k−i

and so

γ(n, k)− γ(n, k − 1)

=

k−1
∑

i=0

(

n+ i

i

)

(βn,k−i − βn,k−1−i) +

(

n+ k

k

)

= βn,k − βn,k−1 +
k−2
∑

i=0

(

n+ i+ 1

i+ 1

)

(βn,k−1−i − βn,k−2−i) +

(

n+ k

k

)

< βn,k − βn,k−1 + (n+ 1)
k−2
∑

i=0

(

n+ i

i

)

(βn,k−1−i − βn,k−2−i) +

(

n+ k

k

)

= βn,k − βn,k−1 + (n+ 1)

(

γ(n, k − 1)− γ(n, k − 2)−

(

n+ k − 1

k − 1

))

+

(

n+ k

k

)

< βn,k − βn,k−1 + (n+ 1)γ(n, k − 1).

It suffices to show that for n and k as stated in the theorem, γ(n, k) >
(n+ 2)γ(n, k − 1). One may also write

γ(n, k) = [un]
(1 + u)k+1

(1− u2)(
k+2
2 )

and since n > k + 1 we have

γ(n, k) =

⌊k+1/2⌋
∑

i=0

(

k + 1

n− 2⌊n/2⌋ + 2i

)

[u2(⌊n/2⌋−i)]
1

(1− u2)(
k+2
2 )

>

⌊k/2⌋
∑

i=0

(

k

n− 2⌊n/2⌋ + 2i

)

[u2(⌊n/2⌋−i)]
1

(1− u2)(
k+2
2 )

.

Now for all m ≥ (n − k − 2)/2,
(
(k+2

2

)

+m

m+ 1

)

>

(

1 +
2m

(k + 1)(k + 2)

)k+1((k+1
2

)

+m

m+ 1

)

> (n+ 2)

(
(k+1

2

)

+m

m+ 1

)

.

for k ≤ 0.175n0.931, hence

γ(n, k) > (n+ 2)

⌊k/2⌋
∑

i=0

(

k

n− 2⌊n/2⌋ + 2i

)

[u2(⌊n/2⌋−i)]
1

(1− u2)(
k+1
2 )

= (n+ 2)γ(n, k − 1),
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giving the first inequality. Again, symmetry of the Id
n(t) polynomial yields

the second inequality. �

2.3. The inversions statistic. The generating function for the inversions
statistic on involutions is intimately related to the q-Hermite polynomi-
als, as studied by Désarménien [6]. Let an(k, j) be the number of invo-
lutions in In with k fixed points and j inversions, and define Zn(x, q) :=
∑

k,j an(k, j)q
jxk. Désarménien [6, Eqns. 3.10,3.11] showed

Zn+1(x, q) = xZn(x, q) + q

(

1− q2n

1− q2

)

Zn−1(x, q)

for all n > 1 with Z0(x, q) = 1 and Z1(x, q) = x. Setting x = 1, 0, yields the
following proposition.

Proposition 2.8. For all n ≥ 0,

I inv
n+2(q) = I inv

n+1(q) + q

(

1− q2(n+1)

1− q2

)

I inv
n (q),

where I inv
0 (q),I inv

1 (q) := 1 and for n ≥ 0,

J inv
n+2(q) = q

(

1− q2(n+1)

1− q2

)

J inv
n (q),

where J inv
0 (q) = 1.

The above recurrences can also be derived in a straightforward manner
using a special case of Equation (3.1). The coefficients of I inv

n (q) are neither
log-concave nor unimodal (see Figure 1) but the recursion in the previous
proposition admits a solution as a matrix product, which may be of benefit
in approaching Conjecture 4.1(ii).

Proposition 2.9. Let gi(q) :=
∑i−2

j=0 q
1+2j and An(q) :=

∏n
i=2

(

1 1
gi(q) 0

)

,

then I inv
n (q) = An(q)1,1 +An(q)2,1.

Proof. For all n ≥ 2, we may write

I inv
n (q) =

n
∏

i=1

Yi(q)

where Yn(q) := I inv
n (q)/I inv

n−1(q) and I inv
0 (q),I inv

1 (q) := 1. From the first
recurrence in Proposition 2.8 the polynomial Yn(q) satisfies the recurrence
Yn(q) = 1 + gn−1(q)/Yn−1(q) for all n ≥ 2 where gn(q) := q + q3 + . . . +
q2n−3. Using this, the product YiYi+1 · · · Yn may be written in the form
αi(q)Yi(q) + βi(q). It is easily seen that αn(q) = 1, βn(q) = 0 and

(

αi(q)
βi(q)

)

=

(

1 1
gi+1(q) 0

)(

αi+1(q)
βi+1(q)

)

.

Thus we have I inv
n (q) = α1(q)Y1(q)+β1(q) = α1(q)+β1(q), since Y1(q) = 1,

and
(

α1(q)
β1(q)

)

=

(

1 1
g2(q) 0

)(

1 1
g3(q) 0

)

· · ·

(

1 1
gn(q) 0

)(

1
0

)

.
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�

Theorem 2.10. The coefficients of the polynomial J inv
n (q) are log-concave.

Proof. Solving the second recurrence in Proposition 2.8 we get:

J inv
2m (q) = qm

m−1
∏

i=1

1− q2(2i+1)

1− q2
.

Set u = q2 and notice that the sequence of non-zero coefficients in J inv
n (q)

is the same as
∏m−1

i=1

1− u2i+1

1− u
. The coefficients of the polynomials (1 −

u2i+1)/(1− u) are non-negative log-concave sequences with no internal zero
coefficients. Thus using Stanley [10, Prop. 2], the product of all such poly-
nomials will also be log-concave with no internal zero coefficients. �

3. Involutions in Coxeter groups of types B and D

In this section we give recursive expressions for the inversion polynomials
of involutions for Coxeter groups of types B and D. We use the notation of
Björner and Brenti [2].

Coxeter groups of type B, the ‘signed permutations’, are defined as fol-
lows: let SB

n be the group of all bijections π on the set [±n]\{0} such that
π(−a) = −π(a) for all a ∈ [±n]. For π ∈ SB

n , define

N1(π(1), . . . , π(n)) := |{1 ≤ i ≤ n : π(i) < 0}|

N2(π(1), . . . , π(n)) := | {1 ≤ i < j ≤ n : π(i) + π(j) < 0} |.

Let SD
n be the subgroup of SB

n consisting of all signed permutations π ∈ SB
n

such that there are an even number of negative entries in the window of
π, i.e. SD

n := {π ∈ SB
n : N1(π) ≡ 0(mod 2)}. For completeness let us

also define those signed permutations containing an odd number of negative
signs in the window of π, SO

n = SB
n \S

D
n .

The inversions statistics on SB
n and SD

n are defined slightly differently to
inv on Sn. From [2, Equations (8.1) and (8.18)],

invB(π) := inv(π(1), . . . , π(n)) +N1(π(1), . . . , π(n))

+N2(π(1), . . . , π(n))

invD(π) := inv(π(1), . . . , π(n)) +N2(π(1), . . . , π(n)).

Let us mention that in the symmetric group setting,
∑

π∈SB
n

qinvB(π) = [2]q[4]q . . . [2n]q

∑

π∈SD
n

qinvD(π) = [2]q[4]q · · · [2n− 2]q[n]q.

where [i]q := 1 + q + q2 + . . .+ qi−1 (see [2, Theorem 7.1.5.])
Define IBn := {π ∈ SB

n : π2 = id}, IDn := {π ∈ SD
n : π2 = id} and

IOn := IBn \IDn . Let

IBn(q) :=
∑

π∈IBn

qinvB(π),
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with IDn(q) and IOn(q) similarly defined. To aid the proof of the fol-
lowing two theorems, we introduce some notation concerning the recursive
construction of these signed permutations.

Let π ∈ IBn and denote by π(n+1,n+1) the signed permutation π′ ∈ IBn+1

such that π′(i) = π(i), for 1 ≤ i,≤ n and π′(n + 1) = n + 1. Similarly let

π(−(n+1),n+1) be the signed permutation π′ ∈ IBn+1 such that π′(i) = π(i) for
1 ≤ i ≤ n and π′(n+ 1) = −(n+ 1).

For π ∈ IBn and k ∈ [±(n+1)]−{0}, let π(k,n+2) be the signed permutation
π′ ∈ IBn+2 such that

• π′(|k|) = (n+ 2)sgn(k), π′(n+ 2) = k,
• for all 1 ≤ i ≤ n,

π′(i+ 1[i ≥ |k|]) = π(i) + sgn(π(i))1[|π(i)| ≥ |k|]

where sgn(a) = +1 if a > 0 and −1 otherwise. Consequently IBn+2, I
D
n+2

and IOn+2 may be constructed recursively,

IBn+2 =
⊎

π∈IBn+1

{π(n+2,n+2), π(−(n+2),n+2)} ⊎

n+1
⊎

k=1
π∈IBn

{π(k,n+2), π(−k,n+2)} (3.1)

IDn+2 =
⊎

π∈IDn+1

{π(n+2,n+2)} ⊎
⊎

π∈IOn+1

{π(−(n+2),n+2)} ⊎

n+1
⊎

k=1
π∈IDn

{π(k,n+2), π(−k,n+2)} (3.2)

IOn+2 =
⊎

π∈IOn+1

{π(n+2,n+2)} ⊎
⊎

π∈IDn+1

{π(−(n+2),n+2)} ⊎

n+1
⊎

k=1
π∈IOn

{π(k,n+2), π(−k,n+2)}. (3.3)

Theorem 3.1. For all n ≥ 2,

IBn+2(q) = (1 + q2n+3)IBn+1(q) +
q(1 + q2)(1− q2(n+1))

1− q2
IBn(q)

with initial polynomials IB2(q) = 1+ 2q + 2q3 + q4, IB3(q) = 1 + 3q + q2 +
3q3 + 2q4 + 2q5 + 3q6 + q7 + 3q8 + q9.

Proof. Using Equation (3.1),

IBn+2(q) =
∑

π∈IBn+1

qinvB(π(n+2,n+2)) + qinvB(π(−(n+2),n+2))

+

n+1
∑

k=1

∑

π∈IBn

qinvB(π(k,n+2)) + qinvB(π(−k,n+2)).
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If π ∈ IBn+1, then invB(π
(n+2,n+2)) = invB(π(1), . . . , π(n + 1), n + 2) =

invB(π) and invB(π
(−(n+2),n+2)) = invB(π) + 2n + 3. Similarly if π ∈ IBn

and 1 ≤ k ≤ n + 1, then invB(π
(k,n+2)) = invB(π) + 2n + 3 − 2k and

invB(π
(−k,n+2)) = invB(π) + 2k + 1. Hence

IBn+2(q) =
∑

π∈IBn+1

qinvB(π) + qinvB(π)+2n+3

+

n+1
∑

k=1

∑

π∈IBn

qinvB(π)+2n−2k+3 + qinvB(π)+2k+1

= (1 + q2n+3)IBn+1(q) + IBn(q)

n+1
∑

k=1

(q2n−2k+3 + q2k+1).

�

We may express IBn(q) in a somewhat closed form, as was done in
Proposition 2.9; for all n ≥ 3, IBn(q) = (Vn(q)1,1 + Vn(q)2,1)(1 + 2q +
2q3 + q4) where

Vn(q) =

n
∏

i=3

(

ui(q) 1
vi(q) 0

)

and ui(q) := 1 + q2i−1, vi(q) := (1 + q2)(1− q2(i−1))/(1− q2).

Theorem 3.2. For all n ≥ 2,

IDn+1(q) = IDn(q) + q2nIOn(q) +

(

q2(n−1) +
q(1− q2n)

1− q2

)

IDn−1(q)

IOn+1(q) = IOn(q) + q2nIDn(q) +

(

q2(n−1) +
q(1− q2n)

1− q2

)

IOn−1(q)

with initial polynomials ID2(q),IO2(q) = 1+ q+ q2, ID3(q) = (1+ q+ q2+
q3)(1 + q3) + 2q and IO3(q) = (1 + q + q2 + q3)(1 + q3) + 2q5.

Proof. Using Equation (3.2),

IDn+2(q) =
∑

π∈IDn+1

qinvD(π(n+2,n+2)) +
∑

π∈IOn+1

qinvD(π(−(n+2),n+2))

+

n+1
∑

k=1

∑

π∈IDn

qinvD(π(k,n+2)) + qinvD(π(−k,n+2)).

If π ∈ IDn+1, I
O
n+1, then invD(π

(n+2,n+2)) = invD(π) and invD(π
(−(n+2),n+2)) =

invD(π) + 2(n + 1). Also if π ∈ IDn , then invD(π
(k,n+2)) = 2n − 2k + 3 +

invD(π) and invD(π
(−k,n+2)) = invD(π) + 2n. Hence,

IDn+2(q) =
∑

π∈IDn+1

qinvD(π) +
∑

π∈IOn+1

qinvD(π)+2(n+1)

+

n+1
∑

k=1

∑

π∈IDn

qinvD(π)(q2n−2k+3 + q2n).
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The second recurrence is derived in the same manner by using Equation
(3.3). �

Let JD
n ⊂ IDn denote the class of all signed permutations such that

π(i) 6= ±i for all i ∈ [1, n] and consider the generating function JDn(q) :=
∑

π∈JD
n
qinvD(π).

Theorem 3.3. For all even n ≥ 2,

JDn(q) = 2qn/2
n/2−1
∏

i=1

(1 + q4i)(1 − q4i+2)

1− q2
.

Proof. Since JD
n is a subclass of IDn and from the characterization in Equa-

tion (3.2), one has

JDn+4(q) =
∑

π∈JD
n+2

qinvD(π(n+3,n+4)) + qinvD(π(−(n+3),n+4))

+
∑

1≤i<j≤n+2

∑

π∈JD
n

(

qinvD(π(i,n+3)(j,n+4)) + qinvD(π(i,n+4)(j,n+3))

+qinvD(π(−i,n+3)(j,n+4)) + qinvD(π(−i,n+4)(j,n+3))

+qinvD(π(i,n+3)(−j,n+4)) + qinvD(π(i,n+4)(−j,n+3))

+qinvD(π(−i,n+3)(−j,n+4)) + qinvD(π(−i,n+4)(−j,n+4))
)

.

Now if π ∈ JD
n+2 then invD(π

(n+3,n+4)) = invD(π)+1 and invD(π
(−(n+3),n+4)) =

invD(π) + 4n + 9. A careful analysis shows that for π ∈ JD
n and 1 ≤ i, j ≤

n+ 2, i 6= j,

invD(π
(i,n+3)(j,n+4)) = invD(π) + 4n − 2(i+ j) + 10 + 2 · 1[i > j]

invD(π
(−i,n+3)(−j,n+4)) = invD(π) + 4n + 2(i+ j) + 2− 2 · 1[i > j]

invD(π
(−i,n+3)(j,n+4)) = invD(π) + 4n + 2(i− j) + 6 + 2 · 1[i > j]

invD(π
(i,n+3)(−j,n+4)) = invD(π) + 4n + 2(j − i) + 6− 2 · 1[i > j].

Thus we have

JDn+4(q)

= JDn+2(q)(q + q4n+9) + JDn(q)×
∑

1≤i<j≤n+2

(

(q10 + q12)q4n−2(i+j) + (q2 + 1)q4n+2(i+j)

+(q6 + q8)q4n+2(i−j) + (q6 + q4)q4n+2(j−i)
)

= JDn+2(q)(q + q4n+9) + JDn(q)
q4(q4(n+1) − 1)(q2n+4 − 1)(q2n + 1)

(q2 − 1)2
.

The result follows by inserting the expression from the theorem, we omit
the details. �

Notice that if n/2 is even (resp. odd) then the coefficients of odd (resp.
even) powers of q in JDn(q) are zero.
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Theorem 3.4. The coefficients of the even (resp. odd) powers of q in
JDn(q) are symmetric and unimodal when n/2 is even (resp. odd).

Proof. From Stanley [10, Proposition 1], we have that if A(q) and B(q) are
symmetric and unimodal polynomials, both with non-negative coefficients,
then A(q)B(q) is also symmetric and unimodal. From the expression in
Theorem 3.3, one may write JDn+2(q) = (q + q2 + . . . + q2n + 2q2n+1 +
q2n+2 + . . . + q4n+1)JDn(q). The result follows inductively. �

The generating function of the descent polynomial over involutions of
Coxeter groups of types Bn and Dn is also seen to be symmetric, as was
mentioned in Section 2, thanks to Hultman’s [8] result.

4. Comments

Unlike the Eulerian polynomial, whose roots are all real and from which
log-concavity of the coefficients follows, the roots of all polynomials with
the statistics mentioned above are not real for n ≤ 14. Furthermore, they
do not lie in the nice triangular π/3 region of the complex plane about the
negative real-line from which it would be possible to infer log-concavity (see
Stanley [10, Prop. 7].) Log-concavity of the coefficients holds numerically
for all n ≤ 14. We extend the original conjecture,

Conjecture 4.1. For all n ≥ 4,

(i) the sequence {[qi]Imaj
n (q)}

(n2)
i=0 is log-concave,

(ii) for 2 ≤ i ≤
(n
2

)

− 2 (see Figure 1)

([qi]I inv
n (q))2 ≥ ([qi−2]I inv

n (q))([qi+2]I inv
n (q)),

(iii) the sequences {[q2i]InvBn (q)}i≥0 and {[q2i+1]InvBn (q)}i≥0 are uni-
modal,

(iv) the sequences {[q2i]InvDn (q)}i≥0 and {[q2i+1]InvDn (q)}i≥0 are uni-
modal,

(v) the sequences {[q2i]InvOn (q)}i≥0 and {[q2i+1]InvOn (q)}i≥0 are uni-
modal.

We list here those polynomials for n = 10 to exemplify these conjectures,

I
d
10

(x) = 1 + 25x + 289x
2
+ 1397x

3
+ 3036x

4
+ 3036x

5
+ 1397x

6
+ 289x

7
+ 25x

8
+ x

9
.

I
exc
10

(x) = 1 + 45x + 630x2 + 3150x3 + 4725x4 + 945x5
.

I
maj
10

(x) = 1 + x + 2x2 + 4x3 + 7x4 + 12x5 + 19x6 + 29x7 + 44x8 + 64x9 + 89x10 + 119x11

+158x12 + 201x13 + 250x14 + 304x15 + 358x16 + 412x17 + 464x18 + 508x19 + 546x20

+572x21 + 584x22 + 584x23 + 572x24 + 546x25 + 508x26 + 464x27 + 412x28 + 358x29

+304x
30

+ 250x
31

+ 201x
32

+ 158x
33

+ 119x
34

+ 89x
35

+ 64x
36

+ 44x
37

+ 29x
38

+19x39 + 12x40 + 7x41 + 4x42 + 2x43 + x
44 + x

45
.

I
inv
10

(x) = 1 + 9x + 28x2 + 43x3 + 64x4 + 98x5 + 114x6 + 165x7 + 179x8 + 234x9 + 254x10

+299x11 + 333x12 + 353x13 + 408x14 + 392x15 + 471x16 + 411x17 + 513x18 + 409x19

+529x20 + 380x21 + 517x22 + 335x23 + 478x24 + 281x25 + 417x26 + 225x27 + 343x28

+171x29 + 264x30 + 124x31 + 189x32 + 85x33 + 123x34 + 56x35 + 72x36 + 35x37

+37x38 + 20x39 + 16x40 + 10x41 + 5x42 + 4x43 + x
44 + x

45
.

IB10(x) = 1 + 10 x + 36x
2 + 73 x

3 + 157 x
4 + 307 x

5 + 456 x
6 + 807x

7 + 1121x
8 + 1629x

9

+2323 x
10 + 2835 x

11 + 4124 x
12 + 4508x

13 + 6468x
14 + 6715 x

15 + 9256 x
16

+9469 x
17 + 12333 x

18 + 12712 x
19 + 15500 x

20 + 16306 x
21 + 18560 x

22 + 20048x
23
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+21334 x
24 + 23730 x

25 + 23626 x
26 + 27127 x

27 + 25285 x
28 + 29989 x

29 + 26242 x
30

+32053 x
31 + 26550 x

32 + 33126 x
33 + 26310 x

34 + 33138 x
35 + 25641 x

36 + 32124 x
37

+24639 x
38 + 30194 x

39 + 23393 x
40 + 27534 x

41 + 21953 x
42 + 24364 x

43 + 20369 x
44

+20935 x
45 + 18657 x

46 + 17519 x
47 + 16839 x

48 + 14343 x
49 + 14925 x

50 + 11549 x
51

+12956 x
52 + 9199 x

53 + 10967 x
54 + 7288x

55 + 9019 x
56 + 5762 x

57 + 7178 x
58

+4563 x
59

+ 5525 x
60

+ 3633 x
61

+ 4107x
62

+ 2909x
63

+ 2962 x
64

+ 2331 x
65

+2084 x
66

+ 1858 x
67

+ 1444 x
68

+ 1460x
69

+ 986x
70

+ 1123 x
71

+ 671 x
72

+ 834 x
73

+454x
74 + 589 x

75 + 312 x
76 + 394 x

77 + 217 x
78 + 255 x

79 + 156x
80 + 156x

81

+111x
82 + 91 x

83 + 79 x
84 + 52 x

85 + 56 x
86 + 30 x

87 + 40 x
88 + 17 x

89 + 26 x
90

+10x
91 + 15x

92 + 5x
93 + 5x

94 + 3x
95 + 2x

96 + 3x
97 + x

98 + 3 x
99 + x

100
.

ID10(x) = 1 + 10x + 35x2 + 61x3 + 97x4 + 158x5 + 204x6 + 308x7 + 370x8 + 495x9 + 595x10

+734x11 + 887x12 + 1034x13 + 1229x14 + 1381x15 + 1607x16 + 1764x17 + 2014x18

+2182x19 + 2432x20 + 2606x21 + 2827x22 + 3012x23 + 3175x24 + 3377x25 + 3451x26

+3663x27 + 3654x28 + 3863x29 + 3781x30 + 3970x31 + 3819x32 + 3964x33 + 3766x34

+3859x
35

+ 3642x
36

+ 3670x
37

+ 3432x
38

+ 3402x
39

+ 3156x
40

+ 3085x
41

+ 2844x
42

+2736x43 + 2511x44 + 2378x45 + 2188x46 + 2036x47 + 1877x48 + 1707x49 + 1568x50

+1396x51 + 1284x52 + 1128x53 + 1035x54 + 899x55 + 818x56 + 708x57 + 642x58

+553x59 + 497x60 + 428x61 + 380x62 + 322x63 + 284x64 + 236x65 + 206x66 + 168x67

+142x68 + 116x69 + 98x70 + 81x71 + 68x72 + 54x73 + 46x74 + 36x75 + 32x76 + 23x77

+21x78 + 18x79 + 14x80 + 11x81 + 8x82 + 5x83 + 4x84 + 2x85 + x
86 + 2x87 + x

88

+3x
89

+ x
90

.

IO10(x) = 1 + 8x + 23x
2
+ 41x

3
+ 77x

4
+ 120x

5
+ 180x

6
+ 268x

7
+ 332x

8
+ 461x

9
+ 547x

10

+718x11 + 835x12 + 1040x13 + 1181x14 + 1407x15 + 1569x16 + 1808x17 + 1994x18

+2236x
19

+ 2448x
20

+ 2672x
21

+ 2875x
22

+ 3078x
23

+ 3245x
24

+ 3421x
25

+ 3545x
26

+3679x27 + 3758x28 + 3847x29 + 3877x30 + 3926x31 + 3899x32 + 3906x33 + 3826x34

+3797x35 + 3664x36 + 3610x37 + 3422x38 + 3358x39 + 3128x40 + 3067x41 + 2800x42

+2744x43 + 2461x44 + 2408x45 + 2138x46 + 2080x47 + 1835x48 + 1759x49 + 1542x50

+1446x51 + 1268x52 + 1164x53 + 1025x54 + 919x55 + 812x56 + 708x57 + 634x58

+535x59 + 491x60 + 400x61 + 374x62 + 296x63 + 284x64 + 218x65 + 214x66 + 156x67

+150x
68

+ 110x
69

+ 104x
70

+ 81x
71

+ 72x
72

+ 54x
73

+ 46x
74

+ 34x
75

+ 28x
76

+ 23x
77

+17x78 + 16x79 + 10x80 + 11x81 + 6x82 + 7x83 + 4x84 + 4x85 + x
86 + 2x87 + x

88

+x
89 + x

90
.
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Lotharingien de Combinatoire I, Strasbourg 1980. Publications de l’I.R.M.A. 140/S-
02, Strasbourg, 1981.

E-mail address: dukes@labri.fr
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