
THE SANDPILE GROUP OF A TREE

LIONEL LEVINE

Abstract. A wired tree is a graph obtained from a tree by collapsing the

leaves to a single vertex. We describe a pair of short exact sequences relat-

ing the sandpile group of a wired tree to the sandpile groups of its principal
subtrees. In the case of a regular tree these sequences split, enabling us to com-

pute the full decomposition of the sandpile group as a product of cyclic groups.

This resolves in the affirmative a conjecture of E. Toumpakari concerning the
ranks of the Sylow p-subgroups.

1. Introduction

We begin with a simple combinatorial problem. Fix integers n ≥ 2 and d ≥ 3.
By the d-regular tree of height n we will mean the finite rooted tree in which each
non-leaf vertex has d − 1 children, and the path from each leaf to the root has
n− 1 edges. We denote this tree by Tn. The wired d-regular tree of height n is the
multigraph T̄n obtained from Tn by collapsing all the leaves of to a single vertex s,
the sink, and adding an edge connecting the root r to the sink. We do not collapse
edges; thus each neighbor of the sink except for r has d− 1 edges to the sink. The
principal branches of T̄n are the subtrees rooted at the children of the root.

Lemma 1.1. Let tn be the number of spanning trees of T̄n. Then for n ≥ 4,

tn = td−2
n−1(dtn−1 − (d− 1)td−1

n−2).

Proof. If the edge (r, s) from the root to the sink is included in the spanning tree,
then each of the principal branches of T̄n may be assigned a spanning tree inde-
pendently, so there are td−1

n−1 such spanning trees. On the other hand, if (r, s) is
not included in the spanning tree, there is a path r ∼ x1 ∼ . . . ∼ xn−1 = s in the
spanning tree from the root to the sink. In this case, every principal branch except
the one rooted at x1 may be assigned a spanning tree independently; within the
branch rooted at x1, every subbranch except the one rooted at x2 may be assigned
a spanning tree independently; and so on (see Figure 1). Since there are (d− 1)n−1

possible paths x1 ∼ . . . ∼ xn−1, we conclude that

(1) tn = td−1
n−1 + (d− 1)n−1

n−1∏
k=1

td−2
k .

Substituting n− 1 for n we find that

(d− 1)n−2
n−2∏
k=1

td−2
k = tn−1 − td−1

n−2,
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Figure 1. The two cases in the proof of Lemma 1.1.

hence from (1)
tn = td−2

n−1(tn−1 + (d− 1)(tn−1 − td−1
n−2)). �

From Lemma 1.1 one can readily show by induction that

(2) tn = (1 + a+ . . .+ an−1)
n−2∏
k=1

(1 + a+ . . .+ ak)a
n−2−k(a−1).

where a = d− 1. A variant of this formula was found by E. Toumpakari [12], who
gives an algebraic proof.

For any graph G there is an abelian group, the sandpile group, whose order is
the number of spanning trees of G; its definition and properties are reviewed in
section 2. A product formula such as (2) immediately raises the question of an
analogous factorization of the sandpile group. Our main result establishes such a
factorization. Write Zqp for the group (Z/pZ)⊕ . . .⊕ (Z/pZ) with q summands.

Theorem 1.2. The sandpile group of the wired regular tree T̄n of degree d = a+ 1
and height n is given by

SP
(
T̄n
)
' Za

n−3(a−1)
1+a ⊕ Za

n−4(a−1)
1+a+a2 ⊕ . . .⊕ Za−1

1+a+...+an−2 ⊕ Z1+a+...+an−1 .

In [10] we give an application of this result to the rotor-router model on regular
trees.

Toumpakari [12] studied the sandpile group of the ball Bn inside the infinite d-
regular tree. Her setup differs slightly from ours in that there is no edge connecting
the root to the sink. She found the rank, exponent, and order of the sandpile group
SP (Bn) and conjectured a formula for the ranks of its Sylow p-subgroups. We use
Theorem 1.2 to give a proof of her conjecture.

We remark that Chen and Schedler [6] study the sandpile group of thick trees
(i.e., graphs obtained from trees by replacing some edges with multiple edges)
without collapsing the leaves to the sink. They obtain quite a different product
formula in this setting.
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The remainder of the paper is structured as follows. In section 2, we briefly
review the definition and basic properties of the sandpile group and recurrent states.
In section 3, we characterize the recurrent states on a wired tree explicitly in terms
of what we call critical vertices. We prove a general result, Theorem 3.3, relating the
sandpile group of an arbitrary wired tree T̄ to the sandpile groups of its principal
branches T̄ 1, . . . , T̄ k. This result takes the form of a pair of short exact sequences

(3) 0→ R
(
T̄
)
→ SP

(
T̄
)
→ H

(
T̄
)
→ 0

(4) 0→ R
(
T̄ 1, . . . , T̄ k

)
→

k⊕
i=1

SP
(
T̄ i
)
→ H

(
T̄
)
→ 0.

The groups involved are defined in section 3. The addition of an edge from the root
to the sink is crucial here: it plays the same role in the full tree that the edge from
x to r plays in the branch rooted at x.

In section 4, we show that the sequences (3) and (4) are split when T is a regular
tree. This allows us to express the sandpile group SP

(
T̄n
)

of the wired regular tree
as the direct sum of a cyclic group and a quotient of the direct sum of d− 1 copies
of SP

(
T̄n−1

)
, which enables us to prove Theorem 1.2 by induction.

Finally, in section 5, we deduce Toumpakari’s conjecture from our main results.

2. The Sandpile Group

Let G be a finite graph with vertices x1, . . . , xn. We single out one vertex, xn,
called the sink. The reduced Laplacian ∆ of G is the n− 1× n− 1 matrix

∆ij =

{
−di, i = j

dij , i 6= j

where di is the degree of xi, and dij is the number of edges connecting xi and xj
(we allow multiple edges, but not loops). The sandpile group of G is defined as the
quotient

SP (G) = Zn−1/∆ Zn−1 .

This group was defined independently by Dhar [7], motivated by the abelian sand-
pile model of self-organized criticality in statistical physics [1], and by Lorenzini
[11] in connection with arithmetic geometry. In the combinatorics literature, other
common names for this group are the critical group [3] and the Jacobian [2].

The sandpile group can be understood combinatorially in terms of chip-firing
[3, 4]. A nonnegative vector u ∈ Zn−1 may be thought of as a chip configuration
onG with ui chips at vertex xi. A vertex xi is unstable if ui ≥ di. An unstable vertex
may topple, sending one chip along each incident edge. Note that the operation of
toppling the vertex xi corresponds to adding the column vector ∆i to u. We say
that a chip configuration u is stable if every non-sink vertex has fewer chips than
its degree, so that no vertex can topple. If u is not stable, one can show that
by successively toppling unstable vertices, in finitely many steps we arrive at a
stable configuration u◦. Note that toppling one vertex may cause other vertices to
become unstable, resulting in a cascade of topplings in which a given vertex may
topple many times. The order in which topplings are performed does not affect the
final configuration u◦; this is the “abelian property” of abelian sandpiles [7, 8].

The operation (u, v) 7→ (u + v)◦ gives the set of stable chip configurations the
structure of a commutative monoid, of which the sandpile group is a subgroup. A
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stable chip configuration u is called recurrent if there is a nonzero chip configuration
v, such that (u+v)◦ = u. One can show that every equivalence class of Zn−1 modulo
∆ has a unique recurrent representative. Thus the sandpile group SP (G) may be
thought of as the set of recurrent configurations under the operation (u, v) 7→
(u + v)◦ of addition followed by stabilization. For proofs of these basic lemmas
about recurrent configurations and the sandpile group, see, for example [5, 9].

If v is a nonnegative configuration, its recurrent representative is given by

v̂ := (v + e)◦

where e is the identity element of SP (G) (the recurrent representative of 0); indeed,
v̂ is recurrent since e is recurrent, and v̂ ≡ v (mod ∆) since e ∈ ∆Zn−1. Note that
if u is a recurrent configuration and v is a nonnegative configuration, then

(5) (u+ v̂)◦ = (u+ (v + e)◦)◦ = (u+ v + e)◦ = ((u+ e)◦ + v)◦ = (u+ v)◦.

We will need just one additional fact about recurrent configurations, a criterion
known as the “burning algorithm” [7] that tests whether a configuration is recurrent.
We include a proof for the sake of completeness.

Burning algorithm. Let β(x) be the number of edges in G from x to the sink.
A stable chip configuration u on G is recurrent if and only if adding β(x) chips at
each vertex x causes every vertex to topple exactly once.

Proof. Note that

(6) β = ∆n = −
n−1∑
i=1

∆i.

If every vertex topples exactly once in the stabilization of u+ β, then

(u+ β)◦ = u+ β +
n−1∑
i=1

∆i = u,

so u is recurrent. Conversely, suppose u is recurrent. Since β ∈ ∆Zn−1 we have
β̂ = e, hence from (5)

(u+ β)◦ = (u+ e)◦ = u.

By (6), since {∆i}n−1
i=1 are linearly independent, every vertex topples exactly once

in the stabilization of u+ β. �

3. General Trees

Let T be a finite rooted tree, and let T̄ be the graph obtained by collapsing all
the leaves of T to a single vertex s, the sink, and adding an edge connecting the
root to the sink. Denote by C(x) the set of children of a vertex x ∈ T̄ . We first
characterize the recurrent configurations on T̄ explicitly. The characterization uses
the following recursive definition.

Definition. A vertex x ∈ T̄ is critical for a chip configuration u if x 6= s and

(7) u(x) ≤ #{y ∈ C(x) | y is critical}.

Proposition 3.1. A stable configuration u ∈ SP
(
T̄
)

is recurrent if and only if
equality holds in (7) for every critical vertex x.
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Figure 2. A recurrent configuration on the wired ternary tree of
height five. The top and bottom edges lead to the sink. Critical
vertices are circled; if any of the circled vertices had fewer chips,
the configuration would not be recurrent.

Proof. If x is critical, then

(8) u(x) + #{y ∈ C(x) | y is not critical} ≤ deg(x)− 1.

Thus after chips are added as prescribed in the burning algorithm, inducting upward
in decreasing distance to the root, if x 6= r is critical, its parent must topple before
it does. In particular, if strict inequality holds in (7), and hence in (8), for some
vertex x, that vertex will never topple, so u is not recurrent.

Conversely, suppose equality holds in (7), hence in (8), for every critical x. Begin
toppling vertices in order of decreasing distance from the root. Note that a non-
critical vertex x satisfies

(9) u(x) + #{y ∈ C(x) | y is not critical} ≥ deg(x).

Inducting upward, every non-critical vertex topples once. Hence by equality in (8),
once all vertices other than the root are stable, every critical vertex x has either
toppled (if its parent toppled) or is left with exactly deg(x)− 1 chips (if its parent
did not topple). In particular, the root now topples, as it was given an extra chip
in the beginning. Now if x is a critical vertex that has not yet toppled, its parent
is also such a vertex. Inducting downward from the root, since all of these vertices
are primed with deg(x)− 1 chips, they each topple once, and u is recurrent. �

The principal branches of T are the subtrees T 1, . . . , T k rooted at the children
r1, . . . , rk of the root r of T . The wired tree T̄ i includes an edge from ri to the
sink; thus ri has the same degree in T̄ i as in T̄ , as the edge from ri to r has been
replaced by an edge from ri to the sink.
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If ui is a chip configuration on T̄ i, and a is a nonnegative integer, we will use the

notation
(

a
u1, . . . , uk

)
for the configuration on T̄ which has a chips at the root

and coincides with ui on T̄ i. The following result is an immediate consequence of
Proposition 3.1.

Lemma 3.2. Let u =
(

a
u1, . . . , uk

)
.

(i) If u is recurrent, then each ui is recurrent.
(ii) If u1, . . . , uk are recurrent and a = k, then u is recurrent.

Write δx for a single chip at a vertex x, and denote by x̂ = (e+δx)◦ the recurrent
form of δx. Note that if u is recurrent, then by (5)

(10) (u+ x̂)◦ = (u+ δx)◦.

Write 〈r̂〉 for the cyclic subgroup of SP
(
T̄
)

generated by r̂, and 〈(r̂1, . . . , r̂k)〉 for
the cyclic subgroup of

⊕k
i=1 SP

(
T̄ i
)

generated by the element (r̂1, . . . , r̂k). As
mentioned in the introduction, the following theorem can be expressed as the pair of
short exact sequences (3), (4), with R

(
T̄
)

= 〈r̂〉 and R
(
T̄ 1, . . . , T̄ k

)
= 〈(r̂1, . . . , r̂k)〉.

The group H
(
T̄
)

appearing in both sequences is the quotient (11).

Theorem 3.3. Let T 1, . . . , T k be the principal branches of T . Then

(11) SP
(
T̄
)
/〈r̂〉 '

k⊕
i=1

SP
(
T̄ i
)/
〈(r̂1, . . . , r̂k)〉

where r, ri are the roots of T , T i respectively.

Proof. Define φ : SP
(
T̄
)
→
⊕k

i=1 SP
(
T̄ i
)

by(
a

u1, . . . , uk

)
7→ (u1, . . . , uk).(12)

Lemma 3.2(i) ensures this map is well-defined. Note that if
(

b
v1, . . . , vk

)
is

recurrent and (
a

u1, . . . , uk

)
=
((

b
v1, . . . , vk

)
+ r̂

)◦
,

then by (10), either b < k and ui = vi for all i; or b = k and the root topples,
in which case ui = (vi + r̂i)◦ for all i. Thus φ descends to a map of quotients
φ̄ : SP

(
T̄
)
/〈r̂〉 →

⊕k
i=1 SP

(
T̄ i
)
/〈(r̂1, . . . , r̂k)〉.

By adding two configurations without allowing the root to topple, the configu-
rations on each branch add independently, hence by (10) and Lemma 3.2(ii)((

a
u1, . . . , uk

)
+
(

b
v1, . . . , vk

))◦
=
((

k
(u1 + v1)◦, . . . , (uk + vk)◦

)
+ jr̂

)◦
for some nonnegative integer j. Thus φ̄ is a group homomorphism. Moreover, φ̄
is surjective by Lemma 3.2(ii). Finally, to show injectivity, suppose that for some
c ≥ 0 we have

ui = (vi + cr̂i)◦, i = 1, . . . , k.
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r̂ 2r̂ 3r̂ 4r̂ 5r̂ 6r̂ 7r̂ 8r̂ 9r̂ 10r̂ 11r̂ 12r̂ 13r̂ 14r̂ (15r̂)◦ = e

2 0 1 2 0 1 2 2 2 0 1 2 0 1 2
0 1 1 1 2 2 2 2 0 1 1 1 2 2 2
2 2 2 2 2 2 2 0 1 1 1 1 1 1 1

Figure 3. Multiples (kr̂)◦ of the root r̂ in the wired ternary tree
of height four. Each column vector represents a chip configuration
which is constant on levels of the tree.

Then from (10) we obtain((
b

v1, . . . , vk

)
+ c(k + 1)r̂

)◦
=
((

a
u1, . . . , uk

)
+ dr̂

)◦
for some nonnegative integer d. �

4. Regular Trees

In this section we show that for regular trees, Theorem 3.3 can be strengthened
to express SP

(
T̄
)

as a direct sum.
Let Tn be the regular tree of degree d and height n, and T̄n the graph formed

by collapsing its leaves to a single sink vertex s, and adding an edge from the root
to the sink. The chip configurations which are constant on the levels of T̄n form a
subgroup of SP (T̄n). If each vertex at height k has ak chips, we can represent the
configuration as a vector (a1, . . . , an−1). If such a recurrent configuration is zero on
a level, all vertices between that level and the root are critical, so by Proposition 3.1
they must have d − 1 chips each. The recurrent configurations constant on levels
are thus in bijection with integer vectors (a1, . . . , an−1) with 0 ≤ ai ≤ d−1, subject
to the constraint that if ai = 0 then a1 = . . . = ai−1 = d− 1.

The following lemma uses the lexicographic order on vectors given by a < b
if for some k we have an−1 = bn−1, . . . , ak+1 = bk+1 and ak < bk. In the cyclic
lexicographic order on recurrent vectors we have also (d − 1, . . . , d − 1) < (d −
1, . . . , d− 1, 0).

Lemma 4.1. If u, v are recurrent configurations on T̄n that are constant on levels,
write u  v if v immediately follows u in the cyclic lexicographic order on the set
of recurrent vectors. Then for every integer k ≥ 0, we have

(kr̂)◦  ((k + 1)r̂)◦.

Figure 4 demonstrates the lemma for a ternary tree of height 4.

Proof. By (10) we have

((k + 1)r̂)◦ = (kr̂ + δr)◦.

Thus if (kr̂)◦ = (a1, . . . , an−1) with a1 < d−1, then ((k+1)r̂)◦ = (a1+1, a2, . . . , an−1)
as desired. Otherwise, if not all ai equal d − 1, let j > 1 be such that a1 = . . . =
aj−1 = d − 1 and aj < d − 1. Adding a chip at the root initiates the toppling
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cascade

d
d− 1
d− 1

...
d− 1
d− 1
aj
aj+1

...
an−1


→



0
d

d− 1
...

d− 1
d− 1
aj
aj+1

...
an−1


→



d− 1
0
d
...

d− 1
d− 1
aj
aj+1

...
an−1


→ . . .→



d− 1
d− 1
d− 1

...
0
d
aj
aj+1

...
an−1


→



d− 1
d− 1
d− 1

...
d− 1

0
aj + 1
aj+1

...
an−1


,

as desired. If all ai = d − 1 the cascade will travel all the way down, ending in
(d− 1, . . . , d− 1, 0) as desired. �

Proposition 4.2. Let T̄n be the wired regular tree of degree d and height n, and
let R

(
T̄n
)

be the subgroup of SP
(
T̄n
)

generated by r̂. Then R
(
T̄n
)

consists of all
recurrent configurations that are constant on levels, and its order is

(13) #R
(
T̄n
)

=
(d− 1)n − 1

d− 2
.

Proof. Since the identity element e is constant on levels, and the property of being
constant on levels is preserved by stabilization, for any k ≥ 0 the configuration

(kr̂)◦ = (e+ kδr)◦

is constant on levels. Conversely, by Lemma 4.1, any recurrent configuration con-
stant on levels can be expressed as a multiple of r̂. The number of such configura-
tions is the number of integer vectors of the form (d− 1, . . . , d− 1, 0, aj , . . . , an−1),
with 1 ≤ j ≤ n and 1 ≤ ai ≤ d− 1 for each i = j, . . . , n− 1, which is

n−1∑
j=0

(d− 1)j =
(d− 1)n − 1

d− 2
. �

Index the nonsink vertices of T̄n by words of length ≤ n − 2 in the alphabet
[d−1] = {1, . . . , d−1}. For i = 1, . . . , n−2 let σi be the automorphism of T̄n given
by

σi(w1 . . . wk) = w1 . . . (wi + 1) . . . wk
with the sum taken mod d− 1; if k < i then σi(w) = w. Given a map α : [n− 2]→
[d− 1] let σα be the composition

∏n−2
i=1 σ

α(i)
i .

If σ is an automorphism of the form σα, write σu for the chip configuration
σu(x) = u(σ−1x). Given recurrent chip configurations u and v on T̄n, if x1, . . . , xm
are the vertices that topple in the stabilization of u+ v, then

(u+ v)◦ = u+ v +
m∑
j=1

∆xj
.

Since σ∆x = ∆σx we obtain

σ(u+ v)◦ = σu+ σv +
m∑
j=1

∆σxj
.
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Figure 4. A non-regular tree for which Proposition 4.3 fails.

The configuration on the right side is stable, recurrent, and ≡ σu + σv (mod ∆),
so it is equal to (σu+ σv)◦. Thus σ is an automorphism of the sandpile group.

Proposition 4.3. Let T̄n be the wired regular tree of degree d and height n, and
let R

(
T̄n
)

= 〈r̂〉 be the subgroup of SP
(
T̄n
)

generated by the root. Then

SP
(
T̄n
)
' R

(
T̄n
)
⊕
SP
(
T̄n−1

)
⊕ . . .⊕ SP

(
T̄n−1

)(
R
(
T̄n−1

)
, . . . , R

(
T̄n−1

))
with d− 1 summands of SP

(
T̄n−1

)
on the right side.

Proof. Define p : SP
(
T̄n
)
→ SP

(
T̄n
)

by

(14) p(u) =

(d− 1)2
∑

α:[n−2]→[d−1]

σαu

◦ .
By construction, p(u) is constant on levels, so the image of p lies in R

(
T̄n
)

by
Proposition 4.2. Given u ∈ R

(
T̄n
)
, since u is constant on levels we have σαu = u

for all α. Since there are (d− 1)n−2 terms in the sum (14), we obtain

p(u) = ((d− 1)nu)◦ = u,

where the second inequality follows from (13). Thus R
(
T̄n
)

is a summand of
SP
(
T̄n
)
, and the result follows from Theorem 3.3. �

Proposition 4.3 can fail for non-regular trees. For example, if T is the tree
consisting of a root with two children each of which have three children (Figure 4),

then r̂ =
(

2
3, 3

)
has order 10 and the element x =

(
2

0, 3

)
satisfies 4x = r̂, so

x has order 40. The total number of recurrent configurations is 4 · 4 · 3− 8 = 40, so
SP
(
T̄
)
' Z/40Z, and R

(
T̄
)
' Z/10Z is not a summand.

We now turn to the proof of Theorem 1.2, which can be written as

SP
(
T̄n
)
' Zqn ⊕ Za−1

qn−1
⊕ Za(a−1)

qn−2
⊕ . . .⊕ Za

n−3(a−1)
q2 ,

where qn = 1 + a+ . . .+ an−1.
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Proof of Theorem 1.2. By Proposition 4.3 we have

(15) SP
(
T̄n
)
' Hn ⊕R

(
T̄n
)

where

(16) Hn = SP
(
T̄n−1

)⊕a/
Dn−1

and Dn−1 is the diagonal copy of R
(
T̄n−1

)
.

By Proposition 4.2 we have R
(
T̄n
)
' Zqn

, so it remains to show that

(17) Hn ' Za−1
qn−1

⊕ Za(a−1)
qn−2

⊕ . . .⊕ Za
n−3(a−1)
q2 .

We will show this by induction on n; the base case n = 2 is trivial. Substituting
(15) into (16) gives

Hn ' H⊕an−1 ⊕R
(
T̄n−1

)⊕a/
Dn−1

' H⊕an−1 ⊕R
(
T̄n−1

)⊕a−1
.

By Proposition 4.2 we have R
(
T̄n−1

)
' Zqn−1 , and (17) now follows from the

inductive hypothesis. �

5. Proof of Toumpakari’s Conjecture

As before, write a = d− 1 and

qn = 1 + a+ . . .+ an−1.

If p is a prime not dividing d(d − 1), let tp be the least positive n for which p|qn.
Then

tp =

{
p, if a ≡ 1 (mod p)
ordp(a), else.

Here ordp(a) is the least positive k for which p|ak − 1. Note that p|qn if and only
if tp|n. The following result was conjectured by E. Toumpakari in [12] (where the
factor of d− 2 was left out, presumably an oversight).

Theorem 5.1. Let B̄n be the ball of radius n+ 1 in the d-regular tree, with leaves
collapsed to a single sink vertex, but with no edge connecting the root to the sink.
Let p be a prime not dividing d(d− 1), and let Sp(n) be the Sylow-p subgroup of the
sandpile group SP (B̄n). Then

rank(Sp(n)) =

d(d− 2)
∑

m<n
m≡n (mod tp)

(d− 1)m, if n 6≡ −1 (mod tp);

d(d− 2)
∑

m<n
m≡n (mod tp)

(d− 1)m + d− 1, if n ≡ −1(mod tp).

Proof. Since each of the d principal branches of B̄n is isomorphic to T̄n+1, by
Theorem 3.3 we have

SP
(
B̄n
)
/〈r̂〉 '

SP
(
T̄n+1

)
⊕ . . .⊕ SP

(
T̄n+1

)(
R
(
T̄n+1

)
, . . . , R

(
T̄n+1

))
with d summands. By Proposition 4.2 we have R

(
T̄n+1

)
' Zqn+1 , so from Theo-

rem 1.2

(18) SP (Bn)/〈r̂〉 ' Zaqn+1
⊕ Z(a−1)(a+1)

qn
⊕ Z(a−1)a(a+1)

qn−1
⊕ . . .⊕ Z(a−1)an−2(a+1)

q2 .

By Proposition 7.2 of [12], the root subgroup 〈r̂〉 of SP
(
B̄n
)

has order d(d − 1)n.
Thus for p not dividing d(d − 1) the Sylow p-subgroup of SP

(
B̄n
)

has the same
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rank as that of the quotient SP
(
B̄n
)
/〈r̂〉. Each summand Zqk

in (18) contributes 1
to the rank of Sp(n) if tp|k and 0 otherwise. If n 6≡ −1 (mod tp), the total rank is
therefore

rank(Sp(n)) =
∑

2≤k≤n
tp|k

(a− 1)an−k(a+ 1)

= d(d− 2)
∑

0≤m≤n−2
m≡n (mod tp)

(d− 1)m.

In the case that n ≡ −1 (mod tp), the first summand Zaqn+1
in (18) contributes an

additional rank a = d− 1 to Sp(n). �
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