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ON THE SIGN-IMBALANCE OF SKEW PARTITION

SHAPES

JONAS SJÖSTRAND

Abstract. Let the sign of a skew standard Young tableau be the sign
of the permutation you get by reading it row by row from left to right,
like a book. We examine how the sign property is transferred by the
skew Robinson-Schensted correspondence invented by Sagan and Stan-
ley. The result is a remarkably simple generalization of the ordinary
non-skew formula.

The sum of the signs of all standard tableaux on a given skew shape
is the sign-imbalance of that shape. We generalize previous results on
the sign-imbalance of ordinary partition shapes to skew ones.

1. Introduction

A labelled poset (P, ω) is an n-element poset P with a bijection ω : P →
[n] = {1, 2, . . . , n} called the labelling of P . A linear extension of P is an
order-preserving bijection f : P → [n]. It is natural to define the sign
of f as −1 to the power of the number of inversions with respect to the
labelling, i.e., pairs x, y ∈ P such that ω(x) < ω(y) and f(x) > f(y). The
sign-imbalance IP,ω of (P, ω) is the sum of the signs of all linear extensions of
P . Note that IP,ω is independent of the labelling ω up to sign. In this paper
we will mainly discuss the square of sign-imbalances, and then we may drop
the ω and write I2P = I2P,ω.

If I2P = 0 the poset is sign-balanced. Such posets have been studied since
1989 by F. Ruskey [4], [5], R. Stanley [12], and D. White [13]. It is a vast
subject however, and most of the work has been devoted to a certain class
of posets: the partition shapes (or Young diagrams). Though no one so far
has been able to completely characterize the sign-balanced partition shapes,
this research direction has offered a lot of interesting results. Many people
have studied the more general notion of sign-imbalance of partition shapes,
among those T. Lam [2], A. Reifegerste [3], J. Sjöstrand [9], M. Shimozono
and D. White [8], R. Stanley [12], and D. White [13].

Young tableaux play a central role in the theory of symmetric functions
(see [1]) and there are lots of useful tools for working with them that are
not applicable to general posets. One outstanding tool is the Robinson-
Schensted correspondence which has produced nice results also in the field
of sign-imbalance, see [9], [3], and [8].
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As suggested in [9] a natural step from partition shapes towards more
general posets would be to study skew partition shapes. They have the ad-
vantage of being surrounded by a well-known algebraic and combinatorial
machinery just like the ordinary shapes, and possibly they might shed some
light on the sign-imbalance of the latter ones as well. We will use a general-
ization of the Robinson-Schensted algorithm for skew tableaux by B. Sagan
and R. Stanley [6].

In a recent paper [10, Theorem 4.3 and 5.7] E. Soprunova and F. Sottile
show that |IP,ω| is a lower bound for the number of real solutions to certain
polynomial systems. Theorem 6.4 in [10] says that |IP,ω| is the characteristic
of the Wronski projection on certain projective varieties associated with
P . When P is a skew partition shape this is applicable to skew Schubert
varieties in Grassmanians (Richardson varieties).

An outline of this paper:

• After some basic definitions in section 2, in section 3 we briefly recall
Sagan and Stanley’s skew RS-correspondence from [6].

• In section 4 we state our main results without proofs and examine
their connection to old results.

• In section 5 and 6 we prove our main theorems through a straight-
forward but technical analysis.

• In section 7 we examine a couple of interesting corollaries to our
main results. One corollary is a surprising formula for the square of
the sign-imbalance of any ordinary shape.

• Finally, in section 8 we suggest some future research directions.

2. Preliminaries

An (ordinary) n-shape λ = (λ1, λ2, . . .) is a graphical representation (a Fer-
rers diagram) of an integer partition of n =

∑

i λi. We write λ⊢n or |λ| = n.
The coordinates of a cell is the pair (r, c) where r and c are the row and col-
umn indices. Example:

(6, 4, 2, 2, 1) =
(3, 2)❳

❳
❳②

A shape µ is a subshape of a shape λ if µi ≤ λi for all i. For any subshape
µ ⊆ λ the skew shape λ/µ is λ with µ deleted. A skew n-shape λ/µ is a skew
shape with n cells, and we write λ/µ⊢n or |λ/µ| = n. Here is an example
of a skew 6-shape:

(6, 4, 2, 2, 1)/(4, 3, 2) =

A domino is a rectangle consisting of two cells. For an ordinary shape λ,
let v(λ) denote the maximal number of disjoint vertical dominoes that fit in
the shape λ.
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A (partial) tableau T on a skew n-shape λ/µ is a labelling of the cells of
λ/µ with n distinct real numbers such that every number is greater than
its neighbours above and to the left. We let ♯T = n denote the number of
entries in T , and PT(λ/µ) denote the set of partial tableaux on λ/µ.

A standard tableau on a skew n-shape is a tableau with the numbers
[n] = {1, 2, . . . , n}. We let ST(λ/µ) denote the set of standard tableaux on
the shape λ/µ. Here is an example:

1 4

3

2 6

5

The (skew) shape of a tableau T is denoted by shT . Note that it is not suffi-
cient to look at the cells of T in order to determine its shape; we must think
of the tableau as remembering its underlying skew shape. (For instance,
(6, 4, 2, 2, 1)/(4, 3, 2) and (6, 4, 3, 2, 1)/(4, 3, 3) are distinct skew shapes that
have the same set of cells.)

The sign of a number sequence w1w2 · · ·wk is (−1)♯{(i,j) : i<j,wi>wj}, so it
is +1 for an even number of inversions, −1 otherwise. The inverse sign is
defined to be (−1)♯{(i,j) : i<j,wi<wj}.

The sign sgnT and the inverse sign invsgn T of a tableau T are the sign
respectively the inverse sign of the sequence you get by reading the entries
row by row, from left to right and from top to bottom, like a book. Our
example tableau has 4 inversions and 11 non-inversions, so sgnT = +1 and
invsgnT = −1.

Definition 2.1. The sign-imbalance Iλ/µ of a skew shape λ/µ is the sum
of the signs of all standard tableaux on that shape:

Iλ/µ =
∑

T∈ST(λ/µ)

sgnT .

An empty tableau has positive sign and Iλ/λ = I∅ = 1.

A biword π is a sequence of vertical pairs of positive integers π = i1i2···ik
j1j2···jk

with i1 ≤ i2 ≤ · · · ≤ ik. We define the top and bottom lines of π by
π̂ = i1i2 · · · ik and π̌ = j1j2 · · · jk. A partial n-permutation is a biword where
in each line the elements are distinct and of size at most n. Let PSn denote
the set of partial n-permutations.

For each π ∈ PSn we associate an ordinary n-permutation π̄ ∈ Sn con-
structed as follows: First take the numbers among 1, 2, . . . , n that do not
belong to π̂ and sort them in increasing order a1 < a2 < · · · < aℓ. Then sort
the numbers among 1, 2, . . . , n that do not belong to π̌ in increasing order
b1 < b2 < · · · < bℓ. Now insert the vertical pairs

ar
br , 1 ≤ r ≤ ℓ into π so

that the top line remains increasingly ordered (and hence must be 12 · · · n).
The bottom line is a permutation (in single-row notation) which we denote
π̄. Example: If n = 5 and π = 124

423 then π̄ = 42135.
In the following we let ⊎ denote disjoint union interpreted liberally. For

instance, we will write π̌⊎T = [n] meaning that the set of numbers appearing
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in π̌ and the set of entries of the tableau T are disjoint and their union is
[n].

3. The skew RS-correspondence

In [6] Bruce Sagan and Richard Stanley introduced several analogues of
the Robinson-Schensted algorithm for skew Young tableaux. Their main
result is the following theorem.

Theorem 3.1 (Sagan and Stanley; 1990). Let n be a fixed positive integer
and α a fixed partition (not necessarily of n). Then there is bijection

(π, T, U) ↔ (P,Q)

between π ∈ PSn with T,U ∈ PT(α/µ) such that π̌⊎T = π̂⊎U = [n], on the
one hand, and P,Q ∈ ST(λ/α) such that λ/α⊢n, on the other.

Though we will assume detailed familiarity with it, we do not define the
bijection here, but refer to [6] for the original presentation.

4. Our results

In [9] and [3] the author and Astrid Reifegerste independently discovered
the formula for sign transfer under the RS-correspondence:

Theorem 4.1 (Reifegerste; Sjöstrand; 2003). Under the (ordinary) RS-
correspondence π ↔ (P,Q) we have

sgnπ = (−1)v(λ) sgnP sgnQ

where λ is the shape of P and Q.

Our main theorem is a generalization of this to Sagan and Stanley’s skew
RS-correspondence:

Theorem 4.2. Under the skew RS-correspondence (π, T, U) ↔ (P,Q) we
have

(−1)v(λ) sgnP sgnQ = (−1)|α|(−1)v(µ)+|µ| sgnT sgnU sgn π̄

where shP = shQ = λ/α and shT = shU = α/µ.

Note that if α = ∅ the theorem reduces to Theorem 4.1.

Remark. If we specialise to the skew RS-correspondence (π, T ) ↔ P of
involutions (see Corollary 3.4 in [6]), Theorem 4.2 gives that

(−1)v(λ) = sgn π̄(−1)v(µ)+|µ|+|α|,

where shP = λ/α and shT = α/µ. This is also a simple consequence of
Corollary 3.6 in [6] which is a generalization of a theorem by Schützenberger
[7, page 127] (see also [11, exercise 7.28 a]).

A fundamental application of Theorem 4.1 appearing in both [9] and [3]
is the following theorem.

Theorem 4.3 (Reifegerste; Sjöstrand; 2003). For all n ≥ 2
∑

λ⊢n

(−1)v(λ)I2λ = 0.
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Let α = (3, 1) and n = 3. There are 10 skew shapes λ/α ⊢ 3. Here we have

evaluated (−1)v(λ)I2λ/α for each one of them:

−1 +1 −1 −1 +0

+1 −1 +0 −1 +1

(It happens that all these skew shapes have sign-imbalance 0 or 1, but in larger
examples we would find much more exotic integers, like −7 for instance.) Now

we compute (−1)v(µ)I2α/µ for the two skew shapes α/µ⊢ 2:

−1 +0

Finally, there is only one skew shape α/µ⊢ 3:

+1

We check that
∑

λ/α⊢ 3

(−1)v(λ)I2λ/α = −2 = −1− 1 =
∑

α/µ⊢ 2

(−1)v(µ)I2α/µ −
∑

α/µ⊢ 3

(−1)v(µ)I2α/µ.

Figure 1. Example of Theorem 4.4.

We give a natural generalization of this using Theorem 4.2. It may be called
a “sign-imbalance analogue” to Corollary 2.2 in [6].

Theorem 4.4. Let α be a fixed partition and let n be a positive integer.
Then

∑

λ/α⊢n

(−1)v(λ)I2λ/α =
∑

α/µ⊢n

(−1)v(µ)I2α/µ

if n is even, and

∑

λ/α⊢n

(−1)v(λ)I2λ/α =
∑

α/µ⊢n−1

(−1)v(µ)I2α/µ −
∑

α/µ⊢n

(−1)v(µ)I2α/µ

if n is odd.

Figure 1 gives an example. Observe that if α = ∅ and n ≥ 2 the theorem
reduces to Theorem 4.3.
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a1

Figure 2. External insertion of a1. The shaded cells are
counted by the sum

∑r
i=2(βi−1 − ci−1 + ci − 1 − γi) in the

proof.

5. The proof of the main theorem

For a skew shape λ/µ, let

rsgnλ/µ := (−1)
∑

(r,c)∈λ/µ(r−1).

For convenience, let rsgnT := rsgn shT for a skew tableau T . Observe that
for an ordinary shape λ we have rsgnλ = (−1)v(λ).

For the sake of bookkeeping we will make two minor adjustments to the
skew insertion algorithm that do not affect the resulting tableaux:

• Instead of starting with an empty Q-tableau, we start with the
tableau U after multiplying all entries by ε. Here ε is a very small
positive number.

• During an internal insertion a new cell with an integer b is added to
the Q-tableau according to the usual rules. New additional rule: At
the same time we remove the entry bε from the Q-tableau.

Consider the (adjusted) skew insertion algorithm starting with P-tableau
P0 = T and Q-tableau Q0 = Uε. After ℓ insertions (external or internal)
we have obtained the tableaux Pℓ and Qℓ. The following two lemmas state
what happens when we make the next insertion.

Lemma 5.1. Let (Pℓ+1, Qℓ+1) be the resulting tableaux after external inser-
tion of the number a1 into (Pℓ, Qℓ). Then

sgnPℓ+1

sgnPℓ
=

sgnQℓ+1

sgnQℓ

rsgnQℓ+1

rsgnQℓ
(−1)♯Qℓ(−1)m,

where m is the number of entries in Pℓ that are less than a1.

Proof. We insert the number a1 which pops a number a2 at (1, c1) which
pops a number a3 at (2, c2) and so on. Finally the number ar fills a new cell
(r, cr), see Figure 2.
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a1

Figure 3. Internal insertion starting with a1. The shaded

cells are counted by
∑k

i=1(βr+i−1 − ci−1 + ci − 1 − γr+i) in
the proof.

For 2 ≤ i ≤ r, the relocation of ai multiplies the sign of the P-tableau by
(−1)βi−1−ci−1+ci−1−γi , where shPℓ = shQℓ = β/γ. Summation yields

r∑

i=2

(βi−1 − ci−1 + ci − 1− γi) = −(c1 − γ1 + r − 2) +

r∑

i=1

(βi − γi)

since βr = cr − 1. The placing of a1 in the first row multiplies the sign of
the P-tableau by (−1)m−(c1−1−γ1) where m is the number of entries in Pℓ

that are less than a1. We get

sgnPℓ+1

sgnPℓ
= (−1)m+1−r+

∑r
i=1(βi−γi).

Obviously
invsgnQℓ+1

invsgnQℓ
= (−1)

∑r
i=1(βi−γi)

and
rsgnQℓ+1

rsgnQℓ

= (−1)r−1.

Since sgnR invsgnR = (−1)(
♯R
2 ) for any tableau R, we have

invsgnQℓ+1

invsgnQℓ

=
sgnQℓ+1

sgnQℓ

(−1)♯Qℓ .

Combining the equations above proves the lemma. �

Lemma 5.2. Let (Pℓ+1, Qℓ+1) be the resulting tableaux after internal inser-
tion of the entry a1 at (r, c0) into (Pℓ, Qℓ). Then

sgnPℓ+1

sgnPℓ
=

sgnQℓ+1

sgnQℓ

rsgnQℓ+1

rsgnQℓ
(−1)♯Qℓ .

Proof. During an internal insertion the entry a1 at (r, c0) pops a number a2
at (r + 1, c1) which pops a number a3 at (r + 2, c2) and so on. Finally the
number ak fills a new cell (r + k, ck), see Figure 3.
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For 1 ≤ i ≤ k, the relocation of ai multiplies the sign of the P-tableau by
(−1)βr+i−1−ci−1+ci−1−γr+i , where shPℓ = shQℓ = β/γ. Summation yields

k∑

i=1

(βr+i−1 − ci−1 + ci − 1− γr+i) = −k +

r+k∑

j=r

(βj − γj)

since βr+k = ck − 1 and γr = c0 − 1.
What happens to the Q-tableau? According to our adjustments of the

algorithm the entry bε at (r, c0) is removed and the entry b is added at the
new cell at (r+ k, ck). Observe that bε is the smallest element in Qℓ; this is
the very reason why we are making an internal insertion from its cell (r, c0).
Also note that b is the largest entry in Qℓ+1. The transformation from Qℓ

to Qℓ+1 can be thought of as consisting of two steps: First we replace the
entry bε by b, thereby changing the sign of the tableau by a factor (−1)♯Qℓ−1.
Then we move the b to the new cell at (r+ k, ck), thereby changing the sign
of the tableau by a factor

(−1)−1+
∑r+k

j=r (βj−γj).

Now, after observing that

rsgnQℓ+1

rsgnQℓ
=

(−1)r+k

(−1)r
= (−1)k,

the lemma follows. �

Now we are ready to prove our main theorem.

Proof of Theorem 4.2. From Lemma 5.1 and 5.2 we deduce by induction
that

(1)
sgnP

sgnT
=

sgnQ

sgnU

rsgnQ

rsgnU
(−1)

∑n−1
ℓ=0 ♯Qℓ(−1)

∑
m

where n = ♯P and the last sum
∑

m is taken over all external insertions.
Let t1 < t2 < · · · < tg and u1 < u2 < · · · < ug be the entries of T and

U , and write π = i1i2···ih
j1j2···jh

. Let π′ be the permutation you get (in single-

row notation) by preceding π̌ with the elements of T decreasingly ordered,
i.e., π′ = tgtg−1 · · · t1j1j2 · · · jh. It is easy to see that the sum

∑
m equals

the number of non-inversions of π′, i.e pairs i < j such that π′(i) < π′(j).

This means that (−1)
∑

m = invsgnπ′.
What is the relationship between invsgn π′ and sgn π̄?
Let us go from π′ to π̄ by a sequence of moves. Start with

π′ = tgtg−1 · · · t1j1j2 · · · jh.

Move the first entry tg to position ug:

tg−1tg−2 · · · t1 j∗ · · · j∗ tg
︸ ︷︷ ︸

ug entries

j∗ · · · j∗
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(Here the symbolic indices ∗ should be replaced by the sequence 1, 2, . . . , h.)
Next, move the entry tg−1 to position ug−1:

tg−2tg−3 · · · t1 j∗ · · · j∗ tg−1
︸ ︷︷ ︸

ug−1 entries

j∗ · · · j∗ tg j∗ · · · j∗

Continue until all elements of T are moved. The resulting permutation is
π̄. After analysing what the moves do to the sign of the permutation, we
obtain

sgn π̄ = (−1)K sgnπ′

where

K =

g
∑

i=1

(ui − 1).

Note also that
invsgnπ′ = (−1)(

n
2) sgnπ′.

Now look at
n−1∑

ℓ=0

♯Qℓ.

If we define Kℓ := ♯{b ∈ U : ℓ < b} we can write ♯Qℓ = ℓ+Kℓ. Summation
yields

n−1∑

ℓ=0

♯Qℓ =

n−1∑

ℓ=0

(ℓ+Kℓ) =

(
n

2

)

+K + ♯U.

Now we are ready to update (1):

sgnP

sgnT
=

sgnQ

sgnU

rsgnQ

rsgnU
sgn π̄(−1)♯U .

There remains only some cleaning-up. Observe that

rsgnQ

rsgnU
=

rsgnλ/α

rsgnα/µ
= rsgnλ rsgnµ = (−1)v(λ)(−1)v(µ)

and ♯U = |α| − |µ|. This yields the result

(−1)v(λ) sgnP sgnQ = (−1)|α|(−1)v(µ)+|µ| sgnT sgnU sgn π̄.

�

6. The proof of Theorem 4.4

In Theorem 3.1 we have adopted the original notation from Sagan and
Stanley [6]. However, for some applications (and among them the forthcom-
ing proof of Theorem 4.4) it is inconvenient to work with partial tableaux.
For that matter we now present a simple bijection that will allow us to work
with standard tableaux only.

Lemma 6.1. Let n be a fixed positive integer and α and µ fixed partitions.
Then there is a bijection (π, T, U) ↔ (π̃, Ĩ, T̃ , Ũ ) between

• triples (π, T, U) such that π ∈ PSn, T,U ∈ PT(α/µ) and π̌⊎T =
π̂⊎U = [n], and

• quadruples (π̃, Ĩ, T̃ , Ũ ) such that π̃ ∈ Sn, T̃ , Ũ ∈ ST(α/µ) and Ĩ ⊆
[n] is the index set of an increasing subsequence of π̃ of length |α/µ|.
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This bijection has the following properties:

π̃ = π̄,

sgn T̃ = sgnT ,

sgn Ũ = sgnU.

Proof. Given a quadruple (π̃, Ĩ, T̃ , Ũ ), let the triple (π, T, U) be given by the
following procedure: Write π̃ in biword notation and remove the vertical
pairs corresponding to the increasing subsequence Ĩ. The resulting partial
permutation is π. Order the elements in Ĩ increasingly: i1 < i2 < · · · < ik.
Now, for 1 ≤ j ≤ k, replace the entry j in Ũ by ij and replace the entry j

in T̃ by π̃(ij). This results in U and T respectively. It is easy to see that
this is indeed a bijection with the claimed properties. �

Now we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. Sum the equation of Theorem 4.2 over the whole do-
main of the skew RS-correspondence according to Theorem 3.1 in view of
Lemma 6.1:

∑

λ/α⊢n

∑

P,Q∈ST(λ/α)

(−1)v(λ) sgnP sgnQ =

n∑

k=0

∑

α/µ⊢ k

∑

T,U∈ST(α/µ)

∑

1≤i1<···<ik≤n

∑

π∈Sn

π(i1)<···<π(ik)

(−1)|α|+v(µ)+|µ| sgnT sgnU sgnπ

Let LHS and RHS denote the left-hand side and the right-hand side of the
equation above. The left-hand side trivially equals

LHS =
∑

λ/α⊢n

(−1)v(λ)I2λ/α.

The right-hand side is trickier. Fix 1 ≤ i1 < i2 < · · · < ik ≤ n and consider
the sum

S :=
∑

π∈Sn

π(i1)<···<π(ik)

sgnπ.

• If k = n clearly S = 1.
• If k ≤ n − 2 there are at least two integers 1 ≤ a < b ≤ n not
contained in the sequence i1 < i2 < · · · < ik. The sign-reversing
involution π 7→ π · (a, b) (here (a, b) is the permutation that switches
a and b) shows that S = 0.

• Suppose k = n− 1 and let a be the only integer in [n] not contained
in the sequence i1 < i2 < · · · < ik. We are free to choose π(a) from
[n], but as soon as π(a) is chosen, the rest of π must be the unique
increasing sequence consisting of [n] \ π(a) if π should contribute to

S. The sign of π then becomes (−1)π(a)−a so

S =

n∑

i=1

(−1)i−a =

{
0 if n is even,
(−1)a−1 if n is odd.

.
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In the case where n is odd and k = n− 1, the double sum

∑

1≤i1<···<ik≤n

∑

π∈Sn

π(i1)<···<π(ik)

sgnπ =
n∑

a=1

(−1)a−1 = 1.

In summary we have showed

∑

1≤i1<···<ik≤n

∑

π∈Sn

π(i1)<···<π(ik)

sgnπ =







1 if k = n,
1 if k = n− 1 and n is odd,
0 if k = n− 1 and n is even,
0 if k ≤ n− 2.

If n is even we finally obtain

RHS = (−1)|α|
∑

α/µ⊢n

(−1)v(µ)+|µ|
∑

T,U∈ST(α/µ)

sgnT sgnU =
∑

α/µ⊢n

(−1)v(µ)I2α/µ

since (−1)|α|+|µ| = (−1)|α|−|µ| = (−1)n = 1.
Analogously, if n is odd we get

RHS = (−1)|α|
∑

α/µ⊢n

(−1)v(µ)+(|α|−n)
∑

T,U∈ST(α/µ)

sgnT sgnU

+ (−1)|α|
∑

α/µ⊢n−1

(−1)v(µ)+(|α|−(n−1))
∑

T,U∈ST(α/µ)

sgnT sgnU

=
∑

α/µ⊢n−1

(−1)v(µ)I2α/µ −
∑

α/µ⊢n

(−1)v(µ)I2α/µ.

�

7. Specialisations of Theorem 4.4

Apart from the special case α = ∅, Theorem 4.4 offers a couple of other
nice specialisations if we choose the parameters α and n properly. First
we obtain a surprising formula for the square of the sign-imbalance of any
ordinary shape:

Corollary 7.1. Let α be a fixed n-shape. Then

I2α =
∑

λ/α⊢n

(−1)v(λ)I2λ/α =
∑

λ/α⊢n+1

(−1)v(λ)I2λ/α

if n is even, and

I2α =
∑

λ/α⊢n−1

(−1)v(λ)I2λ/α

if n is odd.

Proof. First suppose n is even. Theorem 4.4 yields
∑

λ/α⊢n

(−1)v(λ)I2λ/α =
∑

α/µ⊢n

(−1)v(µ)I2α/µ.
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The right-hand side consists of only one term, namely (−1)v(∅)I2α/∅ = I2α.

From Theorem 4.4 we also get
∑

λ/α⊢n+1

(−1)v(λ)I2λ/α =
∑

α/µ⊢n

(−1)v(µ)I2α/µ −
∑

α/µ⊢n+1

(−1)v(µ)I2α/µ.

The second term of the right-hand side vanishes and the first term is I2α as
before.

Now suppose n is odd. Then Theorem 4.4 yields
∑

λ/α⊢n−1

(−1)v(λ)I2λ/α =
∑

α/µ⊢n−1

(−1)v(µ)I2α/µ

The right-hand side consists of only one term, namely (−1)v((1))I2α/(1) which

equals I2α since in an ordinary tableau the 1 is always located at (1, 1). �

Next we present another generalization of Theorem 4.3.

Corollary 7.2. Let α be a fixed n-shape. Then
∑

λ/α⊢m

(−1)v(λ)I2λ/α = 0

for any integer m ≥ n + 2 if n is even, and for any integer m ≥ n if n is
odd.

Proof. If m is even Theorem 4.4 yields
∑

λ/α⊢m

(−1)v(λ)I2λ/α =
∑

α/µ⊢m

(−1)v(µ)I2α/µ.

The right-hand side vanishes since m > |α|.
If m is odd Theorem 4.4 yields

∑

λ/α⊢m

(−1)v(λ)I2λ/α =
∑

α/µ⊢m−1

(−1)v(µ)I2α/µ −
∑

α/µ⊢m

(−1)v(µ)I2α/µ.

If m ≥ n + 2 the right-hand side vanishes simply because m − 1 > |α|.
Otherwise n is odd and the only remaining case is m = n. But then the
right-hand side becomes I2α/(1) − I2α = 0. �

8. Future research

For an ordinary shape λ, let h(λ) be the number of disjoint horizontal
dominoes that fit in λ and let d(λ) be the number of disjoint 2× 2-squares
(fourlings) that fit in λ.

In [9] the following theorem, conjectured by Stanley [12], was proved (the
(a)-part was independently proved by T. Lam [2]):

Theorem 8.1 (Stanley; Lam; Sjöstrand; 2003).

(a) For every n ≥ 0
∑

λ⊢n

qv(λ)td(λ)xh(λ)Iλ = (q + x)⌊n/2⌋.
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(b) If n 6≡ 1 (mod 4)
∑

λ⊢n

(−1)v(λ)td(λ)I2λ = 0.

The (b)-part is a strengthening of Theorem 4.3 and one might wonder if
there is a similar strengthening of Theorem 4.4 for skew shapes.

The (a)-part is about signed sums of sign-imbalances without taking the
square. From an RS-correspondence perspective it is unnatural not to take
the square of the sign-imbalance since the P- and Q-tableaux come in pairs.
In fact it might be argued that non-squared sign-imbalances are unnatural
in all cases, because their sign is dependent on the actual labelling of the
poset, i.e., it is important that we read the tableau as a book. However,
part (a) in the theorem is still true (and there are even stronger theorems,
see [9]) and it can be proved by means of the RS-correspondence as was
done in [9]. This suggests that the skew RS-algorithm could be a useful tool
for studying signed sums of non-squared sign-imbalances too.

As a tool for proving Theorem 8.1 the concept of chess tableaux was
introduced in [9]. A chess tableaux is a standard Young tableau where
odd entries are located at an even Manhattan distance from the upper-left
cell of the shape, while even entries are located at odd distances. This
notion of course generalizes to skew tableaux (in fact it generalizes to many
other posets) and since it proved so useful in the study of sign-imbalance of
ordinary shapes we think it will shed some light on the skew shapes as well.

Another direction of research is to find analogues to Theorem 4.2 for other
variants of the RS-algorithm. For instance, in [6, Theorem 5.1] Sagan and
Stanley present a generalization of their skew RS-correspondence where the
condition that shU = shT and shP = shQ is relaxed. From that they are
able to infer identities like

∑

λ/β ⊢n
λ/α⊢m

fλ/βfλ/α =
∑

k≥0

(
n

k

)(
m

k

)

k!
∑

α/µ⊢n−k
β/µ⊢m−k

fα/µfβ/µ

where fλ/µ = ♯ST(λ/µ). This correspondence may give interesting formulas
for sums of products of sign-imbalances as well.
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