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Self-similar carpets over finite fields

Mihai Prunescu
∗

Abstract

In [4] an informal algorithm ’to display interesting numeric patterns’ is described without
any proof. We generalize this algorithm over arbitrary finite fields of characteristic p and we
prove that it really generates self-similar carperts, provided that they contain at least one zero
in the first (p+1)/2 lines. For the fields Fp the generalized algorithm produces p− 1 different
self-similar carpets. These self-similar carpets are classified according to their arithmetic and
their groups of symmetry. All this phenomena can be also interpreted in the framework of
the aperiodic tilings.
A.M.S.-Classification: 11A07, 28A80.

1 Introduction

In [4] is presented an informal algorithm ’to produce interesting numerical patterns’. Let n be a
fixed natural numbers > 2. One takes a rectangular matrix, completes the first row and the first
column with ones, and recursively computes the other elements as (N +NW +W ) mod n, where
N , NW and W are the neighbors in the corresponding directions. Finally, one can produce an
image following a fixed correspondence of the rests modulo n and a list of colours. The autors
observe and state that for primes n = p the patterns are self-similar, but don’t prove this. For
the notion of self-similarity they citate Mandelbrot’s monograph [3]. In [3], Chapter 14, there is
a hint to a similar construction of the original Sierpinski Carpet atributed to Rose (see [8]). One
referee kindly informed us about the paper [5] where the authors introduced a generalization of
this generation rule (N + m · NW + W ) mod n for a constant m ∈ N and commented on the
associated generalized Fibonacci sequences, but didn’t do any graphical interpretation.

One goal of this paper is to prove the conjecture suggested in [4]: if n = p odd prime, the rescaled
images produced by the a recurent rule like in [5] converge to a symmetric self-similar set. For
m = 0 one recovers the known case of Pascal’s Triangle, with a group of symmetries consisting of
two elements. For m = −1 one gets the full square - which is self-similar but boaring. For m = 1
one gets self-similar sets of [4] that have as group of symmetries the full dihedral group D8. For
the other values of m one gets new self-similar patterns with group of symmetries isomorphic with
Klein’s group K4. This paper is a generalization of author’s paper [6] where only the case m = 1
was treated.

We also prove that those carpets over arbitrary finite fields, which have zeros, are self-similar and
respect a simple law of symmetry.

The results can be also understood as existence of aperiodic tilings of a quadrant of the plane

Definition 1.1 Let Fq be an arbitrary finite field and fix an element m ∈ Fq. The matrices
occurring in this article are always indexed from 0 and have elements in Fq, if not otherwise
specified. Let the prime p be the characteristic of the finite field, q = pk for some k. Let
Md = (ai,j) be the pd × pd matrix constructed following the recurence ai,0 = a0,j = 1 and
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ai,j = ai−1,j + m · ai−1,j−1 + ai,j−1. The matrix M1 shall be denoted by F (p,m) and shall be
called fundamental block.

Definition 1.2 The black and white image Id is defined as follows: one tiles the compact square
[0, 1] × [0, 1] in pd × pd many equal squares Si,j , and excludes the interior of Si,j if and only if
ai,j = 0.

Definition 1.3 The self-similar set in question shall be I = lim Id. The name of the variable
d is chosen to mean the depth of the recursive approximation of I. The limit operator can be
understood in the sense of the Hausdorff metric for compact subsets of R2.

Definition 1.4 The coloured image of Md is defined assuming a fixed correspondence between
the rests modulo p and a family of colours. In order to make this consistent with the black and
white image, suppose that the colour white always corresponds to zero.

2 The recurrent function

In this section K is the notation of an arbitrary field.

Definition: Let m ∈ K be fixed. We consider the function f : N×N → K recursively defined by
the conditions f(n, 0) = f(0, k) = 1 and:

f(n, k) = f(n, k − 1) +m · f(n− 1, k − 1) + f(n− 1, k)

for n, k ≥ 1.

Lemma 2.1 The function f is symmetric and satisfies:

f(n, k) =

min(n,k)
∑

a=0

ma

(

n

a

)(

n+ k − a

k − a

)

.

Proof: The symmetry follows from the symmetry of the recurrence formula and of the initial
conditions. To compute f , use the method of generating functions, see [11]. Define the generating
function An(x) =

∑

k≥0

f(n, k)xk. It follows:

An+1(x) =
∑

k≥0

f(n+ 1, k)xk = 1 +
∑

k≥1

(

f(n, k) + f(n+ 1, k − 1) +m · f(n, k − 1)
)

xk =

=
(

1 +
∑

k≥1

f(n, k)xk
)

+ x
∑

k≥0

f(n+ 1, k)xk +mx
∑

k≥0

f(n, k)xk = An(x) + xAn+1(x) +mxAn(x).

This recurrence have the solution:

An(x) =
( 1

1− x

)n+1

(1 +mx)
n
.

Using that (1 +mx)n =
∑

k≥0

(

n
k

)

mkxk and that
(

1
1−x

)n+1

=
∑

k≥0

(

n+k
k

)

xk, one gets the Lemma. ✷

One remarks that the terms

t(a, k, n) = ma

(

n

a

)(

n+ k − a

k − a

)

= ma (n+ k − a)!

a!(k − a)!(n− a)!
.

are itself symmetric in n and k.
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3 Tensor powers and the automorphism of Frobenius

In this section we prove some properties of the fundamental block F (p,m) ∈ Mp×p(Fp). Recall
the notation F (p,m) = (ai,j) with i and j = 0, . . . , p− 1. From Lemma 2.1 it follows already that
F (p,m) is a symmetric matrix, like all other Md.

Lemma 3.1 The last column and the last row of F (p,m) are exactly:

1, −m, (−m)2, . . . , (−m)p−1.

This works also for m = 0.

Proof: Take k ≤ n = p− 1 and work over Fq. For a < k the term:

t(a, p− 1, k) = ma

(

p− 1

a

)(

p− 1 + k − a

k − a

)

= ma

(

p− 1

a

)

· p · · · · = 0,

so all these terms do not contribute in Fq. For the last term one has:

t(k, k, p− 1) = mk (p− 1) . . . (p− k)

k!
= mk(−1)k

k!

k!
= (−m)k.

✷

Definition 3.2 Let R be some commutative ring and A = (ai,j) ∈ Ms×t(R), B ∈ Mu×v(R)
two matrices. Then the tensor product A ⊗ B is a matrix in Msu×tv(R) having the block-
representation (ai,jB). If A1, A2, . . . , An are arbitrary matrices, we denote the tensor term:

((. . . ((A1 ⊗A2)⊗A3) . . . )⊗An−1)⊗An.

by:
A1 ⊗A2 ⊗ · · · ⊗An−1 ⊗An.

For all n ≥ 1 we define the tensor power A⊗n of A inductively by: A⊗1 = A and A⊗(n+1) =
A⊗n ⊗A.

The following remark expresses the principle of substitution used in constructing self-similar sets.

Remark 3.3 For some n ≥ 2 consider a matrix A ∈ Mn×n({0, 1}) containing at least one zero
and at least two ones. Let Id be the black and white image associated to A⊗d. Then Id is the d-th
step in the transfinite construction of a non-trivial self-similar set I = lim Id.

Now is the time that the automorphism of Frobenius enters the scene.

Definition 3.4 The automorphismus of Frobenius ϕ : Fq → Fq is defined by ϕ(x) = xp. This
automorphism generates the Galois group G(Fq/Fp).

Lemma 3.5 Let F = F (p,m) be a fundamental block for some m ∈ Fq. Consider the matrix in
construction:

αF βF
γF ·

with α, β, γ ∈ Fq. By application of the recurrent rule one gets:

αF βF
γF δF

with δ = ϕ(m)α + β + γ.
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Proof: Denote −m with λ. There is only one element x where one can start to apply the recurrent
rule:

. . . . . . λp−3α β . . . . . .

. . . . . . λp−2α β . . . . . .
λp−3α λp−2α λp−1α β λβ λ2β

γ γ γ x · ·
. . . . . . λγ · · ·
. . . . . . λ2γ · · ·

Applying the recurent rule along the first row and along the first column to be completed yelds:

. . . . . . λp−3α β . . . . . .

. . . . . . λp−2α β . . . . . .
λp−3a λp−2α λp−1α β λβ λ2β

γ γ γ δ δ δ
. . . . . . λγ δ · ·
. . . . . . λ2γ δ · ·

where δ = (−m)p−1α ∗m+ β + γ = mpα+ β + γ = ϕ(m)α + β + γ in Fq. The recurrent rule is
linear, so a constant δ row together with a constant δ column generate δF . ✷

Definition 3.6 For a matrix A = (ai,j) over Fq, let ϕ(A) be the matrix (ϕ(ai,j)).

Theorem 3.7 Recall that Md is the pd × pd matrix computed by the recurrent rule over the finite
field Fq and F = F (p,m) = M1 is the fundamental block. Then for all d ≥ 1:

Md = ϕd−1(F )⊗ ϕd−2(F )⊗ · · · ⊗ ϕ(F )⊗ F.

Proof: The proof works by induction. For d = 1 this is true by definition. Suppose that Md

fulfills the stated relation and consider Md+1. Being computed by the same recurent rule, the p×p
left upper block of Md+1 is a copy of F . Applying Lemma 3.5 for (a, b, c) = (0, 0, 1) or (0, 1, 0) one
gets that a copy of F continued by a row of ones F 111...1 horizontally generates copies of F like
FFFF . . . F and that this happens also vertically if the first column of F is downwards extended
with ones. Thus in the block-representation of Md+1 with p× p blocks, the first line and the first
column consist of copied fundamental blocks:

F F F F . . .
F b1,1F b1,2F b1,3F . . .
F b2,1F · · . . .
F b3,1F · · . . .
...

...
...

...
. . .

Here the xi,j are such that all xk,0 = 1, x0,n = 1 and xi+1,j+1 = ϕ(m)xi,j + xi+1,j + xi,j+1. One
gets that Md+1 = X ⊗ F where the matrix X over Fq: (i) has p

d × pd elements, (ii) has elements
xi,j as above. This means that X = Md for the process made with the coefficient m′ = ϕ(m), so
by induction, denoting F (p, ϕ(m)) = F ′:

X = ϕd−1(F ′)⊗ ϕd−2(F ′)⊗ · · · ⊗ ϕ(F ′)⊗ F ′.

If we substitute F ′ = F (p, ϕ(m)) = ϕ(F (p,m)) = ϕ(F ), one gets:

X = ϕd(F )⊗ ϕd−1(F )⊗ · · · ⊗ ϕ2(F )⊗ ϕ(F ).

Substituting this X in Md+1 = X ⊗ F one gets the desired relation. ✷
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Corollary 3.8 For all finite fields Fq and all m ∈ Fq, if the fundamental block F (p,m) contains
at least a zero, the black and white image Id of Md is the d-th step in the transfinite construction
of a non-trivial self-similar set I.

Proof: For any matrix A over Fq, let δ(A) be the matrix obtained by substituting every non-zero
element with one. Let ι(B) the black and white image of the matrix B. Then:

Id = ιδ(Md) = ιδ(

0
⊗

i=d−1

ϕi(F )) = ι(D⊗d),

where D = δ(F ) is a {0, 1}-matrix, F = F (p,m) is the fundamental block, and ϕ is Frobenius’
automorphism extended for matrices. Now the principle of substitution works. ✷

Lemma 3.9 If m ∈ Fp, the fundamental block F (p,m) contains zeros if and only if m 6= −1. In
this situation it contains in the row i = 1 exactly one zero:

a1,k = 0 ↔ Fp |= k = −(m+ 1)−1.

Note: in general there are many other zeros in the fundamental block.

Proof: The element a1,k = km+ (k + 1) = k(m+ 1) + 1 which is zero only for k = −(m+ 1)−1,
existing for all m 6= −1 in Fp. Every such k has a representative between 1 and p− 1 inclusively.
If m = −1 the matrix F (p,−1) contains only the repeated element 1. ✷

Now from Remark 3.3 and from the Lemma 3.7 the main result follows:

Corollary 3.10 For all primes p and all m ∈ Fp \ {−1} the black and white image Id of Md is
the d-th step in the transfinite construction of a non-trivial self-similar set I. For m = −1 the set
I is the full square.

It is worth to point out that:

Corollary 3.11 The Pascal Triangle modulo p (got for m = 0) and the Passoja-Lakhtakia Carpets
(got for odd p and m = 1) are non-trivial self-similar sets.

Example 3.12 Differently as for the black and white images, the coloured images are only sym-
metric according to the first diagonal, excepting for the colour ’white’ (the holes). However,
strange and optically exciting coloured patterns arise. The following example shows the step M2

for p = 3 and m = 1, a step in the construction for the celebrated Sierpinski Carpet, used in [10].
The zeros are not displayed.

1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1
1−1 1 1−1 1 1−1 1
1 1 1 −1−1−1
1 −1 −1 1
1−1 1 −1 1−1
1 1 1−1−1−1 1 1 1
1 −1−1 1 1 −1
1−1 1−1 1−1 1−1 1
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4 Multiplicative inverse means mirroring

For studying the groups of symmetries of the black and white image I is enough to understand
the symmetries for the fundamental block F (p,m). All groups of symmetries we are looking for
are subgroups of the dihedral group of symmetries D8 of the square. We start with the most
non-symmetric case, the case of Pascal’s Triangle:

Lemma 4.1 If m = 0 the group of symmetries consists of two elements: the identity and the
reflection through the first diagonal.

Proof: In F (p, 0) for 0 ≤ i, j ≤ p− 1 :

ai,j = 0 ↔ p | f(i, j) =

(

i+ j

i

)

↔ i+ j ≥ p.

So exactly the elements strictly below the second diagonal are 0. ✷

Now a very small theory shall explain the other cases.

Definition 4.2 For a matrix A we define the mirror-image ΣA using the definition of a matrix
as a family of column-vectors. If A = (~a1, . . . ,~an) then ΣA = (~an, . . . ,~a1).

Definition 4.3 For m 6= 0 we define the operator O acting over the fundamental block F (p,m)
in the following way:

For i = 0 to p− 1, one divides the row i by (−m)i.

The result is denoted by OF (p,m).

Lemma 4.4 For all finite fields Fq and for all m ∈ Fq \ {0} the following identity holds:

OF (p,m) = ΣF (p,m−1).

Proof: The Lemma follows from the following claims:

1. The first row and the last column of OF (p,m) consist only in ones.

2. For every connected 2× 2 sub-block of OF (p,m):

A B
C D

is true that C = m−1B +A+D.

The first claim follows from Lemma 3.1 and from the definition of the operator O: one divides
exactly with the elements of the last column.

We prove the second claim. Let (a, b | c, d) be the corresponding elements in F (p,m). They fulfill
the equality:

d = ma+ b+ c.

Using the definition of OF (p,m), we see that:

A = µa, B = µb,

C = (−m)−1µc, D = (−m)−1µd,

6



where µ = (−m)i for some i. It follows that:

C = (−m)−1µc = (−m)−1µ(d−ma− b) = (−m)−1µd+ µa− (−m)−1µb = D +A+m−1B.

✷

For the next Corollary recall from the proof of 3.8 that δF (p,m) is the matrix obtained by
substituting every element of F (p,m) with 1 if it is 6= 0. Also, recall that the elements of F (p,m)
are by ai,j and denote the elements of F (p,m−1) with a′i,j .

Lemma 4.5 The following statements follow directly from Lemma 4.4:

1. For all 0 ≤ i, j ≤ p− 1:
a′i,p−1−j = ai,j(−m)−i.

2. For all 0 ≤ i, j ≤ p− 1:

ai,j(−m)−i = ap−1−j,p−1−i(−m)j+1−p.

3. If m ∈ Fq \ {0} then:

δF (p,m) = δΣF (p,m−1) = ΣδF (p,m−1).

4. If m ∈ Fq \ {0} the matrix δF (p,m) allows two diagonal symmetries; and so all its tensor
powers.

5. Given m ∈ Fq \ {0} fixed, some matrix Md contains zeros if and only if M1 = F (p,m)
contains zeros. If this takes places, then

deg(m/Fp) ≤
p− 1

2
.

Proof:

1. This is nothing as Lemma 4.4 written element-wise.

2. This is the symmetry of F (p,m−1) through its first diagonal: just write the elements of
F (p,m−1) using the first statement of the present Lemma as functions of the row-number
and the corresponding element of F (p,m). Concretely one has:

a′i,p−1−j = ai,j(−m)−i,

as in the precedent statement,
a′i,p−1−j = a′p−1−j,i,

which expresses the symmetry of F (p,m−1) through its first diagonal, and

a′p−1−j,i = ap−1−j,p−1−i(−m)j+1−p,

which is an other instance of the first statement. Apply the transitivity.

3. It follows from the first statement:

ai,j = 0 ↔ a′i,p−1−j = 0.

4. For the reflexion through the first diagonal it is nothing to prove, because the recurrent law
is symmetric. The symmetry through the second diagonal follows from the second statement
of the present Lemma:

ai,j = 0 ↔ ap−1−j,p−1−i = 0.

7



5. The existence of zeros in Md is equivalent with the existence of zeros in M1 = F (p,m)
because Md is a tensor product of Frobenius conjugates of F (p,m). Recall that the set of
zeros of the fundamental block F (p,m) is symmetric regarding both diagonals, so there will
be a zero with both coordinates i, j ≤ (p− 1)/2. But the value of ai,j is a polynomial over
Fp of degree min(i, j) in m.

✷

Example 4.6 The last condition occurring here implies the existence of relatively less values of
m generating non-trivial self-similar sets in arbitrary finite fields. Look at the case F192 = F361

seen as F19[x] where x2 + 1 = 0. Encode the element ax + b in the natural number 19a+ b. I do
not mention both m and m−1 because they produce mirrored carpets. Also, if m has been already
mentioned, I don’t mention its Frobenius m19, because it produces the same carpet. So, up to
Frobenius and multiplicative inverse, one has non-trivial self-similar carpets over F361 if and only
if m is equal with one of the following 29 elements: 0, 1, 2, 3, 4, 6, 7, 8, 9, 14, 19, 21, 35, 47, 52,
53, 56, 63, 69, 76, 78, 88, 92, 102, 130, 136, 137, 148, 168. Values of m ∈ F361 which are not itself,
inverses of, or Frobenius of elements in this list generate however interesting coloured images:
without zeros, but still tensor products of Frobenius conjugates of their fundamental blocks.

5 Fp as a field of self-similar carpets

5.1 Complete classification

Theorem 5.1 Let p be a prime and m ∈ Fp. Exactly one of the following situations arrises:

1. m = 0. In this case I is a self-similar Pascal Triangle, I is only symmetric through the first
diagonal, and the group of symmetries of I is isomorphic with S2.

2. m = ±1. In this case I is a full square (for m = −1) or a nontrivial self-similar set (for
m = 1) and the group of symmetries of I is the full dyhedral group D8 of the square.

3. p ≥ 5, m ∈ Fp \ {−1, 0, 1}. In this case I is a non-trivial self-similar set and the group
of symmetries of I is generated by the reflexions through the diagonals of the square. This
group is isomorphic with Klein’s group K4.

Proof: The case m = 0 follows completely from Lemma 4.1. Let now m ∈ Fp \ {0}, let K be the
group generated by the symmetries through the both diagonals (isomorphic with Klein’s group
K4) and let G be the group of symmetries of I. From Lemma 4.5 follows that K ≤ G ≤ D8. If
m = −1 then I is the full square and trivially G = D8. If m = 1 than it follows from Lemma 4.5
that:

δF (p, 1) = ΣδF (p, 1),

because 1−1 = 1 so G is strictly bigger than K which already has 4 elements, hence G = D8.

Conversely, suppose that G = D8. We exclude the trivial casem = −1. From Lemma 4.1 it follows
that m 6= 0. From Lemma 3.9 it follows that F (p,m) has only a zero in the second row (i = 1),
which is a1,k = 0 for 0 < k < p − 1 such that k = −(m + 1)−1 in Fp. If a1,k is not the central
element of the row i = 1 then there are two zeros in this row: a1,k and its miror image through Σ.
This would be in contradiction with Lemma 3.9. It follows that −(m+1)−1 = (p− 1)/2 in Fp, so
(m+ 1)−1 = 2−1, so m = 1. ✷

Corollary 5.2 If p > 3 and m ∈ Fp \ {−1} there are at least two zeros in F (p,m).
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Proof: In fact one can proof a litle bit more. If m ∈ {−2,−2−1} then the unique zero of the
second row i = 1 lies on the intersection of this row with one of the diagonals, so its orbit under
the action of G has two elements. If m ∈ Fp \ {−2,−2−1,−1, 0} then the orbit has four elements.
For the case m = 0 the existence of many zeros is trivial, for m = 1 a remark in the next section
assure the existence of much more zeros than four. ✷

5.2 The special case m ∈ {−2,−2
−1}: Diagonal Carpets

For m = −2 one has a1,1 = 0. Mirror-symmetric: for m = −2−1 one has a1,p−2 = 0. In fact, in
these cases, all the elements of odd index on the corresponding diagonal are zero!

Definition 5.3 Call first odd diagonal (respectively second odd diagonal) the following set
of indices:

D+ = {(i, i) | 0 < i < p− 1 ∧ 2 6 | i}.

D− = {(i, j) | i+ j = p− 1 ∧ 2 6 | i}.

Theorem 5.4 Let p ≥ 5 be a prime. Following statements hold:

1. D+ consists of zeros of F (p,−2).

2. D− consists of zeros of F (p,−2−1).

3. Moreover, the even elements on the respective diagonals are 6= 0.

Proof:

1. We prove that for m = −2 ∈ Z the recurrent function f : N× N → Z defined in the second
section has the property f(2s+ 1, 2s+ 1) = 0 for all k ∈ N. This follows from the following
identity:

n
∑

a=0

(−2)a
(

n

a

)(

2n− a

n− a

)

=

{

(−1)s
(

2s
s

)

, if n = 2s,

0, if n = 2s+ 1.

This identity can be proved with Zeilberger’s Algorithm, see [7] and [2]. In fact, after running
the software from [2], one gets the recurrent formula:

4(n+ 1)S(n) + (n+ 2)S(n+ 2) = 0,

where S(n) is the sum on the left side of the equality. Starting with S(0) = 1 and S(1) = 0
one gets the result by induction. The author thanks Prof. Dr. Wolfram Koepf for kindly
running his Maple package ”Hypergeometric Summation” at author’s request. Please note
that this identity is not the Reed - Dawson Identity, although a similar one.

2. This follows from the case m = −2 and the dualism from Lemma 4.4. Note that the
corresponding values of f(n, k) are no more 0 in Z but become 0 in Fp.

3. This follows from the fact that the even diagonal values of f(n.n) are 6= 0 in Fp.

✷

We note that those regular diagonal zero are not the only zeros in general: starting with p = 11
there are a lot of sporadic (non-regular) zeros for m ∈ {−2,−2−1}. One can now also prove a
slight improvement of 5.2:

Corollary 5.5 Let m 6= −1. For p = 7 there are at least three zeros in F (p,m), and for p ≥ 11
there are at least four zeros in F (p,m).

Proof: The only remained problem was m ∈ {−2,−2−1}, which is now trivial applying Theorem
5.4. In fact, there are many more sporadic (non-diagonal) zeros for these values of m. ✷
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5.3 The special case m = 1: Cross-carpets

The only one fully symmetric non-trivial case (where p is odd and m = 1) is worth for a closer
look. This is exactly the case of the spectacular Passoja-Lakhtakia Carpets, described in [4]. The
author noticed after working some weeks with these carpets, that the infinite symmetric matrix
(f(n, k)) for m = 1 is known as the double sequence of the Delannoy Numbers, and is the answer
to the following combinatoric problem: In how many ways one can go from the left-highest corner
of a matrix to the element an,k making only South, South-East and East steps. For a brief history
of the Delanoy numbers, see [1], also in the On-line Encyclopedia of Integer Sequences.

Definition 5.6 Let us call N = {(i, j) | ai,j = 0} the set of zeros of the fundamental cell F (p, 1).
The set:

C = {(
p− 1

2
, i) ; (i,

p− 1

2
)| 0 ≤ i ≤ p− 1 ∧ 2 6 | i}

shall be called the cross, and S = N \ C the set of sporadic zeros. We call the elements of the
cross regular zeros. The next Corollary proves that the elements of the Cross are really zeros of
F (p, 1).

Corollary 5.7 If p is an odd prime, the fundamental block F (p, 1) has the following properties:

1. For all 0 ≤ k ≤ p− 1:
ap−1,k = (−1)k.

2. For all n and k with 0 ≤ n, k ≤ p− 1,

an,k = (−1)nan,p−1−k.

3. The Cross C consists of zeros of F (p, 1).

Proof:

1. This is exactly Lemma 3.1.

2. According to Lemma 4.4,
OF (p, 1) = ΣF (p, 1).

If k = 2s, O operates by multiplication with 1, so the even rows are centrally symmetric. If
k = 2s+ 1, O operates by multiplication with −1, so odd rows are antisymmetric.

3. This follows easily from the last statement because for k odd, p being also odd:

ak, p−1

2

= (−1)
k
ak,(p−1)− p−1

2

= −ak, p−1

2

,

implies ak, p−2

2

= 0. Apply now the symmetry of δF (p, 1).

✷

Example 5.8 Here one sees only the bord and the zeros of the fundamental block F (13, 1):
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+1+1+1+1+1+1+1+1+1+1+1+1+1
+1 · · · · · 0 · · · · · −1
+1 · 0 · · · · · · · 0 · +1
+1 · · · · · 0 · · · · · −1
+1 · · · · · · · · · · · +1
+1 · · · · · 0 · · · · · −1
+1 0 · 0 · 0 · 0 · 0 · 0 +1
+1 · · · · · 0 · · · · · −1
+1 · · · · · · · · · · · +1
+1 · · · · · 0 · · · · · −1
+1 · 0 · · · · · · · 0 · +1
+1 · · · · · 0 · · · · · −1
+1−1+1−1+1−1+1−1+1−1+1−1+1

The primes 3, 5, 7, 11, 19 have only regular zeros in F (p, 1). 13 is the first odd prime with sporadic
zeros, followed by 17. By all other primes tryed out by the author (from 23 to 599) there are lots
of sporadic zeros in the fundamental block F (p, 1).

6 Aperiodic tilings

An interesting implication of the Theorem 3.7 is that we get for free the existence of the aperiodic
tilings for the quarter of plane. In order to preserve the matrix-friendly notation, we will refer
here to the quarter R+ × R−. We use a definition suggested in [9]:

Definition 6.1 Let A ⊆ R
2 be an unbounded subset.

A finite set of bounded polygons is called aperiodic tiling of A if both conditions are fulfilled:

(1) A can be partitioned in copies of the polygons.

(2) There is no translation of the partition carrying every polygon in a copy of itself.

Corollary 6.2 Let Fq be some finite field of characteristic p and m ∈ Fq \ {−1} such that the
fundamental block F (p,m) contains at least one zero. The self-similar carpet defined by m over
Fq can be seen as aperiodic tiling of R+ × R−, done with a finite set of polygons.

Proof:

Case 1: m = 0. If m = 0 one has a set of ≤ p2 coloured square tiles. The set of colours is in a
bijection with the elements of the prime field Fp, as before the colour 0 is called white. The tiles
are coloured as follows:
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x

y

x+ y

We call the three teritories of a tile North, West and Big South-East. This set of tiles works with
the following rules:

1. They can be only translated, but not rotated.

2. The edges touching the positive part of the axis Ox are nordic edges in tiles with Nord
coloured with 1.

3. The edges touching the negative part of the axis Oy are western edges in tiles with West
coloured with 1.

4. If two tiles are touching along an edge, this can be only a Nord - South or a West - East
contact along a whole edge.

5. In the case of a Nord - South contact, the North of the south tile has the same colour as the
Big South-East of the north tile.

6. In the case of a East - West contact, the West of the eastern tile has the same colour than
the Big South-East of the western tile.

The rules implies that the tile touching (0, 0) has the colours West = 1, North = 1 and Big
South-East = 2 in Fp.

Case 2: m 6= 0. If m 6= 0 one has a set of ≤ r3+2 coloured tiles, where r is the number of elements
of the field Fp[m]. Like in the case m = 0 to different elements correspond different colours. To 0
corresponds white.

1 1

x

y z

x+my + z

These are the tiles of types one, two and three, in this order from left to the right. The four
regions of the tiles of type three are called West (marked with x), North-West (marked with y),
North (marked with z) and Big Body. North, North-West and West form the so-called Active
Side. This set of tiles works with the following rules:
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1. Only one tile of type one shall be used. This tile is the only one touching (0, 0).

2. Along the axis Ox one puts tiles of type two, with the north edge on the axis. Along the
axis Oy one puts tiles of type two rotated with 90◦ to their left, showing inside the quarter
of plane.

3. All other tiles used are tiles of type three. They might be translated, but never rotated.

4. The three regions of an Active Side (North, North-West and West) always have the same
colours as the Big Body that they are respectively touching: North has the same colour as the
Big Body of the northern neighbor, North-West has the same colour as the Big Body of the
north-west neighbor and West has the same colour as the Big Body of the western neighbor.
Other said, one always combines tiles to get a composite covering of monochromatic squares.

It follows from the Theorem 3.7 that the first set of tiles constructs the convergents to Pascal’s
Triangle in Fp and that the second set of tiles constructs the convergents to the self-similar carpet
defined by m ∈ Fq. Why are these tilings aperiodic? Suppose that one of them is invariant to
some translation with a vector ~v ∈ R

2 of length v. In both cases there are arbitrary big bounded
white areas, so there is a white area containing a disk of radius > 2v. This disk shall intersect its
own translation, so the bouded white area also. This is a contradiction. ✷

Remark 6.3 Most of the conditions can be naturally encoded in the tiles by modifying their form
using local convex versus concave adds.

7 Commentaries

1. Can we better understand the sporadic zeros for Fp and m = 1? The Hausdorff (fractal)
dimension depends only of the total number of zeros in the fundamental block. The same
question for Fq and arbitrary m ∈ Fq.

2. Is it true that two zeros of the fundamental block cannot have a common edge? The funda-
mental block contains sometimes edge-neighbors with equal value: try for example F11 and
m = 1 where a4,2 = a4,3 = a3,3 = a3,4 = 8. The author found some cases of zeros with
common vertex in a fundamental block, but no example with common edge.

3. For the case Fp, p odd prime and m = 1 the symmetries proved in Corollary 5.7 justifies the
following strategy of representation: choose white for k = 0 and a list of colours such that

∀ k ∈ Fp color(k) = color(p− k).

4. For some integer n with prime-decomposition n = pk1

1 . . . pks

s , the ring Z/nZ is isomorphic
with the product of finite rings Z/pk1

1 Z×· · ·×Z/pks

s Z. From this reason, carpets over Zn are
overlappings of carpets modulo pk. Can we understand the (black and white, or coloured)
carpets modulo prime-powers? In the experiments made by the author very complicated
patterns arose. For example, the black and white matrix δF (p2, 1) presents a cross that is
periodically interupted by black and white patterns δF (p,m). Such patterns appear also in
positions corresponding to the sporadic zeros of F (p, 1), with coordinates multiplied with p.
A lot of new sporadic zeros can be remarked in F (p2, 1).

5. Over fields Fp the rule an,k = xan−1,k−1 + yan,k−1 + zan−1,k generates very complicated
structures. At depth ≥ 3 one recognizes the zeros from the case discussed here, with the
following sensible difference: in the holes of the carpets there are different periodic structures,
instead of the constant zero hole. I call this structures patchwork carpets. For exceptional
values of x, y und z one gets one of the already known self-similar carpets, or periodic
structures, or constant structures.
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