W. M. B. DUKES

ABSTRACT. In this paper we look at polynomials arising from statistics on the classes of involutions, I_n , and involutions with no fixed points, J_n , in the symmetric group. Our results are motivated by F. Brenti's conjecture [3] which states that the Eulerian distribution of I_n is logconcave. Symmetry of the generating functions is shown for the statistics d, maj and the joint distribution (d, maj). We show that exc is logconcave on I_n , inv is log-concave on J_n and d is partially unimodal on both I_n and J_n . We also give recurrences and explicit forms for the generating functions of the inversions statistic on involutions in Coxeter groups of types B_n and D_n . Symmetry and unimodality of inv is shown on the subclass of signed permutations in D_n with no fixed points. In light of these new results, we present further conjectures at the end of the paper.

1. INTRODUCTION

In this paper we look at polynomials arising from statistics on the classes of involutions and involutions with no fixed points in the symmetric group.

Let S_n be the symmetric group on [1, n]. Call $Des(\sigma) := \{i : 1 \leq i < n \text{ and } \sigma_i > \sigma_{i+1}\}$ the descent set of $\sigma \in S_n$ and the number of descents is denoted $d(\sigma) := |Des(\sigma)|$. We further define $d_i(\sigma) := |\{j \geq i : j \in Des(\sigma)\}|$, the partial descents of σ for $1 \leq i < n$. The major index of σ is $maj(\sigma) := \sum_{i \in Des(\sigma)} i$ and the number of inversions is $inv(\sigma) := |\{1 \leq i < j \leq n : \sigma_i > \sigma_j\}|$. The number of excedances is $exc(\sigma) := |\{1 \leq i \leq n : \sigma_i > i\}|$ and weak excedances is $wexc(\sigma) := |\{1 \leq i \leq n : \sigma_i \geq i\}|$. Let $fix(\sigma)$ and $trans(\sigma)$ denote the number of fixed points and transpositions of σ , respectively. We use the notation $[x^i]P(x)$ for the coefficient of x^i in the polynomial P(x).

For a statistic $stat: S_n \to \mathbf{N}_0$, define the polynomials

$$\mathcal{I}_n^{stat}(x) := \sum_{\sigma \in I_n} x^{stat(\sigma)}, \qquad \mathcal{J}_n^{stat}(x) := \sum_{\sigma \in J_n} x^{stat(\sigma)},$$

where $I_n := \{ \sigma \in S_n : \sigma^2 = \text{id} \}$ and $J_n := \{ \sigma \in I_n : fix(\sigma) = 0 \}$. For an arbitrary collection $S'_n \subseteq S_n$, the sequence of coefficients of $\sum_{\pi \in S'_n} x^{d(\pi)}$ is termed the *Eulerian distribution* of S'_n . The results in this paper are motivated by

Conjecture 1.1 (Brenti [3]). The Eulerian distribution of I_n is log-concave.

Key words and phrases. Permutation statistics. Involutions. Eulerian distribution. Log-concave.

Supported by EC's Research Training Network 'Algebraic Combinatorics in Europe', grant HPRN-CT-2001-00272 while the author was at Università di Roma Tor Vergata, Italy.

We propose further conjectures concerning statistics on different classes of involutions in the final section.

2. Involutions in the Symmetric group

2.1. The excedances statistic.

Theorem 2.1. The coefficients of the polynomial $\mathcal{I}_n^{exc}(x)$ are log-concave.

Proof. The number $exc(\sigma)$ is precisely the number of 2-cycles in an involution, so we have

$$\mathcal{I}_{n}^{exc}(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{n!}{k!(n-2k)!} \left(\frac{x}{2}\right)^{k}.$$
 (2.1)

It is an easy exercise to show log-concavity for $0 \le j < \lfloor n/2 \rfloor$ since we have a direct expression for the coefficients.

Note that the polynomials $\mathcal{I}_n^{exc}(x)$ are closely related to the Hermite polynomials $h_n(x)$, whereby

$$\sum_{n>0} \frac{h_n(x)t^n}{n!} = \exp(tx - t^2/2),$$

via the equation $\mathcal{I}_n^{exc}(x) = (-x)^n h_n(-1/2x)$. The Hermite polynomials are known to be real-rooted (see for example Stanley [10, p. 505]).

The Schützenberger involution on tableaux, $T \to evac(T)$, maps involutions to involutions and $wexc(evac(\sigma)) = n - exc(\sigma)$, since $evac(\sigma)_i = n + 1 - \sigma_{n+1-i}$, so that $\mathcal{I}_n^{wexc}(x) = x^n \mathcal{I}_n^{exc}(x^{-1})$, hence

Corollary 2.2. The coefficients of the polynomial $\mathcal{I}_n^{wexc}(x)$ are log-concave.

2.2. The descents and major index statistics. In the spirit of Adin et. al. [1], we define

$$\mathcal{G}_n(x_1,\ldots,x_{n-1}) := \sum_{\sigma \in I_n} x_1^{d_1(\sigma)} x_2^{d_2(\sigma)} \cdots x_{n-1}^{d_{n-1}(\sigma)}.$$

Theorem 2.3. The polynomial $\mathcal{G}_n(x_1, \ldots, x_{n-1})$ satisfies

$$\mathcal{G}_n(x_1,\ldots,x_{n-1}) = x_1^{n-1}x_2^{n-2}\cdots x_{n-1}\mathcal{G}_n(x_1^{-1},\ldots,x_{n-1}^{-1}).$$

Proof. If $\sigma \in I_n$ then the reading and insertion tableau associated with σ under Robinson-Schensted correspondence (Stanley [9, Ch. 7]) are identical. That is, there is a bijection between I_n and all standard Young tableaux (SYT) on [1, n].

Let $\sigma \in I_n$ with associated SYT T. The set $Des(\sigma)$ corresponds to those entries i in the tableau T such that (i + 1) is below and weakly to the left of i. Let T^{\perp} be the tableau T reflected on its main diagonal. Notice that if (i+1) is below and weakly to the left of i in T, then (i+1) is to the right of and weakly above i in T^{\perp} . The bijection between the class of SYT on [1, n]and involutions I_n shows that to T^{\perp} there corresponds a unique involution $\sigma^{\perp} \in I_n$, and has the property that $\{Des(\sigma), Des(\sigma^{\perp})\}$ is a partition of the set [1, n - 1]. In this manner, the reflection operation is an involution on involutions. It follows that

$$\begin{aligned} d_i(\sigma^{\perp}) &= |\{j \ge i : j \in Des(\sigma^{\perp})\}| \\ &= |\{j \ge i : j \notin Des(\sigma)\}| \\ &= n - i - |\{j \ge i : j \in Des(\sigma)\}| \\ &= n - i - d_i(\sigma). \end{aligned}$$

We have shown that if $\sigma \in I_n$, then there is a unique $\sigma^{\perp} \in I_n$ such that $(d_1(\sigma^{\perp}), \ldots, d_{n-1}(\sigma^{\perp})) = (n-1-d_1(\sigma), \ldots, 1-d_{n-1}(\sigma)).$

Both polynomials $\mathcal{I}_n^d(q)$ and $\mathcal{I}_n^{maj}(q)$ are instances of the \mathcal{G} polynomial since $\mathcal{I}_n^d(q) = \mathcal{G}_n(q, 1, \ldots, 1)$ and $\mathcal{I}_n^{maj}(q) = \mathcal{G}_n(q, q, \ldots, q)$. Comparing coefficients on both sides of the symmetric \mathcal{G} relation yields

Corollary 2.4. The polynomials $\mathcal{I}_n^d(t)$ and $\mathcal{I}_n^{maj}(t)$ are symmetric.

Symmetry of the polynomials $\mathcal{I}_n^d(x)$ and $\mathcal{J}_n^d(t)$ was conjectured by Dumont and first proven by Strehl [11], using a method similar to that of the previous theorem for the coefficients of $\mathcal{I}_n^d(x)$. A separate argument was used to prove symmetry of $\mathcal{J}_n^d(t)$ because for $\sigma \in J_n$, it is not necessarily true that $\sigma^{\perp} \in J_n$. Theorem 2.3 allows us to show symmetry of the joint distribution of (d, maj) on I_n since $\sum_{\sigma \in I_n} t^{d(\sigma)} q^{maj(\sigma)} = \mathcal{G}_n(tq, q, \ldots, q)$.

Corollary 2.5. The polynomial

$$\mathcal{I}_n^{d,maj}(t,q) = \sum_{\sigma \in I_n} t^{d(\sigma)} q^{maj(\sigma)}$$

is symmetric in the sense that $[t^i q^j] \mathcal{I}_n^{d,maj}(t,q) = [t^{n-1-i} q^{\binom{n}{2}-j}] \mathcal{I}_n^{d,maj}(t,q).$

Hultman [8] recently proved that for any finite Coxeter system (W, S), the associated descent polynomial $\sum_{w} t^{d_W(w)}$ is symmetric where the sum ranges over all $w \in W$ with $w^2 = \mathrm{id}_w$. Désarménien and Foata [7] use an elegant method involving Schur functions to derive the generating function

$$\sum_{n \ge 0} \frac{H_n(z_1, z_2, t, q)u^n}{(t; q)_n} = \sum_{r \ge 0} t^r \frac{1}{(z_1 u; q)_{r+1}} \prod_{0 \le i < j \le r} \frac{1}{1 - u^2 z_2 q^{i+j}} \quad (2.2)$$

where $H_n(z_1, z_2, t, q) := \sum_{\sigma \in I_n} z_1^{fix(\sigma)} z_2^{trans(\sigma)} t^{d(\sigma)} q^{maj(\sigma)}$, $(a; q)_0 = 1$ and $(a; q)_n = (1 - a)(1 - aq) \cdots (1 - aq^{n-1})$. The generating functions for the polynomials $\mathcal{I}_n^d(t)$, $\mathcal{I}_n^{maj}(q)$ are immediate from this:

$$\sum_{n\geq 0} \frac{\mathcal{I}_n^d(t)u^n}{(1-t)^n} = \sum_{r\geq 0} t^r \left(\frac{1}{(1-u)^{r+1}(1-u^2)^{r(r+1)/2}}\right); \quad (2.3)$$

$$\sum_{n\geq 0} \frac{\mathcal{J}_n^d(t)u^n}{(1-t)^n} = \sum_{r\geq 0} t^r \left(\frac{1}{(1-u^2)^{r(r+1)/2}}\right);$$
(2.4)

$$\sum_{n \ge 0} \frac{\mathcal{I}_n^{maj}(q)u^n}{(q;q)_n} = \sum_{r \ge 0} \frac{1}{(u;q)_{r+1}} \prod_{0 \le i < j \le r} \frac{1}{(1-u^2q^{i+j})}.$$
 (2.5)

By extracting the appropriate coefficients, we now show partial unimodality of $\mathcal{I}_n^d(q)$ and $\mathcal{J}_n^d(q)$. The onerous aspect of proving total unimodality using these direct expressions seems to be the appearance of both r and $\binom{r+1}{2}$ within binomial terms.

Theorem 2.6. For all $1 \leq i \leq n^{0.925}/10$, $[t^i]\mathcal{J}_n^d(t) < [t^{i+1}]\mathcal{J}_n^d(t)$ and $[t^{n+1-i}]\mathcal{J}_n^d(t) > [t^{n+2-i}]\mathcal{J}_n^d(t)$.

Proof. Extracting the coefficient of u^n in Equation (2.4), one finds

$$\mathcal{J}_{n}^{d}(t) = \sum_{p=1}^{n} \alpha_{n,p} t^{p} = \sum_{p=1}^{n} t^{p} \left\{ \sum_{k=0}^{p-1} (-1)^{k} \binom{n+1}{k} \binom{\binom{p-k+1}{2} + n/2 - 1}{n/2} \right\}.$$

Inverting this gives

$$f_n(p) := \binom{\binom{p+1}{2} + n/2 - 1}{n/2} = \sum_{i=0}^{p-1} \binom{n+i}{n} \alpha_{n,p-i}.$$

For $p \geq 2$,

$$\begin{aligned} f_n(p) &- f_n(p-1) \\ &= \alpha_{n,p} - \alpha_{n,p-1} + \sum_{i=1}^{p-1} \binom{n+i}{i} \alpha_{n,p-i} - \sum_{i=1}^{p-2} \binom{n+i}{i} \alpha_{n,p-1-i} \\ &= \alpha_{n,p} - \alpha_{n,p-1} + \binom{n+p-1}{p-1} \alpha_{n,1} + \sum_{i=1}^{p-2} \binom{n+i}{i} (\alpha_{n,p-i} - \alpha_{n,p-1-i}) \\ &\leq \alpha_{n,p} - \alpha_{n,p-1} + \binom{n+p-1}{p-1} \alpha_{n,1} + (n+1) \sum_{i=1}^{p-2} \binom{n+i}{i} (\alpha_{n,p-i} - \alpha_{n,p-1-i}) \\ &\leq \alpha_{n,p} - \alpha_{n,p-1} + (n+1) (f_n(p-1) - f_n(p-2)). \end{aligned}$$

Thus $\alpha_{n,p} - \alpha_{n,p-1} \ge f_n(p) - f_n(p-1) - (n+1)(f_n(p-1) - f_n(p-2))$. The right hand side of the previous inequality is positive for p not too large. Notice that

$$\frac{f_n(p)}{f_n(p-1)} \geq \left(1 + \frac{n}{p^2 + p - 2}\right)^p$$
$$\geq \left(1 + \frac{n+2}{2p^2}\right)^p$$

which, in turn, is bounded below by n + 2 when $p \le n^{0.925}/10$. The second inequality follows from symmetry as shown in Strehl [11].

Theorem 2.7. For all $1 \le k \le 0.175n^{0.931}$, $[t^{k-1}]\mathcal{I}_n^d(t) < [t^k]\mathcal{I}_n^d(t)$ and $[t^{n-1-k}]\mathcal{I}_n^d(t) > [t^{n-k}]\mathcal{I}_n^d(t)$.

Proof. Extracting the coefficient of u^n in Equation (2.3) we find

$$\mathcal{I}_{n}^{d}(t) = \sum_{k=0}^{n-1} \beta_{n,k} t^{k} = \sum_{k=0}^{n-1} t^{k} \left\{ \sum_{j=0}^{k} \binom{n+1}{j} (-1)^{j} \gamma(n,k-j) \right\}$$

where $\gamma(n,0)$; = 1 and $\gamma(n,r) := \sum_{i=0}^{\lfloor n/2 \rfloor} {\binom{n-2i+r}{r}} {\binom{i+\binom{r+1}{2}-1}{i}}$ for r > 0. Thus for $0 \le k \le n$,

$$\gamma(n,k) = \sum_{i=0}^{k} {\binom{n+i}{i}} \beta_{n,k-i}$$

and so

$$\begin{split} \gamma(n,k) &- \gamma(n,k-1) \\ &= \sum_{i=0}^{k-1} \binom{n+i}{i} (\beta_{n,k-i} - \beta_{n,k-1-i}) + \binom{n+k}{k} \\ &= \beta_{n,k} - \beta_{n,k-1} + \sum_{i=0}^{k-2} \binom{n+i+1}{i+1} (\beta_{n,k-1-i} - \beta_{n,k-2-i}) + \binom{n+k}{k} \\ &< \beta_{n,k} - \beta_{n,k-1} + (n+1) \sum_{i=0}^{k-2} \binom{n+i}{i} (\beta_{n,k-1-i} - \beta_{n,k-2-i}) + \binom{n+k}{k} \\ &= \beta_{n,k} - \beta_{n,k-1} + (n+1) \left(\gamma(n,k-1) - \gamma(n,k-2) - \binom{n+k-1}{k-1} \right) \right) \\ &+ \binom{n+k}{k} \\ &< \beta_{n,k} - \beta_{n,k-1} + (n+1)\gamma(n,k-1). \end{split}$$

It suffices to show that for n and k as stated in the theorem, $\gamma(n,k) > (n+2)\gamma(n,k-1)$. One may also write

$$\gamma(n,k) = [u^n] \frac{(1+u)^{k+1}}{(1-u^2)^{\binom{k+2}{2}}}$$

and since n > k + 1 we have

$$\begin{split} \gamma(n,k) &= \sum_{i=0}^{\lfloor k+1/2 \rfloor} \binom{k+1}{n-2\lfloor n/2 \rfloor+2i} [u^{2(\lfloor n/2 \rfloor-i)}] \frac{1}{(1-u^2)^{\binom{k+2}{2}}} \\ &> \sum_{i=0}^{\lfloor k/2 \rfloor} \binom{k}{n-2\lfloor n/2 \rfloor+2i} [u^{2(\lfloor n/2 \rfloor-i)}] \frac{1}{(1-u^2)^{\binom{k+2}{2}}}. \end{split}$$

Now for all $m \ge (n-k-2)/2$,

$$\binom{\binom{k+2}{2}+m}{m+1} > \left(1+\frac{2m}{(k+1)(k+2)}\right)^{k+1} \binom{\binom{k+1}{2}+m}{m+1} \\ > (n+2)\binom{\binom{k+1}{2}+m}{m+1}.$$

for $k \le 0.175 n^{0.931}$, hence

$$\begin{split} \gamma(n,k) > & (n+2) \sum_{i=0}^{\lfloor k/2 \rfloor} \binom{k}{n-2\lfloor n/2 \rfloor + 2i} [u^{2(\lfloor n/2 \rfloor - i)}] \frac{1}{(1-u^2)^{\binom{k+1}{2}}} \\ &= & (n+2)\gamma(n,k-1), \end{split}$$

giving the first inequality. Again, symmetry of the $\mathcal{I}_n^d(t)$ polynomial yields the second inequality.

2.3. The inversions statistic. The generating function for the inversions statistic on involutions is intimately related to the q-Hermite polynomials, as studied by Désarménien [6]. Let $a_n(k,j)$ be the number of involutions in I_n with k fixed points and j inversions, and define $Z_n(x,q) := \sum_{k,j} a_n(k,j)q^jx^k$. Désarménien [6, Eqns. 3.10,3.11] showed

$$Z_{n+1}(x,q) = xZ_n(x,q) + q\left(\frac{1-q^{2n}}{1-q^2}\right)Z_{n-1}(x,q)$$

for all n > 1 with $Z_0(x,q) = 1$ and $Z_1(x,q) = x$. Setting x = 1, 0, yields the following proposition.

Proposition 2.8. For all $n \ge 0$,

$$\mathcal{I}_{n+2}^{inv}(q) = \mathcal{I}_{n+1}^{inv}(q) + q\left(\frac{1-q^{2(n+1)}}{1-q^2}\right) \mathcal{I}_n^{inv}(q)$$

where $\mathcal{I}_0^{inv}(q), \mathcal{I}_1^{inv}(q) := 1$ and for $n \ge 0$,

$$\mathcal{J}_{n+2}^{inv}(q) = q\left(\frac{1-q^{2(n+1)}}{1-q^2}\right)\mathcal{J}_n^{inv}(q),$$

where $\mathcal{J}_0^{inv}(q) = 1$.

The above recurrences can also be derived in a straightforward manner using a special case of Equation (3.1). The coefficients of $\mathcal{I}_n^{inv}(q)$ are neither log-concave nor unimodal (see Figure 1) but the recursion in the previous proposition admits a solution as a matrix product, which may be of benefit in approaching Conjecture 4.1(ii).

Proposition 2.9. Let $g_i(q) := \sum_{j=0}^{i-2} q^{1+2j}$ and $\mathbf{A}_n(q) := \prod_{i=2}^n \begin{pmatrix} 1 & 1 \\ g_i(q) & 0 \end{pmatrix}$, then $\mathcal{I}_n^{inv}(q) = \mathbf{A}_n(q)_{1,1} + \mathbf{A}_n(q)_{2,1}$.

Proof. For all $n \geq 2$, we may write

$$\mathcal{I}_n^{inv}(q) = \prod_{i=1}^n \mathcal{Y}_i(q)$$

where $\mathcal{Y}_n(q) := \mathcal{I}_n^{inv}(q)/\mathcal{I}_{n-1}^{inv}(q)$ and $\mathcal{I}_0^{inv}(q), \mathcal{I}_1^{inv}(q) := 1$. From the first recurrence in Proposition 2.8 the polynomial $\mathcal{Y}_n(q)$ satisfies the recurrence $\mathcal{Y}_n(q) = 1 + g_{n-1}(q)/\mathcal{Y}_{n-1}(q)$ for all $n \geq 2$ where $g_n(q) := q + q^3 + \ldots + q^{2n-3}$. Using this, the product $\mathcal{Y}_i \mathcal{Y}_{i+1} \cdots \mathcal{Y}_n$ may be written in the form $\alpha_i(q)\mathcal{Y}_i(q) + \beta_i(q)$. It is easily seen that $\alpha_n(q) = 1, \beta_n(q) = 0$ and

$$\begin{pmatrix} \alpha_i(q) \\ \beta_i(q) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ g_{i+1}(q) & 0 \end{pmatrix} \begin{pmatrix} \alpha_{i+1}(q) \\ \beta_{i+1}(q) \end{pmatrix}$$

Thus we have $\mathcal{I}_n^{inv}(q) = \alpha_1(q)\mathcal{Y}_1(q) + \beta_1(q) = \alpha_1(q) + \beta_1(q)$, since $\mathcal{Y}_1(q) = 1$, and

$$\begin{pmatrix} \alpha_1(q) \\ \beta_1(q) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ g_2(q) & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ g_3(q) & 0 \end{pmatrix} \cdots \begin{pmatrix} 1 & 1 \\ g_n(q) & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

 \square

Theorem 2.10. The coefficients of the polynomial $\mathcal{J}_n^{inv}(q)$ are log-concave. *Proof.* Solving the second recurrence in Proposition 2.8 we get:

$$\mathcal{J}_{2m}^{inv}(q) = q^m \prod_{i=1}^{m-1} \frac{1 - q^{2(2i+1)}}{1 - q^2}.$$

Set $u = q^2$ and notice that the sequence of non-zero coefficients in $\mathcal{J}_n^{inv}(q)$ is the same as $\prod_{i=1}^{m-1} \frac{1-u^{2i+1}}{1-u}$. The coefficients of the polynomials $(1-u^{2i+1})$ $u^{2i+1})/(1-u)$ are non-negative log-concave sequences with no internal zero coefficients. Thus using Stanley [10, Prop. 2], the product of all such polynomials will also be log-concave with no internal zero coefficients.

3. Involutions in Coxeter groups of types B and D

In this section we give recursive expressions for the inversion polynomials of involutions for Coxeter groups of types B and D. We use the notation of Björner and Brenti [2].

Coxeter groups of type B, the 'signed permutations', are defined as follows: let S_n^B be the group of all bijections π on the set $[\pm n] \setminus \{0\}$ such that $\pi(-a) = -\pi(a)$ for all $a \in [\pm n]$. For $\pi \in S_n^B$, define

$$\begin{split} N_1(\pi(1), \dots, \pi(n)) &:= |\{1 \le i \le n : \pi(i) < 0\}| \\ N_2(\pi(1), \dots, \pi(n)) &:= |\{1 \le i < j \le n : \pi(i) + \pi(j) < 0\}|. \end{split}$$

Let S_n^D be the subgroup of S_n^B consisting of all signed permutations $\pi \in S_n^B$ such that there are an even number of negative entries in the window of π , i.e. $S_n^D := \{\pi \in S_n^B : N_1(\pi) \equiv 0 \pmod{2}\}$. For completeness let us also define those signed permutations containing an odd number of negative signs in the window of π , $S_n^O = S_n^B \setminus S_n^D$. The inversions statistics on S_n^B and S_n^D are defined slightly differently to

inv on S_n . From [2, Equations (8.1) and (8.18)],

$$inv_B(\pi) := inv(\pi(1), \dots, \pi(n)) + N_1(\pi(1), \dots, \pi(n)) + N_2(\pi(1), \dots, \pi(n)) inv_D(\pi) := inv(\pi(1), \dots, \pi(n)) + N_2(\pi(1), \dots, \pi(n)).$$

Let us mention that in the symmetric group setting,

$$\sum_{\pi \in S_n^B} q^{inv_B(\pi)} = [2]_q [4]_q \dots [2n]_q$$
$$\sum_{\pi \in S_n^D} q^{inv_D(\pi)} = [2]_q [4]_q \dots [2n-2]_q [n]_q.$$

where $[i]_q := 1 + q + q^2 + \ldots + q^{i-1}$ (see [2, Theorem 7.1.5.]) Define $I_n^B := \{\pi \in S_n^B : \pi^2 = \text{id}\}, I_n^D := \{\pi \in S_n^D : \pi^2 = \text{id}\}$ and $I_n^O := I_n^B \setminus I_n^D$. Let

$$\mathcal{IB}_n(q) := \sum_{\pi \in I_n^B} q^{inv_B(\pi)},$$

with $\mathcal{ID}_n(q)$ and $\mathcal{IO}_n(q)$ similarly defined. To aid the proof of the following two theorems, we introduce some notation concerning the recursive construction of these signed permutations.

construction of these signed permutations. Let $\pi \in I_n^B$ and denote by $\overline{\pi}^{(n+1,n+1)}$ the signed permutation $\pi' \in I_{n+1}^B$ such that $\pi'(i) = \pi(i)$, for $1 \le i, \le n$ and $\pi'(n+1) = n+1$. Similarly let $\overline{\pi}^{(-(n+1),n+1)}$ be the signed permutation $\pi' \in I_{n+1}^B$ such that $\pi'(i) = \pi(i)$ for $1 \le i \le n$ and $\pi'(n+1) = -(n+1)$.

For $\pi \in I_n^B$ and $k \in [\pm (n+1)] - \{0\}$, let $\overline{\pi}^{(k,n+2)}$ be the signed permutation $\pi' \in I_{n+2}^B$ such that

- $\pi'(|k|) = (n+2)sgn(k), \ \pi'(n+2) = k,$
- for all $1 \le i \le n$,

$$\pi'(i + \mathbf{1}[i \ge |k|]) = \pi(i) + sgn(\pi(i))\mathbf{1}[|\pi(i)| \ge |k|]$$

where sgn(a) = +1 if a > 0 and -1 otherwise. Consequently I_{n+2}^B , I_{n+2}^D and I_{n+2}^O may be constructed recursively,

$$I_{n+2}^{B} = \bigcup_{\substack{\pi \in I_{n+1}^{B} \\ \pi \in I_{n}^{B}}} \{ \overline{\pi}^{(n+2,n+2)}, \overline{\pi}^{(-(n+2),n+2)} \} \$$

$$\bigcup_{\substack{k=1 \\ \pi \in I_{n}^{B}}}^{n+1} \{ \overline{\pi}^{(k,n+2)}, \overline{\pi}^{(-k,n+2)} \}$$
(3.1)

$$I_{n+2}^{D} = \bigoplus_{\pi \in I_{n+1}^{D}} \{ \overline{\pi}^{(n+2,n+2)} \} \ \uplus \bigoplus_{\pi \in I_{n+1}^{O}} \{ \overline{\pi}^{(-(n+2),n+2)} \} \ \uplus$$
$$\prod_{\substack{n+1\\ \mu \in I_{n}^{D}}} \{ \overline{\pi}^{(k,n+2)}, \overline{\pi}^{(-k,n+2)} \}$$
(3.2)

$$I_{n+2}^{O} = \bigoplus_{\pi \in I_{n+1}^{O}} \{ \overline{\pi}^{(n+2,n+2)} \} \ \uplus \bigoplus_{\pi \in I_{n+1}^{D}} \{ \overline{\pi}^{(-(n+2),n+2)} \} \ \uplus$$
$$\bigoplus_{\substack{n+1\\ \underset{\pi \in I_{n}^{O}}{\overset{k=1}{\longrightarrow}}} \{ \overline{\pi}^{(k,n+2)}, \overline{\pi}^{(-k,n+2)} \}.$$
(3.3)

Theorem 3.1. For all $n \geq 2$,

$$\mathcal{IB}_{n+2}(q) = (1+q^{2n+3})\mathcal{IB}_{n+1}(q) + \frac{q(1+q^2)(1-q^{2(n+1)})}{1-q^2}\mathcal{IB}_n(q)$$

with initial polynomials $\mathcal{IB}_2(q) = 1 + 2q + 2q^3 + q^4$, $\mathcal{IB}_3(q) = 1 + 3q + q^2 + 3q^3 + 2q^4 + 2q^5 + 3q^6 + q^7 + 3q^8 + q^9$.

Proof. Using Equation (3.1),

$$\mathcal{IB}_{n+2}(q) = \sum_{\pi \in I_{n+1}^B} q^{inv_B(\overline{\pi}^{(n+2,n+2)})} + q^{inv_B(\overline{\pi}^{(-(n+2),n+2)})} + \sum_{k=1}^{n+1} \sum_{\pi \in I_n^B} q^{inv_B(\overline{\pi}^{(k,n+2)})} + q^{inv_B(\overline{\pi}^{(-k,n+2)})}.$$

If $\pi \in I_{n+1}^B$, then $inv_B(\overline{\pi}^{(n+2,n+2)}) = inv_B(\pi(1), \dots, \pi(n+1), n+2) = inv_B(\pi)$ and $inv_B(\overline{\pi}^{(-(n+2),n+2)}) = inv_B(\pi) + 2n + 3$. Similarly if $\pi \in I_n^B$ and $1 \le k \le n+1$, then $inv_B(\overline{\pi}^{(k,n+2)}) = inv_B(\pi) + 2n + 3 - 2k$ and $inv_B(\overline{\pi}^{(-k,n+2)}) = inv_B(\pi) + 2k + 1$. Hence

$$\mathcal{IB}_{n+2}(q) = \sum_{\pi \in I_{n+1}^B} q^{inv_B(\pi)} + q^{inv_B(\pi)+2n+3} + \sum_{k=1}^{n+1} \sum_{\pi \in I_n^B} q^{inv_B(\pi)+2n-2k+3} + q^{inv_B(\pi)+2k+1} = (1+q^{2n+3})\mathcal{IB}_{n+1}(q) + \mathcal{IB}_n(q) \sum_{k=1}^{n+1} (q^{2n-2k+3}+q^{2k+1}).$$

We may express $\mathcal{IB}_n(q)$ in a somewhat closed form, as was done in Proposition 2.9; for all $n \geq 3$, $\mathcal{IB}_n(q) = (\mathbf{V}_n(q)_{1,1} + \mathbf{V}_n(q)_{2,1})(1 + 2q + 2q^3 + q^4)$ where

$$\mathbf{V}_n(q) = \prod_{i=3}^n \left(\begin{array}{cc} u_i(q) & 1\\ v_i(q) & 0 \end{array} \right)$$

and $u_i(q) := 1 + q^{2i-1}, v_i(q) := (1+q^2)(1-q^{2(i-1)})/(1-q^2).$

Theorem 3.2. For all $n \geq 2$,

$$\mathcal{ID}_{n+1}(q) = \mathcal{ID}_n(q) + q^{2n} \mathcal{IO}_n(q) + \left(q^{2(n-1)} + \frac{q(1-q^{2n})}{1-q^2}\right) \mathcal{ID}_{n-1}(q)$$

$$\mathcal{IO}_{n+1}(q) = \mathcal{IO}_n(q) + q^{2n} \mathcal{ID}_n(q) + \left(q^{2(n-1)} + \frac{q(1-q^{2n})}{1-q^2}\right) \mathcal{IO}_{n-1}(q)$$

with initial polynomials $\mathcal{ID}_2(q), \mathcal{IO}_2(q) = 1 + q + q^2, \mathcal{ID}_3(q) = (1 + q + q^2 + q^3)(1 + q^3) + 2q$ and $\mathcal{IO}_3(q) = (1 + q + q^2 + q^3)(1 + q^3) + 2q^5$.

Proof. Using Equation (3.2),

$$\begin{split} \mathcal{ID}_{n+2}(q) &= \sum_{\pi \in I_{n+1}^D} q^{inv_D(\overline{\pi}^{(n+2,n+2)})} + \sum_{\pi \in I_{n+1}^O} q^{inv_D(\overline{\pi}^{(-(n+2),n+2)})} \\ &+ \sum_{k=1}^{n+1} \sum_{\pi \in I_n^D} q^{inv_D(\overline{\pi}^{(k,n+2)})} + q^{inv_D(\overline{\pi}^{(-k,n+2)})}. \end{split}$$

If $\pi \in I_{n+1}^D$, I_{n+1}^O , then $inv_D(\overline{\pi}^{(n+2,n+2)}) = inv_D(\pi)$ and $inv_D(\overline{\pi}^{(-(n+2),n+2)}) = inv_D(\pi) + 2(n+1)$. Also if $\pi \in I_n^D$, then $inv_D(\overline{\pi}^{(k,n+2)}) = 2n - 2k + 3 + inv_D(\pi)$ and $inv_D(\overline{\pi}^{(-k,n+2)}) = inv_D(\pi) + 2n$. Hence,

$$\mathcal{ID}_{n+2}(q) = \sum_{\pi \in I_{n+1}^{D}} q^{inv_{D}(\pi)} + \sum_{\pi \in I_{n+1}^{O}} q^{inv_{D}(\pi)+2(n+1)} + \sum_{k=1}^{n+1} \sum_{\pi \in I_{n}^{D}} q^{inv_{D}(\pi)} (q^{2n-2k+3} + q^{2n}).$$

The second recurrence is derived in the same manner by using Equation (3.3).

Let $J_n^D \subset I_n^D$ denote the class of all signed permutations such that $\pi(i) \neq \pm i$ for all $i \in [1, n]$ and consider the generating function $\mathcal{JD}_n(q) := \sum_{\pi \in J_n^D} q^{inv_D(\pi)}$.

Theorem 3.3. For all even $n \geq 2$,

$$\mathcal{JD}_n(q) = 2q^{n/2} \prod_{i=1}^{n/2-1} \frac{(1+q^{4i})(1-q^{4i+2})}{1-q^2}$$

Proof. Since J_n^D is a subclass of I_n^D and from the characterization in Equation (3.2), one has

$$\begin{aligned} \mathcal{JD}_{n+4}(q) &= \sum_{\pi \in J_{n+2}^{D}} q^{inv_{D}(\overline{\pi}^{(n+3,n+4)})} + q^{inv_{D}(\overline{\pi}^{(-(n+3),n+4)})} \\ &+ \sum_{1 \leq i < j \leq n+2} \sum_{\pi \in J_{n}^{D}} \left(q^{inv_{D}(\overline{\pi}^{(i,n+3)(j,n+4)})} + q^{inv_{D}(\overline{\pi}^{(i,n+4)(j,n+3)})} \right. \\ &+ q^{inv_{D}(\overline{\pi}^{(-i,n+3)(j,n+4)})} + q^{inv_{D}(\overline{\pi}^{(-i,n+4)(j,n+3)})} \\ &+ q^{inv_{D}(\overline{\pi}^{(i,n+3)(-j,n+4)})} + q^{inv_{D}(\overline{\pi}^{(-i,n+4)(-j,n+3)})} \\ &+ q^{inv_{D}(\overline{\pi}^{(-i,n+3)(-j,n+4)})} + q^{inv_{D}(\overline{\pi}^{(-i,n+4)(-j,n+4)})} \right). \end{aligned}$$

Now if $\pi \in J_{n+2}^D$ then $inv_D(\overline{\pi}^{(n+3,n+4)}) = inv_D(\pi) + 1$ and $inv_D(\overline{\pi}^{(-(n+3),n+4)}) = inv_D(\pi) + 4n + 9$. A careful analysis shows that for $\pi \in J_n^D$ and $1 \le i, j \le n+2, i \ne j$,

$$inv_D(\overline{\pi}^{(i,n+3)(j,n+4)}) = inv_D(\pi) + 4n - 2(i+j) + 10 + 2 \cdot \mathbf{1}[i > j]$$

$$inv_D(\overline{\pi}^{(-i,n+3)(-j,n+4)}) = inv_D(\pi) + 4n + 2(i+j) + 2 - 2 \cdot \mathbf{1}[i > j]$$

$$inv_D(\overline{\pi}^{(-i,n+3)(j,n+4)}) = inv_D(\pi) + 4n + 2(i-j) + 6 + 2 \cdot \mathbf{1}[i > j]$$

$$inv_D(\overline{\pi}^{(i,n+3)(-j,n+4)}) = inv_D(\pi) + 4n + 2(j-i) + 6 - 2 \cdot \mathbf{1}[i > j].$$

Thus we have

$$\begin{aligned} \mathcal{JD}_{n+4}(q) \\ &= \mathcal{JD}_{n+2}(q)(q+q^{4n+9}) + \mathcal{JD}_n(q) \times \\ &\sum_{1 \le i < j \le n+2} \left((q^{10}+q^{12})q^{4n-2(i+j)} + (q^2+1)q^{4n+2(i+j)} \right. \\ &+ (q^6+q^8)q^{4n+2(i-j)} + (q^6+q^4)q^{4n+2(j-i)} \right) \\ &= \mathcal{JD}_{n+2}(q)(q+q^{4n+9}) + \mathcal{JD}_n(q) \frac{q^4(q^{4(n+1)}-1)(q^{2n+4}-1)(q^{2n}+1)}{(q^2-1)^2}. \end{aligned}$$

The result follows by inserting the expression from the theorem, we omit the details. $\hfill \Box$

Notice that if n/2 is even (resp. odd) then the coefficients of odd (resp. even) powers of q in $\mathcal{JD}_n(q)$ are zero.

Theorem 3.4. The coefficients of the even (resp. odd) powers of q in $\mathcal{JD}_n(q)$ are symmetric and unimodal when n/2 is even (resp. odd).

Proof. From Stanley [10, Proposition 1], we have that if A(q) and B(q) are symmetric and unimodal polynomials, both with non-negative coefficients, then A(q)B(q) is also symmetric and unimodal. From the expression in Theorem 3.3, one may write $\mathcal{JD}_{n+2}(q) = (q + q^2 + ... + q^{2n} + 2q^{2n+1} + q^{2n})$ $q^{2n+2} + \ldots + q^{4n+1}) \mathcal{JD}_n(q)$. The result follows inductively.

The generating function of the descent polynomial over involutions of Coxeter groups of types B_n and D_n is also seen to be symmetric, as was mentioned in Section 2, thanks to Hultman's [8] result.

4. Comments

Unlike the Eulerian polynomial, whose roots are all real and from which log-concavity of the coefficients follows, the roots of all polynomials with the statistics mentioned above are not real for $n \leq 14$. Furthermore, they do not lie in the nice triangular $\pi/3$ region of the complex plane about the negative real-line from which it would be possible to infer log-concavity (see Stanley [10, Prop. 7].) Log-concavity of the coefficients holds numerically for all $n \leq 14$. We extend the original conjecture,

Conjecture 4.1. For all $n \ge 4$,

- (i) the sequence $\{[q^i]\mathcal{I}_n^{maj}(q)\}_{i=0}^{\binom{n}{2}}$ is log-concave, (ii) for $2 \le i \le \binom{n}{2} 2$ (see Figure 1) $([q^i]\mathcal{I}_n^{inv}(q))^2 > ([q^{i-2}]\mathcal{I}_n^{inv}(q))([q^{i+2}]\mathcal{I}_n^{inv}(q)),$
- (iii) the sequences $\{[q^{2i}]Inv_n^B(q)\}_{i>0}$ and $\{[q^{2i+1}]Inv_n^B(q)\}_{i>0}$ are unimodal.
- (iv) the sequences $\{[q^{2i}]Inv_n^D(q)\}_{i\geq 0}$ and $\{[q^{2i+1}]Inv_n^D(q)\}_{i\geq 0}$ are unimodal,
- (v) the sequences $\{[q^{2i}]Inv_n^O(q)\}_{i\geq 0}$ and $\{[q^{2i+1}]Inv_n^O(q)\}_{i\geq 0}$ are unimodal.

We list here those polynomials for n = 10 to exemplify these conjectures,

 $\mathcal{I}^{d}_{10}(x) = 1 + 25x + 289x^{2} + 1397x^{3} + 3036x^{4} + 3036x^{5} + 1397x^{6} + 289x^{7} + 25x^{8} + x^{9}.$

$$\mathcal{I}_{10}^{exc}(x) = 1 + 45x + 630x^2 + 3150x^3 + 4725x^4 + 945x^5.$$

 $= 1 + x + 2x^{2} + 4x^{3} + 7x^{4} + 12x^{5} + 19x^{6} + 29x^{7} + 44x^{8} + 64x^{9} + 89x^{10} + 119x^{11}$ $\mathcal{I}_{10}^{maj}(x)$ $+ 158x^{12} + 201x^{13} + 250x^{14} + 304x^{15} + 358x^{16} + 412x^{17} + 464x^{18} + 508x^{19} + 546x^{20} + 546x^{10} + 54$ $+572x^{21} + 584x^{22} + 584x^{23} + 572x^{24} + 546x^{25} + 508x^{26} + 464x^{27} + 412x^{28} + 358x^{29} + 56x^{29} +$ $+304x^{30} + 250x^{31} + 201x^{32} + 158x^{33} + 119x^{34} + 89x^{35} + 64x^{36} + 44x^{37} + 29x^{38}$ $+19x^{39} + 12x^{40} + 7x^{41} + 4x^{42} + 2x^{43} + x^{44} + x^{45}.$

$$\begin{split} \mathcal{I}_{10}^{inv}(x) &= & 1+9x+28x^2+43x^3+64x^4+98x^5+114x^6+165x^7+179x^8+234x^9+254x^{10} \\ &+299x^{11}+333x^{12}+353x^{13}+408x^{14}+392x^{15}+471x^{16}+411x^{17}+513x^{18}+409x^{15} \\ &+529x^{20}+380x^{21}+517x^{22}+335x^{23}+478x^{24}+281x^{25}+417x^{26}+225x^{27}+343x^{28} \\ &+171x^{29}+264x^{30}+124x^{31}+189x^{32}+85x^{33}+123x^{34}+56x^{35}+72x^{36}+35x^{37} \\ &+37x^{38}+20x^{39}+16x^{40}+10x^{41}+5x^{42}+4x^{43}+x^{44}+x^{45}. \end{split}$$

$$\mathcal{IB}_{10}(x) = 1 + 10 x + 36 x^{2} + 73 x^{3} + 157 x^{4} + 307 x^{5} + 456 x^{6} + 807 x^{7} + 1121 x^{8} + 1629 x^{9} \\ + 2323 x^{10} + 2835 x^{11} + 4124 x^{12} + 4508 x^{13} + 6468 x^{14} + 6715 x^{15} + 9256 x^{16} \\ + 9469 x^{17} + 12333 x^{18} + 12712 x^{19} + 15500 x^{20} + 16306 x^{21} + 18560 x^{22} + 20048 x^{23}$$

$$\begin{split} +21334\,x^{24}+23730\,x^{25}+23626\,x^{26}+27127\,x^{27}+25285\,x^{28}+29989\,x^{29}+26242\,x^{30} \\ +32053\,x^{31}+26550\,x^{32}+33126\,x^{33}+26310\,x^{34}+33138\,x^{35}+25641\,x^{36}+32124\,x^{37} \\ +24639\,x^{36}+30194\,x^{30}+23393\,x^{40}+27534\,x^{41}+21953\,x^{42}+24364\,x^{43}+23216\,x^{37} \\ +20635\,x^{45}+18657\,x^{46}+17519\,x^{47}+16839\,x^{48}+14343\,x^{49}+14925\,x^{50}+11549\,x^{51} \\ +12956\,x^{52}+9199\,x^{53}+10067\,x^{54}+7288\,x^{55}+0019\,x^{56}+5762\,x^{57}+7178\,x^{58} \\ +4663\,x^{59}+5525\,x^{60}+3633\,x^{61}+4107\,x^{62}+2999\,x^{63}+2962\,x^{64}+2331\,x^{65} \\ +2084\,x^{66}+1858\,x^{67}+1444\,x^{68}+1460\,x^{69}+986\,x^{70}+1123\,x^{71}+671\,x^{72}+834\,x^{73} \\ +454\,x^{74}+589\,x^{75}+312\,x^{76}+394\,x^{77}+217\,x^{78}+255\,x^{79}+156\,x^{80}+156\,x^{81} \\ +111\,x^{82}+91\,x^{83}+79\,x^{84}+52\,x^{85}+56\,x^{86}+30\,x^{87}+40\,x^{88}+17\,x^{89}+26\,x^{90} \\ +10\,x^{91}+15\,x^{92}+5\,x^{33}+5\,x^{94}+3\,x^{95}+2\,x^{96}+3\,x^{97}+x^{98}+3\,x^{99}+x^{100}. \end{split}$$

Acknowledgments

The author would like to thank M. Bousquet-Mélou and F. Brenti for helpful comments and also D. Foata and V. Strehl for pointers to the relevant literature.

References

- R. M. Adin, F. Brenti and Y. Roichman, Descent Representations and Multivariate Statistics, *Trans. Amer. Math. Soc.*, to appear.
- [2] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin (in press).
- [3] F. Brenti, Private communication, 2004.
- [4] L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954), 332–350.
- [5] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht/Boston, 1974.
- [6] J. Désarménien, Les q-analogues des polynômes d'Hermite, Sém. Lothar. Combin. 6 (1982), Art. B06b, 12 pp.
- [7] J. Désarménien and D. Foata, Fonctions symétriques et séries hypergéométriques basiques multivariées, Bull. Soc. Math. France 113 (1985), no. 1, 3–22.

FIGURE 1. The coefficients $[x^{2i}]\mathcal{I}_{10}^{inv}(x), [x^{2i+1}]\mathcal{I}_{10}^{inv}(x)$

- [8] A. Hultman, The combinatorics of twisted involutions in Coxeter groups, arXiv:math.CO/0411429 (2004).
- [9] R. P. Stanley, *Enumerative Combinatorics*, Vol. 2, Cambridge Studies in Advanced Mathematics 62, Cambridge Univ. Press, Cambridge, 1999.
- [10] R. P. Stanley, Log-concave and unimodal sequences in Algebra, Combinatorics and Geometry, Ann. N. Y. Acad. Sci. 576 (1989), 500–534.
- [11] V. Strehl, Symmetric Eulerian Distributions for Involutions, Actes du Séminaire Lotharingien de Combinatoire I, Strasbourg 1980. Publications de l'I.R.M.A. 140/S-02, Strasbourg, 1981.

E-mail address: dukes@labri.fr

LABRI, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, France.