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TREES, FUNCTIONAL EQUATIONS, AND COMBINATORIAL

HOPF ALGEBRAS

FLORENT HIVERT, JEAN-CHRISTOPHE NOVELLI, AND JEAN-YVES THIBON

Abstract. One of the main virtues of trees is to represent formal solutions of
various functional equations which can be cast in the form of fixed point problems.
Basic examples include differential equations and functional (Lagrange) inversion
in power series rings. When analyzed in terms of combinatorial Hopf algebras, the
simplest examples yield interesting algebraic identities or enumerative results.

1. Introduction

Let R be an associative algebra, and consider the functional equation for the power
series x ∈ R[[t]]

(1) x = a+B(x, x)

where a ∈ R andB(x, y) is a bilinear map with values in R[[t]], such that the valuation
of B(x, y) is strictly greater than the sum of the valuations of x and y. Then, (1) has
a unique solution

(2) x = a+B(a, a) + B(B(a, a), a) +B(a, B(a, a)) + · · · =
∑

T∈CBT

BT (a)

where CBT is the set of (complete) binary trees, and for a tree T , BT (a) is the result
of evaluating the expression formed by labeling by a the leaves of T and by B its
internal nodes.

Of course, the same can be done with m-ary trees, or more generally with plane
trees. We are in particular interested in those counted by the little Schröder numbers,
that is, plane trees without vertex of arity 2 [18, A001003], which solve equations of
the form

(3) x = a+
∑

n≥2

Fn(x, x, . . . , x)

each Fn being an n-linear operation.
All this is well-known and rather trivial. However, the simplest example has still

something to tell us. Consider the differential equation (for x ∈ K[[t]])

(4)
dx

dt
= x2 , x(0) = 1 .

Its solution is obviously x = (1 − t)−1, but let us ignore this for the moment, and
recast it as a fixed point problem

(5) x = 1 +

∫ t

0

x2(s)ds = 1 +B(x, x) ,
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where B(x, y) =
∫ t

0
x(s)y(s)ds. Then, for a binary tree T with n + 1 leaves, BT (1)

is the monomial obtained by putting 1 on each leaf and integrating at each internal
node the product of the evaluations of its subtrees:

(6)
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One can observe that

(7) BT (1) = cT ′

tn

n!
,

where T ′ is the incomplete binary tree with n nodes obtained by removing the leaves
of T , and cT ′ is the number of permutations σ ∈ Sn whose decreasing tree has shape
T ′. Indeed, cT ′ is explicitly given by a hook length formula [8], which can be compared
with the easily obtained closed form for BT (1). The hook lengths of T

′ are the number
of nodes of all the subtrees

(8)
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and cT ′ is n! over the product of the hook lengths, here 4!/(4 · 2 · 1 · 1) = 3, the
corresponding decreasing trees being

(9)
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Our starting point will be the following question: can one use this observation
to derive the hook length formula for binary trees, and if yes, can we use the same
method to obtain more interesting results ?

For this, we have to lift our problem to the combinatorial Hopf algebra of Free
quasi-symmetric functions FQSym. We can then derive in the same way the q-hook
length formulas of Björner and Wachs [1, 2]. The case of plane trees can be dealt with
in the same way, the relevant Hopf algebra being there WQSym, the Word Quasi-
Symmetric invariants (or quasi-symmetric functions in noncommutative variables),
and here the resulting formula is believed to be new. Finally, we give new proofs
of some identities of Postnikov [16] and Du-Liu [6] by relating these to appropriate
functional equations.

Notations. The symmetric group is denoted by Sn. The standardized Std(w) of a word

w of length n is the permutation obtained by iteratively scanning w from left to right, and

labelling 1, 2, . . . the occurrences of its smallest letter, then numbering the occurrences of

the next one, and so on. All algebras are over a field K of characteristic 0.
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2. Free quasi-symmetric functions and hook length formulas

2.1. A derivation of FQSym. Recall from [5] that for an (infinite) totally ordered
alphabet A, FQSym(A) is the subalgebra of K〈A〉 spanned by the polynomials

(10) Gσ(A) =
∑

Std(w)=σ

w

the sum of all words in An whose standardization is the permutation σ ∈ Sn. The
multiplication rule is, for α ∈ Sk and β ∈ Sl,

(11) GαGβ =
∑

γ∈Sk+l; γ=u·v

Std(u)=α,Std(v)=β

Gγ .

This sum has
(

k+l

k

)

terms. Hence, the linear map

(12) φ : Gσ 7−→
tn

n!
(σ ∈ Sn)

is a homomorphism of algebras FQSym → K[[t]]. It is convenient to introduce the
notation Fσ = Gσ−1 and a scalar product satisfying 〈Fσ,Gτ 〉 = δσ,τ . As a graded
bialgebra, FQSym is self-dual, and its coproduct ∆ satisfies 〈FG,H〉 = 〈F⊗G,∆H〉.

Let ∂ be the linear map defined by

(13) ∂Gσ = Gσ′

where σ′ is the permutation whose word is obtained by erasing the letter n in σ ∈ Sn.
Obviously,

(14) φ(∂F ) =
d

dt
φ(F )

for all F ∈ FQSym, and moreover:

Proposition 2.1. The map ∂ is a derivation of FQSym. It is the adjoint of the
linear map F 7→ F · F1.

Proof – By definition, 〈∂Gσ,Fτ 〉 = δσ′,τ is equal to 1 if σ occurs in τ n and to 0
otherwise. Hence,

(15) 〈∂Gσ,Fτ 〉 = 〈Gσ,FτF1〉

whence the second part of the proposition. Now, F1 is a primitive element, so that
∂ is a derivation.

The Leibniz relation

(16) ∂(GαGβ) = ∂Gα ·Gβ +Gα · ∂Gβ

can be interpreted in terms of the dendriform structure of FQSym. Recall [10] that
the product GαGβ can be split into two parts (the dendriform operations)

(17) GαGβ = Gα ≺ Gβ +Gα ≻ Gβ ,

(18) Gα ≺ Gβ =
∑

γ=u·v, max(u)>max(v)
Std(u)=α,Std(v)=β

Gγ ,
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(19) Gα ≻ Gβ =
∑

γ=u·v, max(u)≤max(v)
Std(u)=α,Std(v)=β

Gγ .

Then,

(20) ∂(Gα ≺ Gβ) = ∂Gα ≺ Gβ , ∂(Gα ≻ Gβ) = Gα ≻ ∂Gβ .

It will be convenient to consider the half products as also defined on permutations,
so that their sum is then the convolution α ∗ β.

2.2. A differential equation in FQSym. It follows from Proposition 2.1 that if
we set X = (1−G1)

−1, we have

(21) ∂X = X2

with X0 = 1 (constant term), and φ(X) = (1− t)−1.
Note that thanks to the multiplication formula (11),

(22) X =
∑

σ

Gσ =
∑

w∈A∗

w

is the sum of all permutations (interpreted as G’s), that is, the sum of all words. If

we can lift to FQSym the scalar bilinar map B(x, y) =
∫ t

0
x(s)y(s)ds, it will also be

interpretable as the sum of all complete binary trees.

2.3. The bilinear map. The required map is given by a simple operation, already
introduced in [5], precisely with the aim of providing a better understanding of the
Loday-Ronco algebra [10] of planar binary trees.

For α ∈ Sk, β ∈ Sl, and n = k + l, set

(23) B(Gα,Gβ) =
∑

γ=u(n+1)v
Std(u)=α,Std(v)=β

Gγ .

Clearly,

(24) ∂B(Gα,Gβ) = GαGβ ,

and our differential equation is now equivalent to the fixed point problem

(25) X = 1 +B(X,X) .

Theorem 2.2. In the binary tree solution (2) of (25),

(26) BT (1) =
∑

T (σ)=T

Gσ,

where T (σ) denotes the shape of the decreasing tree of the permutation σ. In partic-
ular, BT (1) coincides with PT , the natural basis of the Loday-Ronco algebra (in the
notation of [7]).
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Proof – By induction on the number n of internal nodes of T . For n = 1 the result
is obvious, and if n > 1,

BT (1) = B(BT ′(1),BT ′′(1)) ,

where T ′ and T ′′ are the left an right subtrees of T . Hence, BT (1) is the sum of the
Gσ for σ = αnβ such that GStd(α) occurs in BT ′(1) and GStd(β) occurs in BT ′′(1).
Since we have assummed that (26) holds for T ′ and T ′′, this implies that it holds for
T as well.

Corollary 2.3 (The hook length formula). The number of permutations whose de-
creasing tree has shape T is

(27)
n!

∏

v∈T hv
,

where for a vertex v of T , hv is the number of nodes of the subtree with root v.

2.4. The q-hook length formula. Recall that under the q-specialization

(28) A =
1

1− q
:= {. . . < qn < qn−1 < . . . < q < 1}

we have [9, (125)]

(29) Gσ

(

1

1− q

)

=
qimaj (σ)

(q)n

where imaj (σ) = maj (σ−1), maj (σ) is the classical major index (sum of the descents)
of σ ∈ Sn and (q)n = (1− q)(1− q2) · · · (1− qn).

Hence, the map

(30) φq(Gσ) =
qimaj (σ)tn

[n]q!
= (t(1− q))nGσ

(

1

1− q

)

is a homomorphism of algebras. The image of (25) under φq reads

(31) x = 1 +Bq(x, x)

where the bilinear map is now a q-integral

(32) Bq(f, g) =

∫ t

0

dqsf(s)g(qs) ,

where the q-integral is defined by

(33)

∫ t

0

sndqs =
tn+1

[n + 1]q
.

To show this, we have to compute φq(B(Gα,Gβ)).

Lemma 2.4. Let α ∈ Sk, β ∈ Sl. The inverse major index is distributed over the
half-products according to

(34)
∑

γ∈α≻β

qimaj (γ) = qimaj (α)+imaj (β)

[

k + l − 1
l − 1

]

q

,
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and

(35)
∑

γ∈α≺β

qimaj (γ) = qimaj (α)+imaj (β)+l

[

k + l − 1
l

]

q

.

Proof – Straightformward by induction on n = k + l.

From this, on deduces immediately

(36)
∑

γ=u·(n+1)·v
Std(u)=α,Std(v)=β

qimaj (γ) = qimaj (α)+imaj (β)+l

[

k + l
k

]

q

,

which in turn implies the following:

Lemma 2.5. If f(t) = φq(F ) and g(t) = φq(G), then

(37) φq(B(F,G)) =

∫ t

0

dqsf(s)g(qs) .

Corollary 2.6 (The q-hook length formula of [1]). The inverse major index polyno-
mial of the set of permutations whose decreasing tree has shape T is

(38)
∑

T (σ)=T

qimaj (σ) = [n]q!
∏

v∈T

qδv

[hv]q
,

where δv is the number of nodes in the right subtree of v.

2.5. Another approach. It has been observed in [5] that FQSym had a natural
q-deformation, obtained by replacing the ordinary shuffle by the q-shuffle q in
the product formula for the basis Fσ. That is, FQSymq is the algebra with basis
Fσ = Gσ−1 and product rule

(39) FαFβ =
∑

γ

(γ|α qβ[k])Fγ =
∑

γ

(γ|α β[k])ql(γ)−l(β)−l(α)Fγ

where (γ|f) means the coefficient of γ in f , k is the length of α and β[k] = (β1 +
k) · · · (βl + k), (the shifted word), l(σ) being the number of inversions of σ.

Then, the map φq : FQSymq → K[[t]] defined by

(40) φq(Gσ) =
tn

[n]q!

is a homomorphism of algebras.
One has now

(41) φq(∂F ) = Dqφq(F )

where Dq is the q-derivative

(42) Dqf(t) =
f(qt)− f(t)

qt− t
.

In FQSymq, ∂ is not anymore a derivation, but satisfies

(43) ∂(FG) = ∂F (A) ·G(qA) + F (A) · ∂G(A)
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so that the noncommutative functional equation is now

(44) ∂X(A) = X(A)X(qA) , X0 = 1

and its one-variable projection under φq is

(45) Dqx(t) = x(t)x(qt) , x(0) = 1 .

This is equivalent to

(46) x = 1 +Bq(x, x)

where we have again

(47) Bq(x, y) =

∫ t

0

dqs x(s)y(qs) .

Theorem 2.7 (q-hook length formula for inversions [2]). The inversion polynomial
of the set of permutations having a decreasing tree of shape T is given by the same
hook length formula as for the inverse major index,

(48)
∑

T (σ)=T

ql(σ) = [n]q!
∏

v∈T

qδv

[hv]q
,

In particular imaj and l are equidistributed on these sets.

This is a refinement of a classical result of Foata and Schützenberger.

3. Word quasi-symmetric functions and plane trees

To interpret (3), we need to work inWQSym, the algebra of Word Quasi-Symmetric
functions, which contains an algebra of plane trees (the free dendriform trialgebra on
one generator [11]) in the same way as FQSym contains an algebra of binary trees
[14].

The basis elements Mu of WQSym are labeled by packed words u, or if one
prefers, surjections [n] → [k], set compositions, or facets of the permutohedron [3].
These objects are counted by the ordered Bell numbers [18, A000262]. There is a
canonical way to associate a plane tree to such an object [14], and the sums over the
fibers of this map span a Hopf subalgebra of WQSym. Hence, we need to define on
WQSym an analogue of our derivation ∂ of FQSym.

Recall that a word w over the aphabet of positive integers is said to be packed if
the set of letters occuring in w is an initial interval [a1, ak] of the alphabet A. The
packed word u = pack (w) associated to a word w ∈ A∗ is obtained by the following
process. If b1 < b2 < . . . < bk are the letters occuring in w, u is the image of w by
the semigroup homomorphism bi 7→ ai. For example, pack (34364) = 12132. A word
u is said to be packed if pack (u) = u. To such a word is associated a polynomial Mu,
defined as the sum of all words w such that pack (w) = u.

The product on WQSym is given by

(49) Mu′Mu′′ =
∑

u∈u′⋆u′′

Mu ,
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where the convolution u′ ⋆ u′′ of two packed words is defined as

(50) u′ ⋆ u′′ =
∑

v,w;u=v·w∈PW,pack (v)=u′,pack (w)=u′′

u .

For example,

(51) M11M21 = M1121 +M1132 +M2221 +M2231 +M3321.

The coproduct can be defined by the usual trick of noncommutative symmetric
functions, considering the alphabet A as an ordered sum of two mutually commuting
alphabets A′+̂A′′. First, by direct inspection, one finds that

(52) Mu(A
′+̂A′′) =

∑

0≤k≤max(u)

M(u|[1,k])(A
′)Mpack (u|[k+1,max(u))(A

′′),

where u|B denote the subword obtained by restricting u to the subset B of the
alphabet.

For a packed word u, let u′ be the word obtained from u by erasing all the oc-
curences of the maximal letter m = max(u), e.g., (5211354)′ = 21134. Now, define a
linear map δ by

(53) δMu = Mu′ .

This is not anymore a derivation, but rather a finite difference operator: indeed, it
follows from (52) that

(54) δMu(A) = Mu(A+̂1)−Mu(A) ,

where A+̂1 is the ordered sum of A and {1} (the scalar 1, so that Mu(1) = 1 if u is
of the form 11 · · ·1, and is 0 otherwise). Alternatively, δ is the adjoint of the right
multiplication by

∑

n≥1M
∗
1n , where M∗

u is the dual basis of Mu.
This implies that δ satisfies

(55) δ(FG) = (δF )G+ (δF )(δG) + F (δG) ,

but this formula can be refined in terms of the tridendriform structure of WQSym

[14]. Indeed, it is known that WQSym+ is a sub-dendriform trialgebra of K〈A〉+,
the partial products being given by

(56) Mw′ ≺ Mw′′ =
∑

w=u·v∈w′⋆w′′,|u|=|w′|;max(v)<max(u)

Mw,

(57) Mw′ ◦Mw′′ =
∑

w=u·v∈w′⋆w′′,|u|=|w′|;max(v)=max(u)

Mw,

(58) Mw′ ≻ Mw′′ =
∑

w=u·v∈w′⋆w′′,|u|=|w′|;max(v)>max(u)

Mw r, .

and it follows from the multiplication rule (49) that

(59) δ(F ≺ G) = (δF )G , δ(F ◦G) = (δF )(δG) , δ(F ≻ G) = F (δG) .
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Now, let

(60) X = (1− qM1)
−1 =

∑

u

q|u|Mu =
∑

w

q|w|w .

It follows from (55) that

(61) δX = qX2(1− qX)−1 =
∑

n≥2

qn−1Xn .

For packed words u1, . . . , uk, define

(62) Fk(Mu1 , . . . ,Muk
) =

∑

Mw

where the sums runs over packed words w such that

(63) w = w1mw2m · · ·mwk , pack (wi) = ui , m = max(w1, . . . , wk) + 1 .

For example,

(64) F2(M11,M21) = M11321 +M11432 +M22321 +M22431 +M33421.

Then, obviously,

(65) X = 1 +
∑

n≥2

qn−1Fn(X . . . ,X) .

which does indeed give back (61), since

(66) δFk(Mu1 , . . . ,Muk
) = Mu1 · · ·Muk

.

It follows from (49) that the linear map ψ : WQSym → K[[t]] defined by

(67) ψ(Mu) =

(

t

max(u)

)

is a homomorphism of algebras. Moreover, it maps δ over the finite difference operator

(68) ψ(δF ) = ∆ψ(F )

where ∆f(t) = f(t+ 1)− f(t). Hence, the images of (61) and (65) by ψ are

∆x =
∑

n≥2

qn−1xn(69)

x = 1 +
∑

n≥2

qn−1Fn(x, x, . . . , x) ,(70)

where

(71) Fn(x1, . . . , xn) = Σt
0x1(s)x2(s) · · ·xn(s)δs,

the discrete integral being defined by

(72) Σt
0f(s)δs =

t−1
∑

i=0

f(i) .
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The realization of the free dendriform trialgebra given in [14] involves the following
construction. With any word w of length n, associate a plane tree T (w) with n + 1
leaves, as follows: if m = max(w) and if w has exactly k − 1 occurences of m, write

(73) w = v1mv2 · · · vk−1mvk ,

where the vi may be empty. Then, T (w) is the tree obtained by grafting the subtrees
T (v1), T (v2), . . . , T (vk) (in this order) on a common root, with the initial condition
T (ǫ) = ∅ for the empty word. For example, the tree associated with 243411 is

(74)
{{

{{
{

JJJ
JJJ

��
�� **

** 4
��
�� **

** 4
��

�� 44
44

2 3 1 1

From the previous considerations, one can now deduce a closed formula for the
number of packed words yielding a given plane tree, which can be regarded as another
generalization of the hook length formula for binary trees:

Theorem 3.1. If a term FT (1) in the plane tree solution has the decomposition

(75) FT (1) =
∑

k

ck

(

t

k

)

then, ck is the number of packed words u with maximal letter k such that T (u) = T .

Proof – A straightforward induction, from (63) and (73).

For example, the following tree

(76) F3(F2(1, 1),F2(1, 1),F3(1, 1, 1)) =

Σt3

ppppppppp

PPPPPPPPPP

t


 11

11
t

��
�� ::

::
t

��
�� 99

99

1 1 1 1 1 1 1

gives

(77) Σt
0s

3δs = 6

(

t

4

)

+ 6

(

t

3

)

+

(

t

2

)

so that there are 6 + 6 + 1 = 13 packed words whose plane trees have this shape:

{{
{{

{
JJJ

JJJ

��
�� **

** 2
��
�� **

** 2
��

�� 44
44

1 1 1 1

{{
{{

{
JJJ

JJJ

��
�� **

** 3
��
�� **

** 3
��

�� 44
44

1 1 2 2

{{
{{

{
JJJ

JJJ

��
�� **

** 3
��
�� **

** 3
��

�� 44
44

1 2 1 1

{{
{{

{
JJJ

JJJ

��
�� **

** 3
��
�� **

** 3
��

�� 44
44

1 2 2 2

{{
{{

{
JJJ

JJJ

��
�� **

** 3
��
�� **

** 3
��

�� 44
44

2 1 1 1

{{
{{

{
JJJ

JJJ

��
�� **

** 3
��
�� **

** 3
��

�� 44
44

2 1 2 2

{{
{{

{
JJJ

JJJ

��
�� **

** 3
��
�� **

** 3
��

�� 44
44

2 2 1 1
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{{
{{

{
JJJ

JJJ

��
�� **

** 4
��
�� **

** 4
��

�� 44
44

1 2 3 3

{{
{{

{
JJJ

JJJ

��
�� **

** 4
��
�� **

** 4
��

�� 44
44

1 3 2 2

{{
{{

{
JJJ

JJJ

��
�� **

** 4
��
�� **

** 4
��

�� 44
44

2 1 3 3

{{
{{

{
JJJ

JJJ

��
�� **

** 4
��
�� **

** 4
��

�� 44
44

2 3 1 1

{{
{{

{
JJJ

JJJ

��
�� **

** 4
��
�� **

** 4
��

�� 44
44

3 1 2 2

{{
{{

{
JJJ

JJJ

��
�� **

** 4
��
�� **

** 4
��

�� 44
44

3 2 1 1

4. Functional equations associated to some generalizations of the

hook length formula

4.1. Postnikov’s identity and Eisenstein’s exponential series. Postnikov [16]
has obtained the following identity

(78) (n+ 1)n−1 =
n!

2n

∑

T∈BTn

∏

v∈T

(

1 +
1

hv

)

.

where BTn is the set of (incomplete) binary trees with n nodes. Combinatorial proofs
are given in [4, 17], and generalization (to be discussed below) occur in [6].

Let g(t) be the exponential generating function of the l.h.s of (78), that is,

(79) g(t) =
∑

n≥0

(n + 1)n−1 t
n

n!
.

This is a famous power series, known as Eisenstein’s generalized exponential (see,
e.g., [15]). It satisfies the functional equation

(80) g(t) = etg(t) .

Hence, x = g(t) is solution of the differential equation

(81) x′ = x2 + txx′ = x2 + t
d

dt

(

x2

2

)

,

and integrating by parts, we obtain the fixed point equation

(82) x = 1 + t
x2

2
+

1

2

∫ t

0

x2(s)ds = 1 +B(x, x)

with

(83) B(x, y) = t
xy

2
+

1

2

∫ t

0

x(s)y(s)ds .

From this, one derives that

(84) BT (1) =
1

2n

∏

v∈T

(

1 +
1

hv

)

tn ,
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since, by induction, if T has T1 (resp. T2) as left (resp. right) subtree with n1 nodes
(resp. n2 nodes), then

BT (1) = B(BT1(1), BT2(1))

=
1

2n1

∏

v∈T1

(

1 +
1

hv

)

1

2n2

∏

v∈T2

(

1 +
1

hv

)(

1

2
tn1+n2+1 +

1

2

tn1+n2+1

n1 + n2 + 1

)

=
1

2n1+n2+1

∏

v∈T

(

1 +
1

hv

)

tn ,

(85)

which explains (78). Note in particular that both terms of B(x, y) contribute to one
term (either 1 or 1/hv) for each node.

4.2. Du-Liu identities. Lascoux proposed a one parameter-generalization of (78):

(86)
∑

T

∏

v

(

α +
1

hv

)

=
1

(n + 1)!

n−1
∏

i=0

((n+ 1 + i)α + n+ 1− i) .

which has been proved by Du and Liu [6], who reformulated it as

(87)
∑

T

∏

v

(hv + 1)α + 1− hv
2hv

=
1

n+ 1

(

(n+ 1)α

n

)

.

and obtained the further generalization

(88)
∑

T

∏

v

(mhv + 1)α+ 1− hv
(m+ 1)hv

=
1

mn + 1

(

(mn+ 1)α

n

)

.

where now, T runs over plane (m+ 1)-ary trees.
These identities can also be obtained from the tree solution of a functional equation.

Let x = f(t) be the ordinary generating function of the r.h.s. of (88), that is,

(89) f(t) =
∑

n≥0

(

(mn + 1)α

n

)

tn

mn + 1
.

It follows from the Lagrange inversion formula (see, e.g., [12, p. 35 ex. 25]) that x is
solution of the fixed point equation

(90) x = (1 + txm)α .

Taking derivatives, we obtain the differential equation

(91) x′ = αxm+1 + (αm− 1)t
d

dt

(

xm+1

m+ 1

)

and integrating by parts, we arrive at

(92) x = 1 +
αm− 1

m+ 1
txm+1 +

α + 1

m+ 1

∫ t

0

xm+1(s)ds ≡ 1 + Fm+1(x, x, . . . , x) .

As in the Postnikov identity, the (m+1)-ary tree expansion of the solution associates
to each tree T the l.h.s. of (88), where both terms of Fm+1 contribute to one term
(either with coefficient 1 or 1/hv) for each node.
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5. Concluding remarks

The original hook length formula for Young tableaux can be interpreted as giving
the image of a Schur function by the ring homomorphism f 7→ f(E ) defined on the
power sums

(93) pn 7→ pn(E ) =

{

1 n = 1
0 n > 1

These are generalizations giving the images by the morphisms

(94)



























pn 7→ pn(
1

1− q
) =

1

1− qn
,

pn 7→ pn(α) = α,

pn 7→ pn(
1− t

1− q
) =

1− tn

1− qn
,

the last one giving back the first one for t = 0 and the second one for t = qα and
q → 1.

The theory of noncommutative symmetric functions allows one to define analogs
of these specializations for quasi-symmetric functions [9], and therefore also for those
combinatorial Hopf algebrasH which admit homomorphismsH → QSym. This is the
case of PBT and WQSym, and Corollary 2.6 and Theorem 3.1 can be interpreted as
evaluation of PT (1/(1−q)) andMT (α) respectively. It will be shown in a forthcoming
paper that it is in fact possible to evaluate both PT and MT on (1−t)/(1−q) defined
in the right way, and to get (q,t)-hook length formulas for binary and plane trees.
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