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A NOTE ON AFFINELY REGULAR POLYGONS

CHRISTIAN HUCK

Abstract. The affinely regular polygons in certain planar sets are character-
ized. It is also shown that the obtained results apply to cyclotomic model sets
and, additionally, have consequences in the discrete tomography of these sets.

1. Introduction

Chrestenson [6] has shown that any (planar) regular polygon whose vertices are
contained in Z

d for some d ≥ 2 must have 3, 4 or 6 vertices. More generally,
Gardner and Gritzmann [9] have characterized the numbers of vertices of affinely
regular lattice polygons, i.e., images of non-degenerate regular polygons under a
non-singular affine transformation of the plane whose vertices are contained in the
square lattice Z2 or, equivalently, in some arbitrary planar lattice L. It turned out
that the affinely regular lattice polygons are precisely the affinely regular triangles,
parallelograms and hexagons. As a first step beyond the case of planar lattices,
this short text provides a generalization of this result to planar sets Λ that are
non-degenerate in some sense and satisfy a certain affinity condition on finite scales
(Theorem 3.3). The obtained characterization can be expressed in terms of a simple
inclusion of real field extensions of Q and particularly applies to algebraic Delone
sets, thus including cyclotomic model sets. These cyclotomic model sets range from
periodic examples, given by the vertex sets of the square tiling and the triangular
tiling, to aperiodic examples like the vertices of the Ammann-Beenker tiling, of
the Tübingen triangle tiling and of the shield tiling, respectively. I turns out that,
for cyclotomic model sets Λ, the numbers of vertices of affinely regular polygons
in Λ can be characterized by a simple divisibility condition (Corollary 4.1). In
particular, the result on affinely regular lattice polygons is contained as a special
case (Corollary 4.2(a)). Additionally, it is shown that the obtained divisibility
condition implies a weak estimate in the discrete tomography of cyclotomic model
sets (Corollary 5.5).

2. Preliminaries and notation

Natural numbers are always assumed to be positive, i.e., N = {1, 2, 3, . . .} and
we denote by P the set of rational primes. If k, l ∈ N, then gcd(k, l) and lcm(k, l)
denote their greatest common divisor and least common multiple, respectively. The
group of units of a given ring R is denoted by R×. As usual, for a complex number
z ∈ C, |z| denotes the complex absolute value, i.e., |z| =

√
zz̄, where .̄ denotes

the complex conjugation. The unit circle in R2 is denoted by S
1, i.e., S1 = {x ∈

R

2 | |x| = 1}. Moreover, the elements of S1 are also called directions. For r > 0 and
x ∈ R2, Br(x) denotes the open ball of radius r about x. A subset Λ of the plane is
called uniformly discrete if there is a radius r > 0 such that every ball Br(x) with
x ∈ R2 contains at most one point of Λ. Further, Λ is called relatively dense if there
is a radius R > 0 such that every ball BR(x) with x ∈ R2 contains at least one point
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2 CHRISTIAN HUCK

of Λ. Λ is called a Delone set (or Delaunay set) if it is both uniformly discrete and
relatively dense. For a subset S of the plane, we denote by card(S), F(S), conv(S)
and 1S the cardinality, set of finite subsets, convex hull and characteristic function
of S, respectively. A direction u ∈ S

1 is called an S-direction if it is parallel to a
non-zero element of the difference set S − S := {s − s′ | s, s′ ∈ S} of S. Further,
a finite subset C of S is called a convex subset of S if its convex hull contains no
new points of S, i.e., if C = conv(C) ∩ S holds. Moreover, the set of all convex
subsets of S is denoted by C(S). Recall that a linear transformation (resp., affine
transformation) Ψ : R2 → R

2 of the Euclidean plane is given by z 7→ Az (resp.,
z 7→ Az + t), where A is a real 2× 2 matrix and t ∈ R2. In both cases, Ψ is called
singular when det(A) = 0; otherwise, it is non-singular. A homothety h : R2 → R

2

is given by z 7→ λz+ t, where λ ∈ R is positive and t ∈ R2. A convex polygon is the
convex hull of a finite set of points in R2. For a subset S ⊂ R

2, a polygon in S is
a convex polygon with all vertices in S. A regular polygon is always assumed to be
planar, non-degenerate and convex. An affinely regular polygon is a non-singular
affine image of a regular polygon. In particular, it must have at least 3 vertices. Let
U ⊂ S

1 be a finite set of directions. A non-degenerate convex polygon P is called
a U -polygon if it has the property that whenever v is a vertex of P and u ∈ U , the
line ℓvu in the plane in direction u which passes through v also meets another vertex
v′ of P . For a subset Λ ⊂ C, we denote by KΛ the intermediate field of C/Q that
is given by

KΛ := Q

((

Λ− Λ
)

∪
(

Λ− Λ
))

,

where Λ − Λ denotes the difference set of Λ. Further, we set kΛ := KΛ ∩ R, the
maximal real subfield of KΛ.

Remark 2.1. Note that U -polygons have an even number of vertices. Moreover,
an affinely regular polygon with an even number of vertices is a U -polygon if and
only if each direction of U is parallel to one of its edges.

For n ∈ N, we always let ζn := e2πi/n, as a specific choice for a primitive nth
root of unity in C. Let Q(ζn) be the corresponding cyclotomic field. It is well
known that Q(ζn + ζ̄n) is the maximal real subfield of Q(ζn); see [17]. Throughout
this text, we shall use the notation

Kn = Q(ζn), kn = Q(ζn + ζ̄n), On = Z[ζn], On = Z[ζn + ζ̄n] .

Except for the one-dimensional cases K1 = K2 = Q, Kn is an imaginary extension
of Q. Further, φ will always denote Euler’s phi-function, i.e.,

φ(n) = card
({

k ∈ N | 1 ≤ k ≤ n and gcd(k, n) = 1
})

.

Occasionally, we identify C with R2. Primes p ∈ P for which the number 2p+ 1 is
prime as well are called Sophie Germain prime numbers. We denote by PSG the set
of Sophie Germain prime numbers. They are the primes p such that the equation
φ(n) = 2p has solutions. It is not known whether there are infinitely many Sophie
Germain primes. The first few are

{2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173,
179, 191, 233, 239, 251, 281, 293, 359, 419, . . .} ,

see entry A005384 of [16] for further details. We need the following facts from the
theory of cyclotomic fields.

Fact 2.2 (Gauß). [17, Theorem 2.5] [Kn : Q] = φ(n). The field extension Kn/Q
is a Galois extension with Abelian Galois group G(Kn/Q) ≃ (Z/nZ)×, where
a (modn) corresponds to the automorphism given by ζn 7→ ζan.
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Since kn is the maximal real subfield of the nth cyclotomic field Kn, Fact 2.2
immediately gives the following result.

Corollary 2.3. If n ≥ 3, one has [Kn : kn] = 2. Thus, a kn-basis of Kn is given
by {1, ζn}. The field extension kn/Q is a Galois extension with Abelian Galois
group G(kn/Q) ≃ (Z/nZ)×/{±1 (modn)} of order [kn : Q] = φ(n)/2.

Consider an algebraic number field K, i.e., a finite extension of Q. A full Z-
module O in K (i.e., a free Z-module of rank [K : Q]) which contains the number 1
and is a ring is called an order of K. Note that every Z-basis of O is simultaneously
a Q-basis of K, whence QO = K in particular. It turns out that among the various
orders of K there is one maximal order which contains all the other orders, namely
the ring of integers O

K

in K; see [5, Chapter 2, Section 2]. For cyclotomic fields,
one has the following well-known result.

Fact 2.4. [17, Theorem 2.6 and Proposition 2.16] For n ∈ N, one has:

(a) On is the ring of cyclotomic integers in Kn, and hence its maximal order.
(b) On is the ring of integers in kn, and hence its maximal order.

Lemma 2.5. If m,n ∈ N, then Km ∩Kn = Kgcd(m,n).

Proof. The assertion follows from similar arguments as in the proof of the special
case (m,n) = 1; compare [15, Ch. VI.3, Corollary 3.2]. Here, one has to observe
Q(ζm, ζn) = KmKn = Klcm(m,n) and then to employ the identity

(1) φ(m)φ(n) = φ(lcm(m,n))φ(gcd(m,n))

instead of merely using the multiplicativity of the arithmetic function φ. �

Lemma 2.6. Let m,n ∈ N. The following statements are equivalent:

(i) Km ⊂ Kn.
(ii) m|n, or m ≡ 2 (mod 4) and m|2n.

Proof. For direction (ii) ⇒ (i), the assertion is clear if m|n. Further, if m ≡
2 (mod 4), say m = 2o for a suitable odd number o, and m|2n, then Ko ⊂ Kn

(due to o|n). However, Fact 2.2 shows that the inclusion of fields Ko ⊂ K2o = Km

cannot be proper since we have, by means of the multiplicativity of φ, the equation
φ(m) = φ(2o) = φ(o). This gives Km ⊂ Kn.

For direction (i) ⇒ (ii), suppose Km ⊂ Kn. Then, Lemma 2.5 implies Km =
Kgcd(m,n), whence

(2) φ(m) = φ(gcd(m,n))

by Fact 2.2 again. Using the multiplicativity of φ together with φ(pj) = pj−1 (p−1)
for p ∈ P and j ∈ N, we see that, given the case gcd(m,n) < m, Equation (2) can
only be fulfilled if m ≡ 2 (mod 4) and m|2n. The remaining case gcd(m,n) = m
is equivalent to the relation m|n. �

Corollary 2.7. Let m,n ∈ N. The following statements are equivalent:

(i) Km = Kn.
(ii) m = n, or m is odd and n = 2m, or n is odd and m = 2n.

Remark 2.8. Corollary 2.7 implies that, for m,n 6≡ 2 (mod 4), one has the
identity Km = Kn if and only if m = n.

Lemma 2.9. Let m,n ∈ N with m,n ≥ 3. Then, one has:

(a) km = kn ⇔ Km = Kn or m,n ∈ {3, 4, 6}.
(b) km ⊂ kn ⇔ Km ⊂ Kn or m ∈ {3, 4, 6}.
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Proof. For claim (a), let us suppose km = kn =: k first. Then, Fact 2.2 and
Corollary 2.3 imply that [Km : k] = [Kn : k] = 2. Note that Km ∩Kn = Kgcd(m,n)

is a cyclotomic field containing k. It follows that either Km ∩Kn = Kgcd(m,n) =
Km = Kn or Km ∩ Kn = Kgcd(m,n) = k and hence km = kn = k = Q, since
the latter is the only real cyclotomic field. Now, this implies m,n ∈ {3, 4, 6};
see also Lemma 2.10(a) below. The other direction is obvious. Claim (b) follows
immediately from the part (a). �

Lemma 2.10. Consider φ on {n ∈ N |n 6≡ 2 (mod 4)}. Then, one has:

(a) φ(n)/2 = 1 if and only if n ∈ {3, 4}.
(b) φ(n)/2 ∈ P if and only if n ∈ S := {8, 9, 12} ∪ {2p+ 1 | p ∈ PSG}.

Proof. The equivalences follow from the multiplicativity of φ in conjunction with
the identity φ(pj) = pj−1 (p− 1) for p ∈ P and j ∈ N. �

Remark 2.11. Let n 6≡ 2 (mod 4). By Corollary 2.3, for n ≥ 3, the field extension
kn/Q is a Galois extension with Abelian Galois group G(kn/Q) of order φ(n)/2.
Using Lemma 2.10, one sees that G(kn/Q) is trivial if and only if n ∈ {1, 3, 4}, and
simple if and only if n ∈ S, with S as defined in Lemma 2.10(b).

3. The characterization

The following notions will be of crucial importance.

Definition 3.1. For a set Λ ⊂ R

2, we define the following properties:

(Alg) [KΛ : Q] < ∞.
(Aff) For all F ∈ F(KΛ), there is a non-singular affine transformation Ψ: R2 →

R

2 such that h(F ) ⊂ Λ.

Moreover, Λ is called degenerate when KΛ ⊂ R; otherwise, Λ is non-degenerate.

Remark 3.2. If Λ ⊂ R

2 satisfies property (Alg), then one has [kΛ : Q] < ∞, i.e.,
kΛ is a real algebraic number field.

Before we turn to examples of planar sets Λ having properties (Alg) and (Aff),
let us prove the central result of this text, where we use arguments similar to the
ones used by Gardner and Gritzmann in the proof of [9, Theorem 4.1].

Theorem 3.3. Let Λ ⊂ R

2 be non-degenerate with property (Aff). Further, let
m ∈ N with m ≥ 3. The following statements are equivalent:

(i) There is an affinely regular m-gon in Λ.
(ii) km ⊂ kΛ.

If Λ additionally fulfils property (Alg), then it only contains affinely regular m-gons
for finitely many values of m.

Proof. For (i) ⇒ (ii), let P be an affinely regular m-gon in Λ. There is then a
non-singular affine transformation Ψ : R2 → R

2 with Ψ(Rm) = P , where Rm

is the regular m-gon with vertices given in complex form by 1, ζm, . . . , ζm−1
m . If

m ∈ {3, 4, 6}, condition (ii) holds trivially. Suppose 6 6= m ≥ 5. The pairs {1, ζm},
{ζ−1

m , ζ2m} lie on parallel lines and so do their images under Ψ. Therefore,

|ζ2m − ζ−1
m |

|ζm − 1| =
|Ψ(ζ2m)−Ψ(ζ−1

m )|
|Ψ(ζm)−Ψ(1)| .

Moreover, since Ψ(ζ2m)−Ψ(ζ−1
m ) and Ψ(ζm)−Ψ(1) are elements of Λ−Λ and since

|z|2 = zz̄ for z ∈ C, we get the relation

(1 + ζm + ζ̄m)2 = (1 + ζm + ζ−1
m )2 =

|ζ2m − ζ−1
m |2

|ζm − 1|2 =
|Ψ(ζ2m)−Ψ(ζ−1

m )|2
|Ψ(ζm)−Ψ(1)|2 ∈ kΛ .
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The pairs {ζ−1
m , ζm}, {ζ−2

m , ζ2m} also lie on parallel lines. An argument similar to
that above yields

(ζm + ζ̄m)2 = (ζm + ζ−1
m )2 =

|ζ2m − ζ−2
m |2

|ζm − ζ−1
m |2

∈ kΛ .

By subtracting these equations, one gets the relation

2(ζm + ζ̄m) + 1 ∈ kΛ ,

whence ζm + ζ̄m ∈ kΛ, the latter being equivalent to the inclusion of the fields
km ⊂ kΛ.

For (ii) ⇒ (i), let Rm again be the regular m-gon as defined in step (i) ⇒ (ii).
Since m ≥ 3, the set {1, ζm} is an R-basis of C. Since Λ is non-degenerate, there
is an element τ ∈ KΛ with non-zero imaginary part. Hence, one can define an
R-linear map L : R2 → R

2 as the linear extension of 1 7→ 1 and ζm 7→ τ . Since
{1, τ} is an R-basis of C as well, this map is non-singular. Since km ⊂ kΛ and
since {1, ζm} is a km-basis of Km (cf. Corollary 2.3), the vertices of L(Rm), i.e.,
L(1), L(ζm), . . . , L(ζm−1

m ), lie in KΛ, whence L(Rm) is a polygon in KΛ. By prop-
erty (Aff), there is a non-singular affine transformation Ψ : R2 → R

2 such that
Ψ(L(Rm)) is a polygon in Λ. Since compositions of non-singular affine transforma-
tions are non-singular affine transformations again, Ψ(L(Rm)) is an affinely regular
m-gon in Λ.

For the additional statement, note that, since Λ has property (Alg), one has
[kΛ : Q] < ∞ by Remark 3.2. Thus, kΛ/Q has only finitely many intermediate
fields. The assertion now follows immediately from condition (ii) in conjunction
with Corollary 2.7, Remark 2.8 and Lemma 2.9. �

Let L be an imaginary algebraic number field with L = L and let O
L

be the ring
of integers in L. Then, every translate Λ of L or O

L

is non-degenerate and satisfies
the properties (Alg) and (Aff). To this end, we first show that in both cases one
has KΛ = L. If Λ is a translate of L, this follows immediately from the calculation

KΛ = K

L

= Q(L ∪ L) = L .

If Λ is a translate of O
L

, one has to observe that

KΛ = KO
L

= Q(O
L

∪ O
L

) = L ,

since L = L implies O
L

= O
L

. In the first case, property (Aff) is evident, whereas,
if Λ is a translate of O

L

, property (Aff) follows from the fact that there is always a
Z-basis of O

L

that is simultaneously a Q-basis of L. Thus, if F ⊂ L is a finite set,
then a suitable translate of aF is contained in Λ, where a is defined as the least
common multiple of the denominators of the Q-coordinates of the elements of F
with respect to a Q-basis of L that is simultaneously a Z-basis of O

L

. Hence, for
these two examples, property (Aff) may be replaced by the stronger property

(Hom) For all F ∈ F(KΛ), there is a homothety h : R2 → R

2 such that h(F ) ⊂ Λ .

Thus, we have obtained the following consequence of Theorem 3.3.

Corollary 3.4. Let L be an imaginary algebraic number field with L = L and let
O
L

be the ring of integers in L. Let Λ be a translate of L or a translate of O
L

.
Further, let m ∈ N with m ≥ 3. Denoting the maximal real subfield of L by l, the
following statements are equivalent:

(i) There is an affinely regular m-gon in Λ.
(ii) km ⊂ l.

Further, Λ only contains affinely regular m-gons for finitely many values of m.
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Remark 3.5. In particular, Corollary 3.4 applies to translates of imaginary cy-
clotomic fields and their rings of integers, with l = kn for a suitable n ≥ 3; cf.
Facts 2.2 and 2.4 and also compare the equivalences of Corollary 4.1 below.

4. Application to cyclotomic model sets

Remarkably, there are Delone subsets of the plane satisfying properties (Alg)
and (Hom). These sets were introduced as algebraic Delone sets in [13, Definition
4.2]. Note that algebraic Delone sets are always non-degenerate, since this is true
for all relatively dense subsets of the plane. It was shown in [13, Proposition 4.15]
that the so-called cyclotomic model sets Λ are examples of algebraic Delone sets;
cf. Section 4 of [13] and [13, Definition 4.6] in particular for the definition of
cyclotomic model sets. Any cyclotomic model set Λ is contained in a translate of
On, where n ≥ 3, in which case the Z-module On is called the underlying Z-module
of Λ. With the exception of the crystallographic cases of translates of the square
lattice O4 and translates of the triangular lattice O3, cyclotomic model sets are
aperiodic (i.e., they have no translational symmetries) and have long-range order;
cf. [13, Remarks 4.9 and 4.10]. Well-known examples of cyclotomic model sets with
underlying Z-module On are the vertex sets of aperiodic tilings of the plane like
the Ammann-Beenker tiling [1, 2, 11] (n = 8), the Tübingen triangle tiling [3, 4]
(n = 5) and the shield tiling [11] (n = 12); cf. [13, Example 4.11] for a definition
of the vertex set of the Ammann-Beenker tiling and see Figure 1 and [13, Figure 1]
for illustrations. For further details and illustrations of the examples of cyclotomic
model sets mentioned above, we refer the reader to [14, Section 1.2.3.2]. Clearly,
any cyclotomic model set Λ with underlying Z-module On satisfies

(3) KΛ ⊂ Q(On ∪ On) = Kn ,

whence kΛ ⊂ kn. It was shown in [13, Lemma 4.14] that cyclotomic model sets Λ
with underlying Z-module On even satisfy the following stronger version of property
(Hom) above:

(Hom) For all F ∈ F(Kn), there is a homothety h : R2 → R

2 such that h(F ) ⊂ Λ .

This property enables us to prove the following characterization.

Corollary 4.1. Let m,n ∈ N with m,n ≥ 3. Further, let Λ be a cyclotomic model
set with underlying Z-module On. The following statements are equivalent:

(i) There is an affinely regular m-gon in Λ.
(ii) km ⊂ kn.
(iii) m ∈ {3, 4, 6}, or Km ⊂ Kn.
(iv) m ∈ {3, 4, 6}, or m|n, or m = 2d with d an odd divisor of n.
(v) m ∈ {3, 4, 6}, or Om ⊂ On.
(vi) Om ⊂On.

Proof. Direction (i) ⇒ (ii) is an immediate consequence of Theorem 3.3 in conjunc-
tion with Relation (3). For direction (ii) ⇒ (i), let Rm again be the regular m-gon
as defined in step (i) ⇒ (ii) of Theorem 3.3. Since m,n ≥ 3, the sets {1, ζm} and
{1, ζn} are R-bases of C. Hence, one can define an R-linear map L : R2 → R

2 as
the linear extension of 1 7→ 1 and ζm 7→ ζn. Clearly, this map is non-singular. Since
km ⊂ kn and since {1, ζm} is a km-basis of Km (cf. Corollary 2.3), the vertices
of L(Rm), i.e., L(1), L(ζm), . . . , L(ζm−1

m ), lie in Kn, whence L(Rm) is a polygon in
Kn. Because Λ has property (Hom), there is a homothety h : R2 → R

2 such that
h(L(Rm)) is a polygon in Λ. Since homotheties are non-singular affine transforma-
tions, h(L(Rm)) is an affinely regular m-gon in Λ. As an immediate consequence
of Lemma 2.9(b), we get the equivalence (ii) ⇔ (iii). Conditions (iii) and (iv) are
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Figure 1. A central patch of the eightfold symmetric Ammann-
Beenker tiling of the plane with squares and rhombi, both having
edge length 1. Therein, an affinely regular 6-gon is marked.

equivalent by Lemma 2.6. Finally, the equivalences (iii) ⇔ (v) and (ii) ⇔ (vi) follow
immediately from Fact 2.4. �

Although the equivalence (i) ⇔ (iv) in Corollary 4.1 is fully satisfactory, the
following consequence deals with the two cases where condition (ii) can be used
more effectively.

Corollary 4.2. Let m,n ∈ N with m,n ≥ 3. Further, let Λ be a cyclotomic model
set with underlying Z-module On. Consider φ on {n ∈ N |n 6≡ 2 (mod 4)}. Then,
one has:

(a) If n ∈ {3, 4}, there is an affinely regular m-gon in Λ if and only if m ∈
{3, 4, 6}.

(b) If n ∈ S, there is an affinely regular m-gon in Λ if and only if
{

m ∈ {3, 4, 6, n}, if n = 8 or n = 12,
m ∈ {3, 4, 6, n, 2n}, otherwise.

Proof. By Lemma 2.10(a), n ∈ {3, 4} is equivalent to φ(n)/2 = 1, thus condition
(ii) of Corollary 4.1 specializes to km = Q, the latter being equivalent to φ(m) = 2,
which means m ∈ {3, 4, 6}; cf. Corollary 2.3. This proves the part (a).

By Lemma 2.10(b), n ∈ S is equivalent to φ(n)/2 ∈ P . By Corollary 2.3, this
shows that [kn : Q] = φ(n)/2 ∈ P . Hence, by condition (ii) of Corollary 4.1, one
either gets km = Q or km = kn. The former case implies m ∈ {3, 4, 6} as in the
proof of the part (a), while the proof follows from Lemma 2.9(a) in conjunction
with Corollary 2.7 in the latter case. �

Example 4.3. As mentioned above, the vertex set ΛAB of the Ammann-Beenker
tiling is a cyclotomic model set with underlying Z-module O8. Since 8 ∈ S, Corol-
lary 4.2 now shows that there is an affinely regular m-gon in ΛAB if and only if
m ∈ {3, 4, 6, 8}; see Figure 1 for an affinely regular 6-gon in ΛAB. The other so-
lutions are rather obvious, in particular the patch shown also contains the regular
8-gon R8, given by the 8th roots of unity.
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For further illustrations and explanations of the above results, we refer the reader
to [14, Section 2.3.4.1] or [12, Section 5]. This references also provide a detailed
description of the construction of affinely regular m-gons in cyclotomic model sets,
given that they exist.

5. Application to discrete tomography of cyclotomic model sets

Discrete tomography is concerned with the inverse problem of retrieving informa-
tion about some finite object from information about its slices; cf. [8, 9, 12, 13, 14]
and also see the refences therein. A typical example is the reconstruction of a finite
point set from its (discrete parallel) X-rays in a small number of directions. In the
following, we restrict ourselves to the planar case.

Definition 5.1. Let F ∈ F(R2), let u ∈ S
1 be a direction and let Lu be the set of

lines in direction u in R2. Then, the (discrete parallel) X-ray of F in direction u is
the function XuF : Lu → N0 := N ∪ {0}, defined by

XuF (ℓ) := card(F ∩ ℓ ) =
∑

x∈ℓ

1F (x) .

In [13], we studied the problem of determining convex subsets of algebraic Delone
sets Λ by X-rays. Solving this problem amounts to find small sets U of suitably
prescribed Λ-directions with the property that different convex subsets of Λ cannot
have the same X-rays in the directions of U . More generally, one defines as follows.

Definition 5.2. Let E ⊂ F(R2), and let m ∈ N. Further, let U ⊂ S
1 be a finite

set of directions. We say that E is determined by the X-rays in the directions of U
if, for all F, F ′ ∈ E , one has

(XuF = XuF
′ ∀u ∈ U) =⇒ F = F ′ .

Let Λ ⊂ R

2 be a Delone set and let U ⊂ S
1 be a set of two or more pairwise non-

parallel Λ-directions. Suppose the existence of a U -polygon P in Λ. Partition the
vertices of P into two disjoint sets V, V ′, where the elements of these sets alternate
round the boundary of P . Since P is a U -polygon, each line in the plane parallel
to some u ∈ U that contains a point in V also contains a point in V ′. In particular,
one sees that card(V ) = card(V ′). Set

C := (Λ ∩ P ) \ (V ∪ V ′)

and, further, F := C ∪ V and F ′ := C ∪ V ′. Then, F and F ′ are different convex
subsets of Λ with the same X-rays in the directions of U . We have just proven
direction (i) ⇒ (ii) of the following equivalence, which particularly applies to cyclo-
tomic model sets, since any cyclotomic model set is an algebraic Delone set by [13,
Proposition 4.15].

Theorem 5.3. [13, Theorem 6.3] Let Λ be an algebraic Delone set and let U ⊂ S
1

be a set of two or more pairwise non-parallel Λ-directions. The following statements
are equivalent:

(i) C(Λ) is determined by the X-rays in the directions of U .
(ii) There is no U -polygon in Λ.

Remark 5.4. Trivially, any affinely regular m-gon P in Λ with m even is a U -
polygon in Λ with respect to any set U ⊂ S

1 of pairwise non-parallel directions
having the property that each element of U is parallel to one of the edges of P .
The set U then consists only of Λ-directions and, moreover, satisfies card(U) ≤ m/2.

By combining Corollary 4.1, direction (i) ⇒ (ii) of Theorem 5.3 and Remark 5.4,
one immediately obtains the following consequence.
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Corollary 5.5. Let n ≥ 3 and let Λ be a cyclotomic model set with underlying
Z-module On. Suppose that there exists a natural number k ∈ N such that, for
any set U of k pairwise non-parallel Λ-directions, the set C(Λ) is determined by the
X-rays in the directions of U . Then, one has

k > max
{

3, lcm(n,2)
2

}

.

Remark 5.6. In the situation of Corollary 5.5, the question of existence of a
suitable number k ∈ N is a much more intricate problem. So far, it has only been
answered affirmatively by Gardner and Gritzmann in the case of translates of the
square lattice (n = 4), whence corresponding results hold for all translates of planar
lattices, in particular for translates of the triangular lattice (n = 3); cf. [9, Theorem
5.7(ii) and (iii)]. More precisely, it is shown there that, for these cases, the number
k = 7 is the smallest among all possible values of k. It would be interesting to know
if suitable numbers k ∈ N exist for all cyclotomic model sets.

Let us finally note the following relation between U -polygons and affinely regular
polygons. The proof uses a beautiful theorem of Darboux [7] on second midpoint
polygons; cf. [10] or [8, Ch. 1].

Proposition 5.7. [9, Proposition 4.2] If U ⊂ S
1 is a finite set of directions, there

exists a U -polygon if and only if there is an affinely regular polygon such that each
direction of U is parallel to one of its edges.

Remark 5.8. A U -polygon need not itself be an affinely regular polygon, even if it
is a U -polygon in a cyclotomic model set; cf. [9, Example 4.3] for the case of planar
lattices and [14, Example 2.46] or [12, Example 1] for related examples in the case
of aperiodic cyclotomic model sets.
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