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A COMBINATORIAL PROOF OF GOTZMANN’S PERSISTENCE
THEOREM FOR MONOMIAL IDEALS

SATOSHI MURAI

Abstract. Gotzmann proved the persistence for minimal growth for ideals. His
theorem is called Gotzmann’s persistence theorem. In this paper, based on the
combinatorics on binomial coefficients, a simple combinatorial proof of Gotzmann’s
persistence theorem in the special case of monomial ideals is given.

Introduction

Let K be an arbitrary field, R = K[x1, x2, . . . , xn] the polynomial ring with
deg(xi) = 1 for i = 1, 2, . . . , n. Let M denote the set of variables {x1, x2, . . . , xn},
Md the set of all monomials of degree d, where M0 = {1} , and Mi = M \ {xi}.
For a monomial u ∈ R and for a subset V ⊂ Md, we define uV = {uv|v ∈ V } and
MV = {xiv|v ∈ V, i = 1, 2, . . . , n}. For a finite set V ⊂ Md, we write |V | for the
number of the elements of V . Let gcd(V ) denote the greatest common divisor of the
monomials belonging to V .

Let n and h be positive integers. Then h can be written uniquely in the form,
called the nth binomial representation of h,

h =

(

h(n) + n

n

)

+

(

h(n− 1) + n− 1

n− 1

)

+ · · ·+

(

h(i) + i

i

)

,

where h(n) ≥ h(n− 1) ≥ · · · ≥ h(i) ≥ 0, i ≥ 1. See [3, Lemma 4.2.6].

Let
(

h(1)
s(1)

)

+
(

h(2)
s(2)

)

+ · · ·+
(

h(i)
s(i)

)

be a sum of binomials, where h(j) ≥ s(j) for any

j = 1, 2, . . . , i. Then we define
{(

h(1)

s(1)

)

+ · · ·+

(

h(i)

s(i)

)}[+1]

=

(

h(1) + 1

s(1)

)

+ · · ·+

(

h(i) + 1

s(i)

)

.

Let h =
(

h(n)+n

n

)

+ · · ·+
(

h(i)+i

i

)

be the nth binomial representation of h. We define

h<n> =

(

h(n) + n+ 1

n

)

+ · · ·+

(

h(i) + i+ 1

i

)

,

h<n> =

(

h(n) + n

n− 1

)

+ · · ·+

(

h(i) + i

i− 1

)

,

h<<n>> =

(

h(n) + n− 1

n− 1

)

+ · · ·+

(

h(i) + i− 1

i− 1

)

,

and set 0<n> = 0<n> = 0<<n>> = 0, 1<0> = 1<<0>> = 1 together with 1<0> = 0.
1
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The inequality (1) below was proved by F. H. S. Macaulay. See also [3] and [7]
for further infomation. Let V be a set of monomials of same degree. Then one has

|MV | ≥ |V |<n−1>. (1)

In 1978, Gotzmann [5] proved so-called persistence theorem. In the special case of
monomial ideals, the persistence theorem says that

Theorem 0.1 (Persistence Theorem for monomial ideals). Let V be a set of
monomials of degree d. If |MV | = |V |<n−1>, then |M i+1V | = |M iV |<n−1> for all
i ≥ 0.

Let A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) be elements of Zn
≥0. The lexico-

graphic order on Z
n is defined by A < B if the leftmost nonzero entry of B − A

is positive. Moreover, the lexicographic order on monomials of the same degree is
defined by x1

a1x2
a2 . . . xn

an < x1
b1x2

b2 . . . xn
bn if A < B on Z

n
≥0.

Let V be a set of monomials of degree d.

(i) V is called a Gotzmann set if V satisfies |MV | = |V |<n−1>.
(ii) V is called a lexsegment set if V is a set of first |V |monomials in lexicographic

order. Denote the lexsegment set V of K[x1, . . . , xn] in degree d with |V | = a
by Lex(n, d, a).

It is known that lexsegment sets are Gotzmann sets. See [3, §4.2] or [7]. Also,
in [8] we determined all integers a > 0 such that every Gotzmann set with |V | = a
and with gcd(V ) = 1 is lexsegment up to permutation of variables. Related works
of Gotzmann’s theorem were done by A. Aramova, J. Herzog and T. Hibi [2]. They
proved Gotzmann’s theorem for exterior algebra. In addition, Z. Furedi and J. R.
Griggs [4] determine all integers a > 0 such that every squarefree Gotzmann set
with |V | = a is squarefree lexsegment up to permutation.

The inequality (1) and Theorem 0.1 are true for more general case. They need
not to be restricted to monomial case. Gotzmann [5] proved the persistence for
minimal growth of the Hilbert function of a homogeneous ideal (see [7, Theorem
C.17]). M. Green refined Gotzmann’s proof (see [3, Theorem 4.3.3]). Green also
give a simple proof in [6, Theorem 3.8] using generic initial ideals. On the other
hand, in the special case of monomial ideals, in [5] Gotzmann proved the persistence
theorem easier than general case using his version of the theory of Castelnuvo–
Munford regularity. All of these proofs are completely algebraic. In the present
paper we will give a combinatorial proof of persistence theorem for monomial ideals.
The advantage of our proof is that we only use the combinatorics on binomials.

In §1, we will prepare some lemmas about binomial representations. In §2, we
will give a combinatorial proof of persistence for monomial ideals.

1. Binomial representations

In this section we consider some properties about binomial representation and
combinatorics which will be used in the main proof.
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Definition 1.1. Let h be a positive integer and h =
∑n

j=i

(

h(j)+j

j

)

the nth binomial

representation of h. Let α =max{0,max{α ∈ Z|h −
(

α+n

n

)

> 0}}. We denote

h−
(

α+n

n

)

by h̄(n), in other words,

(i) if h = 1, then h̄(n) = 0;

(ii) if h > 1 and i = n, then h̄(n) =
(

h(n)+n−1
n−1

)

;

(iii) if h > 1 and i < n, then h̄(n) =
∑n−1

j=i

(

h(j)+j

j

)

.

This constraction says h̄(n) ≤
(

α+n

n−1

)

and h<n> =
(

α+n

n

)

<n>+h̄(n)<n−1>. Furthermore,

if h > 1 then h̄(n) ≥ 1.
Firstly, we introduce some easy and fundamental properties.

Lemma 1.2 ([3 Lemma 4.2.7]). Let a =
∑n

k=i

(

h(k)
k

)

and a′ =
∑n

k=j

(

h′(k)
k

)

be the
binomial representations. Then one has a < a′ if and only if

(h(n), h(n− 1), . . . , h(i), 0, . . . , 0) < (h′(n), h′(n− 1), . . . , h′(j), 0, . . . , 0)

in the lexicographic order on Z
n .

Lemma 1.3. Let h and n be integers with h ≥ 0 and n > 0. Then, for any integer
1 ≤ α ≤ h, one has
(

h+ n

n

)

=

(

α− 1 + n

n

)

+

(

α+ n− 1

n− 1

)

+

(

α + 1 + n− 1

n− 1

)

+ · · ·+

(

h+ n− 1

n− 1

)

and
(

h + n

n

)[+1]

=

{(

α− 1 + n

n

)

+

(

α + n− 1

n− 1

)

+

(

α + 1 + n− 1

n− 1

)

+· · ·+

(

h+ n− 1

n− 1

)}[+1]

.

Proof. Use
(

h+n

n

)

=
(

h−1+n

n

)

+
(

h−1+n

n−1

)

to the leftmost binomial coefficient repeatedly,
then we have
(

h + n

n

)

=

(

h− 2 + n

n

)

+

(

h− 1 + n− 1

n− 1

)

+

(

h+ n− 1

n− 1

)

...

=

(

α− 1 + n

n

)

+

(

α + n− 1

n− 1

)

+

(

α + 1 + n− 1

n− 1

)

+ · · ·+

(

h+ n− 1

n− 1

)

,

as desired. �

Lemma 1.4. Let h and n be positive integers. Then,

h<n> = h+ h<n>.

Proof. Let h =
∑n

j=i

(

h(j)+j

j

)

be the nth binomial representation of h. Since
(

h+n

n

)

=
(

h−1+n

n

)

+
(

h−1+n

n−1

)

, one has

h+ h<n> =
n

∑

j=i

{

(

h(j) + j

j

)

+

(

h(j) + j

j − 1

)

} =
n

∑

j=i

(

h(j) + j + 1

j

)

= h<n>,

as desired. �
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Next, we introduce some lemmas which will be used in the main proof.

Lemma 1.5. Let a, b and n be positive integers. One has

a<n> + b<n> > (a + b)<n>.

Proof. Assume n ≥ 2. Then we can take d with |Md| > a+ b. Let Va = Lex(n, d, a),
Vb = Lex(n, d, b) and u the minimal element of Va in the lexicographic order. Let
V = xd+1

1 Va∪uxnVb. Since ux
d+1
1 > uxd

1xn, x
d+1
1 Va∪uxnVb is disjoint union if n ≥ 2.

Since xd+1
1 xnu ∈ Mxd+1

1 Va ∩MuxnVb, we have Mxd+1
1 Va ∩MuxnVb 6= ∅. By (1) for

any positive integer n ≥ 2, we have

(a+ b)<n−1> ≤ |MV | < |MVa|+ |MVb| = a<n−1> + b<n−1>,

as desired. �

Lemma 1.6. Let a, b, c and α be positive integers. If
(

α+n

n

)

+ a = b + c and

a, b, c <
(

α+n

n

)

, then one has
(

α + n

n

)

<n> + a<n> ≤ b<n> + c<n>.

Especially, if
(

α+n

n

)

<n> + a<n> = b<n> + c<n>, then we have
{(

α + n

n

)

<n>

}

<n> + {a<n>}<n> = {b<n>}<n> + {c<n>}<n>. (2)

Proof. We use induction on n.

[Case I] Let n = 1.
In general, if h is a positive integer, then h<1> =

(

h+1
1

)

= h + 1. Thus we have
(

α+1
1

)

<1> + a<1> = b+ 1 + c + 1 = b<1> + c<1>. Thus we may assume n > 1.
To prove Lemma 1.6, we claim the followings:

(##) Let h and s be positive integers. Assume Lemma 1.6 is true in the case of

n = s. If
(

h+s

s

)

=
∑k

i=1 hi + c − d, 0 < hi <
(

h+s

s

)

for i = 1, 2, . . . , k, k ≥ 1

and
(

h+s

s

)

> c > d ≥ 0, then one has

(

h+ s

s

)

<s> ≤
k

∑

i=1

hi
<s> + c<s> − d<s>.

Especially, if
(

h+s

s

)

<s> =
∑k

i=1 hi
<s> + c<s> − d<s>, then we have

{(

h + s

s

)

<s>

}

<s> =

k
∑

i=1

{hi
<s>}<s> + {c<s>}<s> − {d<s>}<s>.

We will prove the claim. Since Lemmas 1.6 is true for n = s, we have
(

h+ s

s

)

<s> ≤ {
k

∑

i=1

hi}
<s> + c<s> − d<s>. (3)
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Moreover, by Lemma 1.5, we have

{
k

∑

i=1

hi}
<s> + c<s> ≤

k
∑

i=1

hi
<s> + c<s>. (4)

Also, if k ≥ 2 then (4) is not equal. If k = 1, then (3) is of the form Lemma 1.6.
Thus by an assumption we proved the claim (##).

We return to the proof of Lemma 1.6. Let a =
(

a(n)+n

n

)

+ ā(n), b =
(

b(n)+n

n

)

+ b̄(n)

and c =
(

c(n)+n

n

)

+ c̄(n) be the form of Definition 1.1. Let ā = ā(n), b̄ = b̄(n) and

c̄ = c̄(n). First, we note fundamental inequalities.

(α) a < b, a < c, α > b(n), α > c(n) and a(n) ≤ c(n),
(β) b̄ ≥ 1 and c̄ ≥ 1,
(γ) b̄ <

(

α+n−1
n−1

)

and c̄ <
(

α+n−1
n−1

)

.

The inequality(α) follows from the assumption. We have the inequality(β) since

1 ≤ a < b, c. By Definition 1.1, we have b̄ ≤
(

b(n)+n

n−1

)

≤
(

α+n−1
n−1

)

. But if b̄ =
(

b(n)+n

n−1

)

,

then b(n) < α − 1 since b =
(

b(n)+1+n

n

)

<
(

α+n

n

)

. Thus we have the inequality(γ).

Next, by Lemma 1.3, we can write
(

α+n

n

)

and
(

c(n)+n

n

)

as follows:

(

α + n

n

)

=

(

b(n) + n

n

)

+

α
∑

i=b(n)+1

(

i+ n− 1

n− 1

)

;

(

c(n) + n

n

)

=

(

a(n) + n

n

)

+

c(n)
∑

i=a(n)+1

(

i+ n− 1

n− 1

)

.

Hence we substitute these equalities for
(

α+n

n

)

+ a = b+ c, then we have

{ α
∑

i=b(n)+1

(

i+ n− 1

n− 1

)}

+ ā = b̄+ c̄+

{ c(n)
∑

i=a(n)+1

(

i+ n− 1

n− 1

)}

. (5)

Furthermore,
(

α+n

n

)

<n> + a<n> ≤ b<n> + c<n> if and only if

{ α
∑

i=b(n)+1

(

i+ n− 1

n− 1

)}[+1]

+ ā<n−1>

≤ b̄<n−1> + c̄<n−1> +

{ c(n)
∑

i=a(n)+1

(

i+ n− 1

n− 1

)}[+1]

. (6)

Instead of considering
(

α+n

n

)

+ a = b+ c and
(

α+n

n

)

<n> + a<n> ≤ b<n> + c<n>, it is
enough to consider (5) and (6). We will consider two cases.
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[Case II] Let c̄ ≥ ā and n > 1. We will prove that for i = 0, 1, . . . , α − (b(n) + 1)
(

α−i+n−1
n−1

)

can be written

(

α− i+ n− 1

n− 1

)

= −di +

ti−1
∑

j=ti+1

Pj + di+1, (7)

where Pi =
(

i+n−1
n−1

)

for i = a(n)+1, . . . , c(n), ti+1 < ti ≤ c(n)− i+2, 0 ≤ di < Pti−1

together with Pc(n)+1 = c̄, t0 = c(n) + 2, d0 = ā and dα−b(n) = b̄.

We use induction on i. For i = 0, since c̄− ā <
(

α+n−1
n−1

)

, there exists t1 ≤ c(n)+ 1
such that

c(n)
∑

i=t1

(

i+ n− 1

n− 1

)

+ c̄− ā ≤

(

α+ n− 1

n− 1

)

<

c(n)
∑

i=t1−1

(

i+ n− 1

n− 1

)

+ c̄− ā.

Thus we have
(

α + n− 1

n− 1

)

= c̄− ā+

c(n)
∑

j=t1

Pj + d1 = −d0 +

c(n)+1
∑

j=t1

Pj + d1

with 0 ≤ d1 < Pt1−1. Assume we have the form (7) for i = 0, . . . , s − 1. By

the assumption of induction and α > c(n) we have
(

α−s+n−1
n−1

)

≥
(

c(n)−s+1+n−1
n−1

)

≥
(

ts−1+n−1
n−1

)

= Pts−1. Thus
(

α−s+n−1
n−1

)

≥ −ds+1 + Pts−1 and ts+1 < ts. By the same

way of i = 0, we have (7) for i = s. Especially, if s = α− (b(n) + 1), because of the
equality (5), we have

(

b(n) + n

n− 1

)

= −ds +
ts−1
∑

j=a(n)+1

(

j + n− 1

n− 1

)

+ b̄. (8)

Thus each
(

α−i+n−1
n−1

)

have of the form (7).
Equalities (7) satisfies conditions of (##). By the assumption of induction of n,

we have
(

α− i− 1 + n− 1

n− 1

)

<n−1> ≤ −di+1
<n−1> +

ti−1
∑

j=ti+1

Pj
<n−1> + di+2

<n−1>. (9)

Summating (7) in both sides yields (5), and summating inequalities (9) in both sides
yields (6). Furthermore, (6) is equal if and only if (9) are equal for all i. Thus if (6)
is equal, then (##) says (2) is satisfied.

[Case III] Let c̄ < ā and n > 1. We will prove that for i = 0, 1, . . . , α− (b(n) + 1)
(

α− i+ n− 1

n− 1

)

= di +

ti−1
∑

j=ti+1

(

j + n− 1

n− 1

)

− di+1 (10)

and ā = c̄ + dα−b(n), (11)

where 0 ≤ di <
(

ti+n−1
n−1

)

and ti+1 < ti ≤ c(n) − i + 1 together with d0 = b̄,
t0 = c(n) + 1 and tα−b(n) = a(n) + 1.
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For i = 0, since
(

α+n−1
n−1

)

> b̄, by the same way of [Case II] we have

(

α + n− 1

n− 1

)

= b̄+

c(n)
∑

j=t1

(

j + n− 1

n− 1

)

− d1.

Also, if we have equality (10) for i = 0, 1, . . . , s − 1, then we have
(

α−s+n−1
n−1

)

≥
(

c(n)−(s−1)+n−1
n−1

)

≥
(

ts+n−1
n−1

)

> ds. Thus we have ts+1 < ts and we have equality (10)

for i = s by the same way. Finally, since ā− c̄ < ā ≤
(

a(n)+n

n−1

)

by definition of ā, we
have ā = c̄ + dα−b(n) and tα−b(n) = a(n) + 1. Equalities (10) satisfies the conditions
of (##). Thus by the assumption of induction of n, we have

(

α− i+ n− 1

n− 1

)

<n−1> ≤ di
<n−1> +

ti−1
∑

j=ti+1

(

j + n− 1

n− 1

)

<n−1> − di+1
<n−1>. (12)

Furthermore, since c̄ > 0 and dα−b(n) > 0 we have

ā<n−1> < c̄<n−1> + ds+1
<n−1>. (13)

Then, by summating (10) and (11), we have the equality (5). By summating
inequalities (12) and (13), we have

{ α
∑

i=b(n)+1

(

i+ n− 1

n− 1

)}[+1]

+ā<n−1> < b̄<n−1>+c̄<n−1>+

{ c(n)
∑

i=a(n)+1

(

i+ n− 1

n− 1

)}[+1]

.

In this case (6) is not equal. Thus we need not consider the equality (2). �

Lemma 1.7. Let h and n be positive integers. Then, one has

h<n> < h<n+1>.

Proof. Let h =
(

h(n+1)+n+1
n+1

)

+ h̄(n+1). Then h<n+1> =
(

h(n+1)+n+1
n+1

)

<n+1>+ h̄(n+1)<n>.
By Lemma 1.3, we have

(

h(n+ 1) + n+ 1

n + 1

)

=

(

n+ 1

n+ 1

)

+

h(n+1)
∑

i=1

(

i+ n

n

)

.

Furthermore, we have
(

n+1
n+1

)[+1]
>

(

n

n

)[+1]
. By Lemma 1.5, we have

(

h(n + 1)

n + 1

)

<n+1> + h̄(n+1)<n> >

(

n

n

)

<n> +

h(n+1)
∑

i=1

(

i+ n

n

)

<n> + h̄(n+1)<n>

≥ {

(

n

n

)

+

h(n+1)
∑

i=1

(

i+ n

n

)

+ h̄(n+1)}<n> = h<n>,

as desired. �
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2. A combinatorial proof of persistence for monomial ideals

Let V be a set of monomials of degree d and u = gcd(V ). If |V | > 1, we define
Ki(V ) = {v ∈ Md| xiu divides v} and Di(V ) = V \ Ki(V ) for i = 1, 2, . . . , n. If
|V | = 1, then we define Ki(V )= V and Di(V ) = ∅. Note that if |V | > 1, then
Di(V ) 6= ∅ and Ki(V ) 6= ∅.

Before giving a combinatorial proof of persistence theorem for monomial ideals,
we prepare some lemmas.

Lemma 2.1. Let V be a set of monomials of degree d and u = gcd(V ). For any
i = 1, 2, . . . , n, we have

MiDi(V ) ⊂ MV \ xiV. (14)

|MV | ≥ |Ki(V )|<n−1> + |Di(V )|<n−2>. (15)

Moreover, in (15), the equality holds if and only if Ki(V ) is a Gotzmann set of
K[x1, x2, . . . , xn],

1
u
Di(V ) is a Gotzmann set of K[x1, . . . , xi−1, xi+1, . . . , xn] and

xiDi(V ) ⊂ MiKi(V ).

Proof. Any element of MiDi(V ) can not be divided by uxi. On the other hand,
MiDi(V ) ⊂ MV . Thus we have MiDi(V ) ⊂ MV \ xiV.

Now we have

|MV | = |MKi(V )|+ |MDi(V )| − |{MKi(V ) ∩MDi(V )}|.

Now we have MKi(V ) ∩MDi(V ) = MKi(V )∩xiDi(V ) ⊂ xiDi(V ) and |MDi(V )| =
|xiDi(V )| + |MiDi(V )|. On the other hand, the inequality (1) says |MiDi(V )| =
|Di(V )|<n−2> since 1

u
Di(V ) ⊂ K[x1, . . . , xi−1, xi+1, . . . , xn]. Thus we have

|MV | ≥ |MKi(V )|+ |MiDi(V )|

≥ |Ki(V )|<n−1> + |Di(V )|<n−2>.

Especially, equality holds if and only if Ki(V ) and 1
u
Di(V ) are Gotzmann sets and

MKi(V ) ∩ xiDi(V ) = xiDi(V ). �

Next we determine the range of |Di(V )|, when V is a Gotzmann set.

Lemma 2.2. Let V be a Gotzmann set of monomials of degree d. Then, for any
i = 1, 2, . . . , n, we have

|V |
(n−1)

≤ |Di(V )| ≤ |V |<<n−1>>. (16)

Proof. If |V | = 0 or |V | = 1, then |V |
(n−1)

= |Di(V )| = 0. Thus we may assume
n > 1 and |V | > 1. First, we consider the second inequality of (16). By Lemma 2.1
and by the inequality (1), we have

|Di(V )|<n−2> ≤ |MiDi(V )| ≤ |(MV \ xiV )|.

On the other hand, by Lemma 1.4, we have

|(MV \ xiV )| = |MV | − |V | = |V |<n−1> − |V |

= |V |<n−1>.
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Thus |Di(V )|<n−2> ≤ |V |<n−1>. Hence we have |Di(V )| ≤ |V |<<n−1>>.

We consider the first inequality of (16). If n = 2, then |V |
(n−1)

= |Di(V )| = 1.

Thus we may assume n ≥ 3. Let |V | =
(

a+n−1
n−1

)

+ |V |
(n−1)

. If |Di(V )| < |V |
(n−1)

,

then |Ki(V )| = |V | − |Di(V )| >
(

a+n−1
n−1

)

. Thus we can write |Ki(V )| =
(

a+n−1
n−1

)

+ b
with b > 0. By Lemma 2.1, we have

|MV | ≥ |Ki(V )|<n−1> + |Di(V )|<n−2>

=

(

a+ n− 1

n− 1

)

<n−1> + b<n−2> + |Di(V )|<n−2>.

On the other hand, by Lemma 1.5, we have

b<n−2> + |Di(V )|<n−2> > {b+ |Di(V )|}<n−2> = (|V |
(n−1)

)<n−2>.

Thus we have

|MV | >

(

a + n− 1

n− 1

)

<n−1> + (|V |
(n−1)

)<n−2> = |V |<n−1>.

This is a contradiction since V is a Gotzmann set. �

Now, we finished all preparations for following lemma which proves the Persistence
Theorem immediately.

Lemma 2.3. Let V be a Gotzmann set of monomials of degree d with gcd(V ) = 1
and V 6= Md. Then there exist i ∈ {1, 2, . . . , n} which satisfies followings:

(i) Ki(V ) is a Gotzmann set of K[x1, . . . , xn], Di(V ) is a Gotzmann set of
K[x1, . . . , xi−1, xi+1, . . . , xn] and |Di(V )| < |V |<<n−1>>;

(ii) xiDi(V ) ⊂ MiKi(V );

(iii) {|Ki(V )|<n−1>}<n−1> + {|Di(V )|<n−2>}<n−2> = {|V |<n−1>}<n−1>.

Proof. Now, we set |V | = a =
∑n−1

j=p

(

a(j)+j

j

)

, |Di(V )| = b =
∑n−2

j=q

(

b(j)+j

j

)

and

|Ki(V )| = c =
∑n−1

j=r

(

c(j)+j

j

)

be the binomial representations. Set V 6= ∅.

[Case(A)] Let |V | = 1 or n = 1.
If |V | = 1, then V = M0 since gcd(V ) = 1. If n = 1, then |V | = 1. Thus we may

assume |V | > 1 and n > 1.

By Lemma 2.1, if a<n−1> ≤ b<n−2> + c<n−1>, then a<n−1> = b<n−2> + c<n−1>

and Ki(V ) and Di(V ) are Gotzmann sets. Thus conditions (i) and (ii) are satisfied.
In [Case(B)] and [Case(C)] , we will prove that if b < a<<n−1>> then a<n−1> ≤
b<n−2> + c<n−1> .

If b < a<<n−1>>, then, by Lemma 1.2, there exists a maximal integer t, such that
n− 1 ≥ t ≥ p and

0 ≤ b−
n−1
∑

j=t+1

(

a(j) + j − 1

j − 1

)

<

(

a(t) + t− 1

t− 1

)

.
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Let

a =
n−1
∑

j=t+1

(

a(j) + j

j

)

+

(

a(t) + t

t

)

+ a′, (17)

b =
n−1
∑

j=t+1

(

a(j) + j − 1

j − 1

)

+ b′, (18)

and c = a− b =
n−1
∑

j=t+1

(

a(j) + j − 1

j

)

+ c′. (19)

Since 0 ≤ b′ <
(

a(t)+t−1
t−1

)

, we have
(

a(t)+t−1
t

)

< c′ <
(

a(t)+t+1
t

)

. Also, we have

a<n−1> =

{ n−1
∑

j=t+1

(

a(j) + j

j

)}[+1]

+

(

a(t) + t

t

)[+1]

+ a′<t−1> (20)

and b<n−2> =

{ n−1
∑

j=t+1

(

a(j) + j − 1

j − 1

)}[+1]

+ b′<t−1>. (21)

[Case(B)] Let b < a<<n−1>> and c′ <
(

a(t)+t

t

)

.

Let c′′ = c′ −
(

a(t)+t−1
t

)

. If b′ = 0, then c′ ≥
(

a(t)+t

t

)

. Thus b′ > 0. On

the other hand, we have c′′ > 0 since c′ >
(

a(t)+t−1
t

)

. Since c′′ <
(

a(t)+t−1
t−1

)

,

c =
∑n−1

j=t

(

a(j)+j−1
j

)

+ { (t − 1)th binomial representation of c′′} is (n − 1)th bi-

nomial representation of c. Thus

c<n−1> =

{ n−1
∑

j=t

(

a(j) + j − 1

j

)}[+1]

+ c′′<t−1>.

Thus, by (21), we have

b<n−2> + c<n−1> =

{ n−1
∑

j=t+1

(

a(j) + j

j

)}[+1]

+

(

a(t) + t− 1

t

)[+1]

+ b′<t−1> + c′′<t−1>. (22)

Since
(

a(t)+t

t

)

=
(

a(t)+t−1
t

)

+
(

a(t)+t−1
t−1

)

and a = b+ c together with (17), (18) and (19)

say b′ + c′′ = a′ +
(

a(t)+t−1
t−1

)

. Hence by Lemma 1.5, Lemma 1.6 together with b′ > 0
and c′′ > 0, we have

b′<t−1> + c′′<t−1> ≥ a′<t−1> +

(

a(t) + t− 1

t− 1

)

<t−1>. (23)

Thus by (20) and (22), we have a<n−1> ≤ b<n−2> + c<n−1>. Furthermore, if (23) is
equal, then Lemma 1.6 says

{b′<t−1>}<t−1> + {c′′<t−1>}<t−1> = {a′<t−1>}<t−1> +

{(

a(t) + t− 1

t− 1

)

<t−1>

}

<t−1>.
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Thus we have {a<n−1>}<n−1> = {b<n−2>}<n−2> + {c<n−1>}<n−1>.

[Case(C)] Let b < a<<n−1>> and c′ ≥
(

a(t)+t

t

)

.

Let c′′ = c′ −
(

a(t)+t

t

)

and α =max{i|a(i) = a(t)}. Since
∑α

j=t+1

(

a(j)+j−1
j

)

+
(

a(t)+t

t

)

=
(

a(α)+α

α

)

and c′′ <
(

a(t)+t

t−1

)

≤
(

a(α)+α

α−1

)

, we have

c<n−1> =

{ n−1
∑

j=α+1

(

a(j) + j − 1

j

)}[+1]

+

(

a(α) + α

α

)[+1]

+ c′′<α−1>

=

{ n−1
∑

j=t+1

(

a(j) + j − 1

j

)

+

(

a(t) + t

t

)}[+1]

+ c′′<α−1>.

Thus, by (21), we have

b<n−2> + c<n−1>=

{ n−1
∑

j=t

(

a(j) + j

j

)}[+1]

+ b′<t−1> + c′′<α−1>. (24)

Since a = b+ c together with (17), (18) and (19), we have a′ = b′ + c′′. By Lemmas
1.5 and 1.7, we have

a′<t−1> ≤ b′<t−1> + c′′<t−1> ≤ b′<t−1> + c′′<α−1>. (25)

Hence by (20) and (24) we have a<n−1> ≤ b<n−2> + c<n−1>. Furthermore, if the
inequality (25) is equal, then c′ = 0 or b′ = 0 and α = t. In each case, we have
{a′<t−1>}<t−1> = {b′<t−1>}<t−1>+{c′′<α−1>}<α−1>. Hence we have {a<n−1>}<n−1> =
{b<n−2>}<n−2> + {c<n−1>}<n−1>.

[Case(D)] Let b = a<<n−1>>.
By Lemma 2.1, we have MiDi(V ) ⊂ MV \xiV . But, by (1) we have |MiDi(V )| ≥

b<n−2>. Now, we have a<n−1> = a<n−1> − a = |(MV \ xiV )| and b<n−2> = a<n−1>.
Thus we have MiDi(V ) = MV \ xiV .

By [Case(B)] and [Case(C)], if |Di(V )| < a<<n−1>> for some i, then we have
conditions (i), (ii) and (iii). Finally, we will prove that if |Di(V )| = a<<n−1>> for
i = 1, 2, . . . , n , then V = Md or V = ∅. In [Case(D)], we see MiDi(V ) = MV \ xiV
if |Di(V )| = a<<n−1>>. We claim (#).

(#) Assume |Di(V )| = a<<n−1>> for i = 1, 2, . . . , n. If there exist a monomial
v ∈ Md such that v /∈ V , then for any xj and xi with xi|v, one has

xj

xi
v /∈ V .

To see why (#) is true, we assume that v /∈ V and there exist xi and xj such that
xj

xi
v ∈ V . Since v /∈ V , we have xjv /∈ xjV . Thus we have xi

xj

xi
v = xjv ∈ MV \xjV =

MjDj(V ). But any element in MjDj(V ) does not contain xj since gcd(V ) = 1, this
is a contradiction.

By using (#), if there exists a monomial v ∈ Md such that v /∈ V , then all
monomials in Md do not belong to V . Hence we have V = Md or V = ∅ . �

We are now in the position to finish our combinatorial proof of persistence theorem
for monomial ideals.
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Proof of persistence theorem for monomial ideals. What we have to prove is that if
V is a Gotzmann set then MV is also a Gotzmann set.

Let V be a Gotzmann set of degree d. We use induction on |V |. Firstly, for any
monomial u ∈ R, V is a Gotzmann set if and only if uV is a Gotzmann set since
|V | = |uV | and |MV | = |uMV |. Thus we may assume gcd(V ) = 1.

If V = Md, then MV is also a Gotzmann set. If |V | = 1 then V = M0.
If V 6= Md and |V | > 1. Lemma 2.3 (ii) says there exists i ∈ {1, 2, . . . , n}

such that MiKi(V ) ⊃ xiDi(V ) and M2Ki(V ) ⊃ Mi

2
Ki(V ) ⊃ xiMiDi(V ). Thus

|MV | = |MKi(V )|+ |MiDi(V )| and |M2V | = |M2Ki(V )|+ |Mi

2
Di(V )|. By Lemma

2.3 (i) and by assumption of induction, both MKi(V ) and MiDi(V ) are Gotzmann
sets. Hence by Lemma 2.3 (iii), we have

|M2V | = |M2Ki(V )|+ |Mi

2
Di(V )|

= {|Ki(V )|<n−1>}<n−1> + {|Di(V )|<n−2>}<n−2>

= {|V |<n−1>}<n−1>

= {|MV |}<n−1>.

This completes the proof. �
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