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Abstract

The purpose of this note is to present an elementary proof of the
fact that no more than twelve unit balls can simultaneously touch a
unit ball in 3-space, a proof that is accessible for undergraduates.

1 Introduction

How many mutually non-overlapping unit balls can simultaneously touch a
ball of the same size in 3-dimensional Euclidean space? Consider a regular
icosahedron inscribed in a unit sphere S2, and suppose that 12 unit balls are
put in such a way that each ball is tangent to the sphere at one vertex of
the icosahedron. Then, by calculating the distances of the centers of balls,
it can be proved that these twelve balls are disjoint. Therefore, twelve unit
balls can touch a unit ball. Then, can thirteen unit balls touch a unit ball
simultaneously? This is the problem of thirteen spheres, and it is said that
this problem was discussed between A. Newton and D. Gregory in 1694.
K. Schiitte and B.L. van der Waerden [15] proved in 1953 that no more than
twelve unit ball can touch a unit ball. In 1956, Leech published two pages
paper [9] (see also [16], pp. 10-12) to sketch a proof of the same assertion.
But because of many skips, it is difficult to follow completely. A complete
proof along the line of Leech’s proof is given in [11]. Recently, related to the
problem of thirteen spheres, several papers [1,3,4,5,6,11,12,13,14] appeared.

In [12], Oreg R. Musin solved the same type problem in four dimensions;
the maximum number of unit balls that can touch a unit ball in four dimen-
sions is 24. Applying a similar method, Musin [13] also gave a new proof of
the problem of thirteen spheres.



B. Casselman wrote in [6] that it would be valuable if someone were to
publish an account of Leech’s proof that made it accessible to an elementary
undergraduate course. This gave me a motivation to write this note.

In this note, we basically follow Leech’s proof [9] as well as [11], but we
use Fejes Téth’s Lemma [7] to make arguments simpler, and improve a few
details of [11] to make the proof accessible for undergraduates. Except a few
standard formulas, proofs of all assertions are presented. The exceptions are:
(1) Girard’s formula (the spherical excess formula) for the area of a spherical
triangle, (2) the spherical cosine law, and (3) Euler’s formula for a connected
plane graph. I hope the contents of this note provide suitable materials for
elementary undergraduate course.

2 Basic formulas and key lemmas

Let S? denote the unit sphere in R3 centered at the origin O. An arc of
a great circle on S? that has length less than = is called simply a segment.
A segment with two end-points A and B, and its length, are denoted by
the same notation AB. A subset W C S? is called conver if every pair of
points A, B € W can be connected by a segment contained in W. In the
following, figures (arcs, triangles, quadrilaterals, caps, etc) imply spherical
figures on the unit sphere S?. A triangle ABC is a convex domain on S?
bounded by three segments AB,BC,CA. The notation A(z,y,z) stands
for a triangle with edge-lengths z,y,2. A quadrilateral ABCD is a (not
necessarily convex) domain bounded by four segments AB, BC,CD,DA. A
cap is a domain bounded by a circle. For a triangle ABC, cap(ABC) stands
for the cap enclosed by the circum-scribed circle of ABC' and containing the
triangle ABC'. A circular arc with two end-points A, C and passing through
B is denoted by ABC'. The area of a figure is denoted by |- |. The following
two formulas are well known.

(2.1) Girard’s formula. |[ABC| =LA+ (B + /C — .

(2.2) Spherical cosine law. Let 6 be the angle of A(z, y, 2) opposite to the
edge z. Then cosz = cosz cosy + sinz siny cos .

Proofs of these two formulas are omitted. Since sin zsiny > 0 in the spherical
cosine law, we have the following.

(2.3) The angle # of A(z,y, z) opposite to z is monotone increasing on z.
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(2.4) Fejes Téth’s lemma [7,8]. Let d be the length of the shortest edge
of a triangle ABC. If the angular radius of cap(ABC) is less than d,
then |[ABC| > |A(d, d, d)|.

Suppose'that a quadrilateral ABCD is the union of two triangles ABC and
ACD, see Figure 1. If D is not an interior point of cap(ABC), then AC is
called a proper diagonal of ABCD.

c

Figure 1: A proper diagonal AC of ABCD

(2.5) Proper diagonal lemma [4,11]. Let AC be a proper diagonal of
a quadrilateral ABCD. If we deform ABCD with keeping its edge
lengths fixed so that the length of the diagonal AC decreases, then the
area |ABCD| decreases.

The above two key lemmas will be proved in Section 5.

A triangle ABC is called a major triangle if it contains the center of
cap(ABC). Let ABC be a major triangle, and let ADC be the triangle ob-
tained by reflecting ABC with respect to the edge AC. Then AC becomes a
proper diagonal of the quadrilateral ABCD. By applying the proper diagonal
lemma to this quadrilateral ABCD and considering the half area |{ABCD|,
we have the following corollary.

(2.6) If z decreases in a major triangle A(z,y, 2), then |A(z,y, 2)| decreases.

If P is the center of cap(ABC), then the intersection point of the ray 6713 and
the plane ABC is the circum-center of the planar triangle ABC. Therefore,
a triangle ABC' is a major triangle if and only if the planar triangle ABC is
an acute triangle or a right triangle. Using this fact we have the following.

(2.7) For every x,y,2 € 5, 5], A(z,y, 2) is a major triangle.
x 2n

(2.8) For every z,y € [5, ], A(z,y,5) is a major triangle.



3 The problem of thirteen spheres

A subset X C S? is called S-separated if no two points of X are closer than
£ in spherical distance. Then, it is not difficult to see that n mutually non-
overlapping unit balls can simultaneously touch S? if and only if there is a
Z-separated point set of cardinality n on S
Suppose a regular icosahedron is inscribed in S%. Then, by projecting the
edges of this icosahedron onto S? from the center O of 52, S? is divided into
20 equilateral triangles of area 47/20 = 0.628. Since |A(%, g, =) = 0.551, we
can deduce that the edges of the equilateral triangles on S? are longer than
%- Hence the 12 vertices of the icosahedron are %-separated. Thus, at least
twelve unit balls can simultaneously touch S2.
Let us introduce the following notations:

A 1
G:==  b:=arccos 7 1427, ¢:=|A(a,a,a)|

By applying spherical cosine formula, we can calculate the following;:

= |A(&, &,a)| ~ 0.551  |A(@,a,b)| ~ 0.667
|A(a,b,5)] ~ 0.892  |A(b,b,b)| ~ 1.194
1A, g g)| ~1.047  |A(a,4, 1)| ~ 0.679

Theorem 3.1. Every %-separated set on S? has at most 12 points.

Proof. Let X be a maximal (with respect to containment) Z-separated
point set on S2, and let n be its cardinality. Then the convex hull F (X) of X,
that is, the convex polyhedron spanned by X, contains the center O of 5’2
(For otherwise, we can add another point to X without violating 3-separated-
condition.) Now, by projecting the edges of the polyhedron F(X ) onto S?2
by the central projection from O, let us divide S? into spherical polygons.
Further, by adding diagonals to these polygons, make a triangulation T of
S2. Then, T satisfies the following.

1° (By Euler’s formula) 7 has 2n — 4 triangles. :

2° The interior of the circum-scribed cap of each triangle in 7 contains no
vertex of T (because the plane determined by the vertices of a triangle
of I'(X) is a supporting plane of I'(X), and the interior of the circum-
scribed cap lies opposite to I'(X) with respect to the plane).
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3° Hence, each edges of 7 is a proper diagonal of the quadrilateral ob-
tained as the union of the two triangles sharing the edge.

4° The radius of the circum-scribed cap of each triangle in 7 is less than
@ (for otherwise, we can add another point to X without violating
$-separated-condition).

By 4° and Fejes T6th’s lemma, the area of every triangle in 7 is greater than
or equal to § = |A(@,d,a)|. Hence, 2n — 4 < 47/6 ~ 22.8, and we have
n < 13. Thus, to prove the theorem, it is enough to show that n = 13.

Assertion 1. If n =13, then at most one edge of T has length greater than
or equal to b. (This is proved later.)

Suppose n = 13. Then 7 has 22 triangles. Let G be the graph obtained
from 7 by eliminating the edges of length greater than or equal to b.

In the remaining, we will show that this graph G should satisfy some
properties, and then, by showing that no graph can satisfy such properties,
we will get a contradiction.

Assertion 2. Let 6 = 6(x,y, z) be the angle of A(z,y, z) opposite to the edge
z. ife<z<y<bandd <z then 0 > %.

Proof. By (2.3), 8(z,y, 2) > 6(z,y,a). Put f(z,y,z) = cosf. Then, since
fy(Z,y,2) = (cosz —cosycos z)/(sin® ysinz) > 0 for & < z < y < b, we have
Fz,y,8) < f(z,b,a). Since fo(z,b,8) = V3(2—Tcosz)/(24sin z), f(z,b,a)
takes, in the interval 4 < z < 13, its maximum value at z = & or at z = b.
Since f(a,b,a) = L > & = f(b,b,4), we have f(z,y,2) < f(a,b,a) = L.
Thus, cos@ < 7 and hence, 6 > T.

O

By Assertion 2, we can deduce that each vertex of G has degree at most 5.
(Indeed, bwas chosen to guarantee this degree condition.) If 7 has no edge of
length greater than or equal to b, then G has (22 x 3)/2 = 33 edges, and the
average degree of a vertex becomes 66/13 > 5, a contradiction. Therefore, 7°
must have exactly one edge of length at least b. Note that since no two edges
of G cross each other, G is a planar graph, that is, G' can be represented by
a drawing on the plane in which no two edges cross each other. Thus,

1) G is a planar graph having 32 edges, and 21 faces consisting of one
g
quadrilateral and 20 triangles.

Since the sum of the degrees of the vertices of G is 64,
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(2) G has one vertex of degree 4 and 12 vertices of degree 5.

Since A(z,y, 2) is a major triangle for z,y, z € [a, b], the triangle formed by
any 3-cycle of G has area less than |A(b,b,0)|. Since 3§ > |A(b,b,b)|, the
triangle formed by a 3-cycle of G can contain no vertex in its interior. Thus,

(3) every 3-cycle of G is the boundary of a (triangular) face.

Now, is there a graph satisfying the above (1)(2)(3)? Let us try to draw
such a planar graph, starting from a quadrilateral.

Case (t). The four vertices of the unique quadrilateral are all of degree 5.
From each vertex e of the quadrilateral, 3 edges emanate outward (see

Figure 2 left). Their end-vertices o and the vertices e of the quadrilateral are

all different by (3). By (2), the vertices o are mutually different. Now, from

Figure 2: Case ()

the outermost 8 vertices, 11 edges go outward (see Figure 2 right). Since
they are edges of triangles, in consideration of (2), we can deduce that these
edges are all different. Then, there appear more than 32 edges. Therefore
this case is impossible.

Case (i%). One vertex of the quadrilateral has degree 4.
Similarly to the case (i), it can be verified that to draw a planar graph
satisfying (1)(2)(3) is impossible. Therefore, n 5% 13. 0O

Proof of Assertion 1.

Suppose n = 13. Then T has 22 triangles. Suppose that the common
edge AC of the triangles ABC and ACD is the longest edge of 7, and let e
denote the second longest edge (and its length). We are going to show that
e <b.

(4) First, suppose e > Z. If we deform the quadrilateral ABCD with
keeping its edge lengths so that the length of the (proper) diagonal AC

6



becomes %, then |[ABCD)| decreases by the proper diagonal lemma, and since
every edge has length less than 2= 5 Dby the property 4° of 7, both triangles
ABC, ACD become major tnangles by (2.7), (2.8). If the edge e is an edge
of ABCD, then

|ABCD| > |A(a, =

T

)| + & ~ 1.047 + 0.551

and 47 > 216 + 1.047 =~ 12.624 > 4, a contradiction.

If e is not an edge of ABCD, then |ABCD| > 2|A(a,a,%)| ~ 1.359.
Similarly, the sum of the area of the two triangles sharing e in common is at
least 2|A(d, a, §)|. Therefore, we have

dr > (22 — 4)5 + 2 x 1.359 ~ 12.642 > 4r,

a contradiction, too. Hence, e < 7.

(ii) Next, suppose b < e < I %. Then, triangles other than ABC, ACD
are all major triangles by (2.7). If e is an edge of ABCD, then |ABCD| >
|A(@, b, b)| + |A(@, &, b)|, and since there must be another triangle that has e
as an edge,

4r > (22 — 3) + 2|A(@, &, b)| + |A(&, b, B)| ~ 12.701 > 4,

a contradiction. If e is not an edge of ABCD, then the both triangle sharing
e in common have area at least |A(@, &, b)|, we have

4 > (22 — 4)6 + 4|A(8, 8, 5)| ~ 12.59 > 4,

a contradiction. Therefore, e < b. O

4 Areas and Lexell circle

Theorem 4.1 (Inscribed Angle Theorem). For a triangle ABC, let P
be the center of cap(ABC). Then (C — (LA+ (B) = £2/PAB holds, where

the sign is (=) if ACB is a major arc, and (+) otherwise.

Proof would be clear from Figure 3. a
Corollary 4.1. (1) /C = LA+ /B if and only if ACB is a semi-circle.
(2) If ACB is a minor arc, then LACB > %.
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Figure 3: Proof of Theorem 4.1

Proof of (2). Since LACB > (ABC + (BAC, and the sum of three
interior angles of a triangle is greater than , it follows that ZACB > £. O

For a point P € §2, its antipodal point is denoted by P*.

Lemma 4.1. For triangles ABC and B*A*C, LA+ (A* = [B+(B* =7
holds. Hence, if ABC is a major arc (resp. semi-circle, minor arc), then
B*A*C is a major arc (resp. semi-circle, minor arc). O

Theorem 4.2 (A. J. Lexell 1784). Let ABD be a triangle. Then, for
every C € A*DB*, |ABC| = |ABD)| holds.

Proof [10]. Consulting Figure 4, for every point C € A*DB*, 6 — o> — B
is constant by Theorem 4.1, and hence, 8 — (7 — a) — (v — ) is constant.
Therefore, § + a + § is constant, and |ABC| = |ABD|. O

Figure 4: Proof of Theorem 4.2

The circle A*CB* and the arc A*CB* are called the Lezell circle and the
Lezell arc of the triangle ABC, respectively.

Corollary 4.2. For a fized segment AB, the shorter the arc A*CB* is, the
larger the area |ABC)| is. O



Lemma 4.2 ([4,11]). Let A, B,C denote the vertices of a A(a, b, c) opposite

to a,b,c, respectzvely If ABC isa major arc, then |A(a, b, c)| decreases as b

decreases. If ABC is a semicircle, then any change of b reduces |A(a, b, c)|.
Proof. Fix the segment AB and consider to move C C along the circle I

with radius a_and center B. Consulting Figure 4, if ABC is a major arc,
then so is B*A*C and the center of the cap cap(B*A*C) lies in the same

side of the great circle B*CB as A*. Therefore, I" crosses B*CA* at C. In
this case, if C moves along I" toward A (so that b = AC decreases), then the

arc B*CA* becomes longer, and hence |ABC| decreases.

Suppose now ABC is a semicircle. Then, B*A*C is also a semicircle and
B*C passes through the center of cap(B*CA*). Therefore the circle I' is

tangent to cap(B*CA*) at C. In this case, if C moves along I', then B*CA*

always becomes longer, and |ABC| decreases. (]
Corollary 4.3. The area of a triangle ABC with two fived edge-lengths AB =
¢, BC =a(a+c < ) becomes mazimum when ABC is a semicircle. O

Corollary 4.4. A convez quadrilateral with three fized edge-lengths AB =
a4, BC = b,CD = ¢ (a+b+c < ) has mazimum area when both ABD, ACD
becomes the same semicircle. O

A quadrilateral that is inscribed in a cap is called a cyclic quadrilateral.
If the cap is smaller than a hemi-sphere, then a cyclic quadrilateral is convex.

Theorem 4.3 (Isoperimetric Theorem [2]). If we deform a cyclic convez
quadrilateral with keeping its four edge-lengths, then its area decreases.

Proof [11]. Suppose that ABCD be a cyclic convex quadrilateral, see
Figure 5. Put a = AB,b= BC,c= CD,d = DA. We may suppose that c is
the largest edge and d > b. Then the diameter AP of the circumscribed cap
of ABCD intersects the edge CD, and we have

d+DP <7, a+b+CP< .

Now, deform ABCD into A'B'CD with fixing C, D and lengths a, b, c,d, in
the same side of the great circle CD as ABCD. Then, by Corollaries 4.3
and 4.4, we have |A'PD| < |APD| and |A'B'CP| < |ABCP|. Therefore,
|A'B'CD| < |A'B'CP|+ |A'DP|- |CPD|
|ABCP|+ |PAD| — |CPD| = |ABCD|.



Figure 5: Proof of Theorem 4.3

Lemma 4.3. In a cyclic convezr quadrilateral Q = ABCD with AD < CD,
if we decrease the length of AD with keeping the lengths of AB, BC,CD fized,
then the area |Q| always decreases.

Proof. Suppose that @ = ABCD is deformed into @' = A'B'C'D’, where
AB = A'B''BC = B'C',CD = C'D' and AD > A'D'. 1t is enough to
show that |Q’| < |Q| when Q' is convex. Now, in @', with keeping A’, B',C’
and the length of C'D’ fixed, move D' so that the length of A’D' return
to the original length of AD. Let A’B'C'D" be the resulting quadrilateral.
Since A'D" = AD < CD = C’D", the arc A'C'D" is a major arc. Hence,
|A’'C'D'| < |A'C'D"| by Lemma 4.2, and hence, |A’/B'C'D'| < |A'B'C'D"|.
Since A'B'C'D" is obtained from Q@ by deforming with keeping four edge
lengths fixed, its area is less than the area of @ by Theorem 4.3. Therefore,
|2 < 12. O

5 Proofs of the key lemmas

Proof of Fejes T6th’s lemma. Suppose AB = d. Let ABD be the equi-
lateral triangle lying in the same side of the great circle AB as ABC, and
let A’, B be the points as shown in Figure 6. Notice that both |ABD|,|ABA’|
are equal to the half area of the convex quadrilateral ABA'D. Hence |ABD| =
|ABA'| = |ABB'|. Therefore, the arc A'DB' is a part of the Lexell arc
A*DB* by Corollary 4.2. Since AC > d, BC > d and the radius of cap(ABC)
is less than d, the point C is not interior to the circles A, B, and lies inside
the circle D of Figure 6. Then, the segment AC intersects A*DB*, and hence
A*CB* is not longer than A*DB*. Therefore |ABC| > |A(d, d, d)|. O

Proof of the proper diagonal lemma. If neither A?C, ADC are minor
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d .
% < great circle

Figure 6: Proof of Fejes Téth’s lemma,

arcs, then the lemma follows by applying Lemma 4.2. So, suppose that ADC
is a minor arc. Let P be the point on the arc of the circle ABC intercepted by
the triangle ACD such that ZPDA = /PDC. (Such P exists clearly.) Then,

by Corollary 4.1 (2), the arcs P?A, PDC are both major arcs. Suppose
AP < CP. Now, deform the quadrilateral ABCD with keeping the four

Figure 7: Proof of the proper diagonal lemma

edge-lengths and with attaching the triangle CPD so that AC decreases.
Then by (2.3), LADC decreases. Hence ZADP decreases, and AP decreases.

Then, since ADP is a major arc, the area |ADP| decreases by Lemma 4.2.
Since AP < CP, the area of ABCP decreases by Lemma 4.3. Therefore,

|ABCD| = |ABCP| + |APD| + |CPD|

decreases. O
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