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Abstract.In 1826 N. Abel found a generalization of the binomial formula. In 1902
Abel’s theorem has been further generalized by A. Hurwitz. In this paper we give
combinatorial interpretations of Abel’s and Hurwitz’s identities. Moreover we de-
scribe a mechanism that provides infinitely many identities each being a generaliza-
tion of Hurwitz’s identity.
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1 Introduction

In the 19-th century, N. Abel found the following surprising generalization of the binomial
formula [1] (see also [5, 6]):

1.1 (x+ y)n =
∑{(nk)x(x− kz)k−1(y + kz)n−k : k ∈ [0, n]}.

Here and below [k, s] = {k, . . . , s} where k and s are integers and k ≤ s.

Abel’s theorem has been further generalized by A. Hurwitz as follows [3] (see also [5]):

1.2 Let V be a finite set, and x = {(v, x(v)) : v ∈ V }. For a set A, let x(A) =
∑{x(a) :

a ∈ A}. Then

(z + y)(z + y + x(V ))|V |−1 =
∑{z(z + x(A))|A|−1) · y(y + x(B))|B|−1) : A ⊆ V,B = V \A}.

In this paper we describe a mechanism that provides infinitely many identities each being
a generalization of Hurwitz’s identity.

We use this mechanism to find some of such generalizations. As a byproduct we obtain
combinatorial interpretations of all such identities. The “engine” of this mechanism is the
relation between the so called forest volumes of graph–compositions and their bricks [4].

We will see that the volume formula from [4] applied to a very simple graph–composition
gives a natural generalization of Hurwitz’s identity. Namely this generalization corresponds
to the graph–composition whose “frame” is the simple digraph with two vertices and one
arc, and whose two bricks are a complete digraph and an empty graph (a graph with the
empty edge set).

The mechanism we are going to describe provides for every acyclic digraph A a big variety
of polynomial identities corresponding to a graph–composition whose frame is A.

The main notions and notation are given in Section 2. In Section 3 we describe this
“engine”. In Section 4 we give a simple generalization of Hurwitz’s identity in order to
elucidate the main idea of the general mechanism. and the main proof arguments. The main
mechanism and its applications will be given in Section 5.
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2 Main notions and notation

We consider directed graphs. All graph–theoretical notions that are used but not defined
here can be found in [2].

A directed graph or simply a digraph G is a pair (V,E) where V is a finite non–empty set
of elements (called vertices of G), E ⊆ (V 2) where (V 2) is the set of ordered pairs of different
elements of V (the elements of E are called arcs of G). Let V (G) = V and E(G) = E.

A source (a sink) of a digraph G is a vertex v having no incoming (respectively, outgoing)
edges in G. Let L(G) and R(G) denote the sets of sources and sinks of G, respectively.

A digraph is acyclic if it has no directed cycles.

A digraph F is a subgraph of G, written F ⊆ G if V (F ) ⊆ V (G) and E(F ) ⊆ E(G). A
digraph F of G is a spanning subgraph of G if V (F ) = V (G) and E(F ) ⊆ E(G).

Two spanning subgraphs F1 and F2 of G are different if E(F1) 6= E(F2).

A ditree T is a digraph with the properties:
(a1) T has no directed cycles, and
(a2) for every vertex v in V (T ) except for one vertex, say r, there exists a unique arc
ev = (v, tv) starting at v.

The vertex r is called the root of A, and A is also called a ditree rooted at r. A leaf of a
ditree A is a vertex having no incoming arc in A (or equivalently, a vertex of degree one in
A). Clearly R(A) = {r} and L(A) is the set of leaves of A.

It is clear that a ditree is a digraph having exactly one component and no undirected
cycles.

A diforest F is a digraph such that every it component is a ditree.

The pointer of a diforest A is a (the) function f : V (A\R(A))→ V (A) such that f(u) = v
if (u, v) ∈ E(A).

A spanning ditree (spanning diforest) of a digraph G is a spanning subgraph of G which
is a ditree (respectively, a diforest).

Let Tr(G) denote the set of different spanning ditrees of G rooted at r ∈ V (Q). Similarly
let F(G) denote the set of different spanning diforests of G.

Let x : V (G)→ K be a function where K is a commutative ring.

For a ditree Tr rooted at r, let T (Tr, x) =
∏{x(v)d(v,Tr)−1 : v ∈ V (Tr)}.



RRR 48-99 Page 3

Clearly T (Tr, x) = xdin(r,Tr)−1
r

∏{x(v)din(v,Tr) : v ∈ V (Tr) \ r}.
The tree volume (or T –volume) of a digraph G with respect to a given vertex r ∈ V (G) is

Tr(G,x) =
∑
{T (T, x) : T ∈ Tr(G)}.

Clearly Tr(G,x) is a polynomial in variables x(v) : v ∈ V (G).

Let Gc be the digraph obtained from G by adding a new vertex c and the set of arcs
{(v, c) : v ∈ V (G)}. For a function x : V (G) → K, let xc : V (Gc) → K be a function such
that xc(v) = x(v) if v ∈ V (G) and xc(c) = z ∈ K, and so x is the restriction of xc on V (G).

The forest volume of G is
F(z,G, x) = Tc(Gc, xc).

The forest volume of a weighted digraph G can also be viewed as a generating function of
spanning diforests of G classified by their numbers of edges and degree sequences.

We recall that [k, s] = {k, . . . , s} where k and s are integers and k ≤ s.

3 Forest polynomials of digraph compositions

Let G and Ga = (Ba, ga), a ∈ A, be disjoint weighted digraphs with V (G) = A, and
V (Ga) = Ba, a ∈ A}. Let B = ∪{Ba : a ∈ A}. Let Pa = {(a, b) : b ∈ Ba} and
P = ∪{Pa : a ∈ A, and so P = A×B.

The digraph Γ is called the G–composition of {Ga : a ∈ V (G)}, written Γ = G{Ga : a ∈
V (G)}, if V = V (Γ) = P and for two vertices v1 = a1b1 and v2 = a2b2 of Γ, (v1, v2) ∈ E(Γ)
if and only if either a1 6= a2 and (a1, a2) ∈ E(G) or a1 = a2 = a and (b1, b2) ∈ E(Ga).

The graph G in G{Ga : a ∈ V (G)} is called the frame and the graphs Ga, a ∈ V (G), are
called the bricks of the G–composition.

Let x = {(v, x(v) : v ∈ P . Put

xa = x|La,
x(Ga) =

∑{x(a, b) : b ∈ Ba},
x(Γ) =

∑{x(a, b) : a ∈ A, b ∈ B},
s : A→ K such that s(a) = x(Ga) for a ∈ A, and

da(G, s) =
∑{s(c) : (a, c) ∈ E(G)} for a ∈ A.

3.1 [4] F(z,G{Ga : a ∈ V (G)}, x) =

F(z,G, s)×∏{F(z + da(G, s)), Ga, xa) : a ∈ V (G)}.
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We also need formulas for the forest volumes of some special digraphs.

3.2 [4] Let K0 and K1 denote the empty and the complete digraphs with n vertices, respec-
tively. Then F(z,Kp, x) = (z + px(Kp))n−1 where p ∈ {0, 1}.

3.3 [4] Let G be a digraph, V (G) = {v1, . . . , vn}.
Suppose that G is acyclic and vi ∈ L(G \ {v1, . . . , vi−1}), i ∈ In1 . Then

F(z,G, x) = z−1
∏
{z + du(G,x) : u ∈ V (G)}.

4 A generalization of Hurwitz’s identity

In order to illustrate the main idea of the mechanism of generating polynomial identities, we
first describe and prove a simple generalization of Hurwitz’s identity.

4.1 Let U and V be disjoint non–empty sets, x = {(v, x(v)) : v ∈ V } and y = {(u, y(u)) :
u ∈ U}. Let P denote the set of all functions Q : V → U ∪ c where c 6∈ U . For P −1 ∈ P,
let Pa = {v : Q(v) = a}. [Clearly {Pa : a ∈ U ∪ c}, where c 6∈ U , is a partition of V , i.e.
∪{Pa : a ∈ U ∪ c} = V and Pa ∩ Pb = ∅ for a 6= b.] Let V ′ be a digraph with the vertex set
V . Then

(z + y(U))z|U |−1F(z + y(U)), V ′, x) =
∑{F(z, P ′c, x)

∏{zy(u)F(y(u), P ′u, x) : u ∈ U} : P−1 ∈ P}
where P ′a is the subgraph of V ′ induced by Pa, a ∈ U ∪ c.
Proof (uses 3.1). Let U ′ be a digraph with the vertex set U and with the empty edge set,
and G is a simple digraph with exactly two vertices u′, v′ and exactly one arc (v′, u′). Let
Γ = G{Gu′ , Gv′} where Gu′ = U ′ and Gv′ = V ′. Clearly V (Γ) = U ∪ V . We will establish
our identity by finding F(z,Γ, x ∪ y) in two different ways.

(p1) We first find F(z,Γ, x ∪ y), by using the volume formula for a G–composition.

By 3.1,

F(z,Γ, x ∪ y) = F(z,G, s)F(z + du′(G, s)), U
′, y)F(z + dv′(G, s)), V

′, x) (4.1)

where s = {(u′, s(u′), (v′, s(v′)), s(u′) = y(U), and s(v′) = x(V ).
Since G has two vertices u′, v′ and exactly one arc (v′, u′), we have:

F(z,G, s) = z + y(U) and dv′(G, s) = y(U). Therefore

F(z + dv′(G, s)), V ′, x) = F(z + y(U)), V ′, x)

Since U ′ has no arcs, F(z + du′(G, s)), U ′, y) = z|U |−1. Thus from (4.1) we have:

F(z,Γ, x ∪ y) = (z + y(U))z|U |−1F(z + y(U)), V ′, x). (4.2)
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(p2) Now let us find F(z,Γ, x ∪ y) in another way. Note that Γ is a simple digraph. Let
x ∪ y = h and hc = h ∪ (c, z). If H ⊆ G and f : V (G) → Kv), we will write F(z,H, f) and
T (H, f instead of F(z,H, f |V (H)) and T (H, f |V (H).

By the definition of the forest volume of a digraph,

F(z,Γ, h) = Tc(Γc, hc) =
∑
{Tc(T, hc) : T ∈ Tc(Γc)} (4.3)

where for T ∈ Tc(Γc) we have: Tc(T, hc) =
∏{h(v)d(v,T )−1 : v ∈ V (T )}.

Since Γ has no arc (u, v) with u ∈ U and v ∈ V , every spanning ditree of Γc contains the
arc set (U, c) = {((u, c) : u ∈ U}.

For a spanning ditree T of Γc, let T ′ = T \ (U, c). Clearly T ′ is a spanning diforest of Γc,
and so each component of T ′ is a diforest. Let Cu be the component of T ′ containing u ∈ U .
Since there is no arc going out of u in Γ, clearly u is a root of Cu. Let CU (T ′) = {Cu : u ∈ U}
and (Tc) denote the components of T ′ containing c.

Tc(T, hc) = Tc(Tc, hc)
∏
{zy(u)Tu(C, h) : C ∈ CU (T ′)}. (4.4)

By (4.3),

F(z,Γ, h) =
∑
{Tc(T, hc) : T ∈ Tc(Γc)} =

∑
{S(Γ, hc, Q) : Q ∈ P} (4.5)

where S(Γ, hc, P−1) =
∑{Tc(T, hc) : T ∈ Tc(Γc), V (C \ u) = Pu, Cu ∈ CU (T ′), u ∈ U}.

By (4.4), S(Γ, hc, P−1) =
∑{Tc(T c, hc)

∏{zy(u)Tu(C, h) :

C ∈ CU (T ′)} : T ∈ Tc(Γc), V (C \ u) = Pu, Cu ∈ CU(T ′), u ∈ U}.
For a ∈ U ∪ {c}, let P ′a and Ṕa denote the subgraphs of Γc induced by Va and Va ∪ a, respec-
tively. Then

S(Γ, hc, P−1) = (
∑{Tc(T, hc) : T ∈ Tc(Ṕc)})

∏{zy(u)
∑{Tu(T, h) : T ∈ Tu(Ṕu)} : u ∈ U} =

F(z, P ′c, x)
∏{zy(u)F(y(u), P ′u, x) : u ∈ U}.

Since U ′ is a complete digraph, clearly P ′c and P ′u are also complete digraphs. Therefore

F(z, V ′c , x) = (z + x(Pc))|Pc|−1 and F(y(u), V ′u, x) = (y(u) + x(Pc))|Pu|−1.

Now the required identity follows from (4.3) and the last equation.
�

From 4.1 we have in particular:

4.2 Let U and V be disjoint sets, x = {(v, x(v)) : v ∈ V } and y = {(u, y(u)) : u ∈ U}.
Then

(z + y(U))z|U |−1(z + y(U) + x(V ))|V |−1 =
∑{((z + x(Pc))|Pc|−1∏{zy(u)(y(u) + x(Pu))|Pu|−1) : u ∈ U} : P−1 ∈ P}.
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Proof (uses 3.2 and 4.1). Let in 4.1 V ′ be a complete digraph. Let as in 4.1, P ′a denote
the subgraphs of V ′ induced by Pa, a ∈ U ∪ c. Since U ′ is a complete digraph, clearly P ′c
and P ′u are also complete digraphs. Therefore by 3.2,

F(z, V ′, x) = (z + x(V ))|V |−1 and F(z, P ′a, x) = (z + x(Pa))|Pa|−1 for a ∈ U ∪ c.
Now the requied identity follows from 4.1.

�

Hurwitz’s identity 1.2 is a particular case of 4.2 when |U | = 1.

5 Generating polynomial identities

Let G be a digraph with V (G) = A and Na = {b ∈ A : (a, b) ∈ E(G)}. Let Va, a ∈ A, be
a collection of disjoint non-empty sets, V = ∪{Va : a ∈ A}, and c 6∈ V . Let L = L(G) and
R = R(G) denote the set of sources and sinks of G, respectively. Let V a = ∪{Vb : b ∈ Na}
for a ∈ A \ R. Let Pa denote the set of functions Q : Va → V a ∪ c, a ∈ A. For P−1

a ∈ P,
let Pa(u) = {v ∈ Va : P−1

a (v) = u}. Clearly {Pa(u) : u ∈ V a ∪ c} is a partition of Va, i.e.
∪{Pa(u) : u ∈ V a ∪ c} = Va and Pa(u) ∩ Pa(w) = ∅ for u 6= w.

By using 3.1 and 3.3, we obtain:

5.1 Let G above be an ayclic digraph with V (G) = A, and let x = {(v, x(v)) : v ∈ V ∪ c},
and s = {(a, s(a)) : a ∈ A} where s(a) = x(Va). Let Ga be a digraph with V (Ga) = Va for
every a ∈ L(G). Then

F(x(c), G, s)×∏{F(x(c) + x(V a)), Ga, x) : a ∈ L}×
∏{(x(c) + x(V a)))|Va|−1 : a ∈ A \ L} =

((x(c))−1∑{∏{x(c)F(x(c), P ′a(c), x) : a ∈ L}×
∏{x(u)F(x(u), P ′a(u), x) : u ∈ V a, a ∈ L}×
∏{(x(u))|Pa(u)| : u ∈ V a, a ∈ A \ L} : P−1

a ∈ Pa, a ∈ A \R}
Here P ′a(u) is the subgraph of Ga induced by Pa(u) for u ∈ V a and a ∈ A \R, and F(z,G, x)
is given by 3.3.

The proof of this identity uses the arguments similar to that in the proof of 4.1 where
the digraph G (of two vertices and one arc) is replaced by an arbitrary acyclic digraph.

Theorem 5.1 provides a mechanism of generating polynomial identities. We can obtain
a big variety of identities by considering in 5.1 various specific digraphs G and Ga’s. For ex-
ample, we can obtain specific identities by replacing G by a ditree Tr (see the next theorem).
We also can replace the Ga’s by complete or empty digraphs, and use formula 3.2.

The identity 5.1 includes the forest volumes of the Ga’s and their induced subgraphs.
Therefore it is also natural to consider instead of the class K of complete digraphs for the Ga’s
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(as suggested above) another class G that is closed under the digraph operation of taking an
induced subgraph. For example, natural classes of digraphs to consider as G are the classes
of bipartite, multipartite, threshold, and more generally, totally decomposable digraphs [2, 4].

From 3.3 and 5.1 we have in particular:

5.2 Let Tr be a ditree with V (Tr) = A rooted at r ∈ A, and let f : A \ r → A be the
pointer of Tr. Let Va, a ∈ A, be a collection of disjoint non–empty sets, and na = |Va|,
V = ∪{Va : a ∈ A}, x = {(v, x(v)) : v ∈ V ∪ c}, and s = {(a, s(a)) : a ∈ A} where
s(a) = x(Va). Let Pa denote the set of all functions Q : Va → Vf(a) ∪ c where c 6∈ Vf(a) and
a = A\ r. For P−1

a ∈ P, let Pa(u) = {(v ∈ Va : P−1(v) = u}. [Clearly {Pa(u) : u ∈ Vf(a)∪ c}
is a partition of Va, i.e. ∪{Pa(u) : u ∈ Vf(a) ∪ c} = Va and Pa(u)∩Pa(w) = ∅ for u 6= w.] Let
Ga be a digraph with V (Ga) = Va, a ∈ L(Tr). Then
∏{(x(c) + s(a) : (v, a) ∈ E(Tr)} ×

∏{F(x(c) + s(f(a)), Ga, x) : a ∈ L}×
∏{(x(c) + s(f(a)))|Va|−1 : a ∈ A \ L} =

((x(c))−1
∑{∏{x(c)F(x(c), P ′a(c), x) : a ∈ L}×

∏{x(u)F(x(u), P ′a(u), x) : u ∈ Vf(a), a ∈ L}×
∏{(x(u))|Pa(u)| : u ∈ Vf(a), a ∈ A \ L} : P−1

a , a ∈ A \ r}
where P ′a(u) is the subgraph of Ga induced by Pa(u) for u ∈ Vf(a) and a ∈ A \ r.
A particular case of this identity is when

F(x(c) + s(f(a)), Ga, x) = (x(c) + s(a) + s(f(a))|Va|a−1,

F(x(c), P ′a(c), x) = (x(c) + x(Pa(c))|Pa(c)|−1, and

F(x(u), P ′a(u), x) = (x(u) + x(Pa(u))|Pa(u)|−1.

Clearly 4.1 and 4.2 are particular cases of 5.2 when Tr has exactly one arc.
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