
FROM LINE-SYSTEMS TO SPHERE-SYSTEMS — SCHLÄFLI’S
DOUBLE SIX, LIE’S LINE-SPHERE TRANSFORMATION, AND

GRACE’S THEOREM

HIROSHI MAEHARA AND NORIHIDE TOKUSHIGE

Abstract. If each four spheres in a set of five unit spheres in R3 have nonempty
intersection, then all five spheres have nonempty intersection. This result is proved
using Grace’s theorem: the circumsphere of a tetrahedron encloses none of its es-
cribed spheres. This paper provides self-contained proofs of these results; including
Schläfli’s double six theorem and modified version of Lie’s line-sphere transforma-
tion. Some related problems are also posed.

1. Introduction

Let us start with the following result concerning a family of identical circles, which
can be proved easily, see [6], [17].

Theorem 1.1. If three identical circles intersect at a point, then the remaining three
intersections determine a circle of the same radius. (see Figure 1).
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Figure 1. Four identical circles

Thus there is a family of four unit circles in the plane such that each three of them
have nonempty intersection, but the intersection of all four circles is empty. Is there
a similar family of unit spheres in higher dimensions?

Problem 1.2. Is there a family of d + 2 unit spheres in Rd such that each d + 1 of
them have nonempty intersection, but the intersection of all d + 2 spheres is empty?

If we allow the sphere radii to differ, then, for each d ≥ 1, there exists a family of
d + 2 spheres in Rd such that each d + 1 of them have nonempty intersection, and
yet the intersection of all d + 2 spheres is empty. On the other hand, it is known
[14] that, if a family of n ≥ d + 3 spheres in Rd satisfies the condition that each
d + 1 spheres in the family have nonempty intersection, then the intersection of all
n spheres is also nonempty.
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Now, in the unit sphere case of Problem 1.2, the answer depends on the dimension
d. There is no such family for d = 1, but there are many such families for d = 2 by
Theorem 1.1. And, the answer to the problem is also affirmative for all d ≥ 4 [3, 15].
Then, what is the answer for d = 3? Is there a family of five unit spheres in R3 such
that each four of them have nonempty intersection, and the intersection of all five
spheres is empty? We were convinced that there is no such family, and proved in
[15] that this assertion follows from the following rather obvious looking conjecture:
“the circumsphere of a tetrahedron never encloses any escribed sphere.” We tried to
prove this conjecture, but did not succeed.

Meanwhile, Professor Margaret M. Bayer informed us that our conjecture is a
theorem proved by John Hilton Grace (1873–1958) nearly a century ago [7, 8]. His
proof was based on an ingenious idea to convert Schläfli’s double six of lines into
“double six of spheres” by using Lie’s line-sphere transformation. Nevertheless, the
proof itself is elementary in the sense that it is accessible for undergraduates if
appropriate preliminaries are provided. It is a good example that a combination of
several elementary facts bring an unexpected result.

The original proof given by Grace is, however, rather difficult to follow. In fact, he
only gave an outline of the proof. In this paper, we reconstruct his proof in detail,
and prove the nonexistence of a family of five unit spheres mentioned above in a self-
contained way. We provide sections on Schläfli’s double six theorem [1, 10, 11, 19, 20]
from the viewpoint of quadratic surfaces, Plücker coordinate of lines [18, 5, 21], and
Lie’s line-sphere transformation [4, 9, 13, 16]. Lie’s transformation is a bijection from
the set of lines in P3(C) to the set of all oriented spheres in P3(C). We present a
variant of the transformation, namely, a bijection from a special family Λ of lines
in P3(C) to the set Θ of all oriented spheres in R3 ∪ {∞}. This version fits sphere-
systems in R3. In the last section, we pose some related problems together with
examples.

2. Quadrics and Schläfli’s double six theorem

In this section, we consider lines and quadrics in a projective space on the base
field k = R or C. Each point of P3 has a homogeneous coordinate [x, y, z, t], namely,

P3 = {[x, y, z, t] : x, y, z, t ∈ k, (x, y, z, t) 6= (0, 0, 0, 0)}.
Let Q = Q(x, y, z, t) be a quadratic form of variables x, y, z, t, that is, a homoge-
neous quadratic polynomial of x, y, z, t. We use the same symbol Q to represent
the corresponding quadratic surface (simply quadric), i.e., the set {[x, y, z, t] ∈ P3 :
Q(x, y, z, t) = 0}. We list below some basic properties of quadrics as a theorem with-
out proof, where, and in what follows, “skew lines” mean mutually non-intersecting
lines.

Theorem 2.1. The following holds for quadrics in P3.

(i) If a quadric Q contains three points on a line, then Q contains the line.
(ii) If a quadric Q contains three lines in a plane, then Q contains the plane.
(iii) For any three skew lines, there is a unique quadric that contains the three

lines.
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(iv) Let Q be a quadric containing three skew lines. Then for each point of Q, Q
contains exactly two lines that passes through the point. Moreover, all lines
lying on Q are divided into two classes so that lines from different classes
always intersect, while lines in the same class never intersect.

(v) If a quadric Q contains a plane, then Q is either a double plane or the union
of two planes.

To illustrate how to use the above properties, we consider the following specific
situation of two quadrics, which we will meet soon.

Lemma 2.2. Let Q1 and Q2 be quadrics containing no plane. Suppose that the
intersection Q1∩Q2 contains two intersecting lines `1 and `2, and Q1∩Q2 6= `1∪ `2.
Then the points in (Q1 ∩Q2) \ (`1 ∪ `2) lie on a plane π with Q1 ∩ π = Q2 ∩ π.

Proof. Let π′ be the plane containing `1 and `2. By (i) and (ii), we have (Q1 ∪Q2)∩
π′ = `1∪`2. Let P ′ be any point in π′\(`1∪`2). Then there is a nonzero scalar λ such
that λQ1(P

′)+Q2(P
′) = 0. Again by (i) and (ii), the quadric Q := λQ1+Q2 contains

the plane π′. Then, by (v), Q is the union of two distinct planes π′ and π. Moreover,
we have Q1 ∩ π = Q2 ∩ π. In fact, if P ∈ Q1 ∩ π, then Q2(P ) = Q(P )− λQ1(P ) = 0
and P ∈ Q2 ∩ π. ¤

We say that a line h is a transversal of lines g1, g2, . . . if h intersects all g1, g2, . . . .
Now, for given four skew lines a, b, c, d, how many transversals of the four lines are
there? Three skew lines a, b, c determine a quadric Q by (ii). The fourth line d would
meet Q at two points, say, p, q, unless d is in a special position such as d is entirely
contained in Q, or d is tangent to Q. Applying (iv) to the surface Q, the ‘class’ of
lines on Q that intersect a, b, c contains two lines passing through p, q respectively.
This means that there are exactly two transversals of the four given lines if they are
in general position in some sense. Note also that the two transversals do not meet,
because they belong to the same class of lines on Q.

Definition 2.3. We say that four skew lines are in regular position if there exist
exactly two transversals of the four lines. We say that n (≥ 4) skew lines are in
regular position if each four of the n lines are in regular position.

Definition 2.4. A Schläfli’s double six is a pair of six lines a1, . . . , a6; b1, . . . , b6

in P3 such that ai and bj intersect iff i 6= j, and no other two lines intersect. A line
table is an array of lines (symbols) written in two rows such that two lines intersect
iff they are written in different rows and in different columns.

For example, the following is a line table for a double six:

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6
(1)

The next theorem gives a necessary and sufficient condition for the line table

a1 a2 a3 a4 a5

b6
(2)

to be extendable to a line table (1).
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Theorem 2.5 (Double six theorem [20]). Let a1, a2, . . . , a5 be five skew lines in P3,
and let b6 be a transversal of the five lines. Then these six lines can be extended to
a double six if and only if a1, a2, . . . , a5 are in regular position. Moreover if they are
extendable to a double six, then the extension is unique.

Proof. First we show the “only if” part. If the six given lines can be extended to a
double six, then, with consulting the line table (1), each four (say, a1, a2, a3, a4) of
the lines among a1, a2, . . . , a5 have two transversals (say b5, b6), and there is a line
(say, b4) that intersects exactly three (say, a1, a2, a3) lines of the four. Hence, the
following lemma shows that a1, . . . , a5 are in regular position.

Lemma 2.6. Suppose that four skew lines g1, g2, g3, g4 (referred as the four lines) in
P3 have two transversals h5, h6, and there is a transversal h4 of exactly three lines
out of the four lines. Then the four lines are in regular position.

Proof. Suppose that there is a transversal h of the four lines other than h5, h6. Then
h5, h6, h are skew. Let Q be the quadric determined by h5, h6, h. Then the four lines
lie on Q. Since h4 intersects three lines among the four lines, the line h4 is entirely
contained in Q, and thus h4 meets all of the four lines, which is a contradiction. ¤

Next we show the “if” part. For i = 1, 2, . . . , 5, let bi be the transversal of
{a1, a2, a3, a4, a5} \ {ai} besides b6 (see the line table (3) at the end of this section).
First suppose that there is a transversal a6 of the five lines b1, b2, b3, b4, b5. (We will
show the existence of a6 shortly.) The six lines b1, b2, . . . , b6 are skew, and in regular
position by Lemma 2.6. The transversals of b3, b4, b5, b6 are exactly a1 and a2, and
thus a6 and b6 do not intersect (otherwise a6 is another transversal of b3, b4, b5, b6).
This means that a1, . . . , a6; b1, . . . , b6 is a double six. Moreover b1, b2, . . . , b5 and a6

are uniquely determined, and the extension to the double six is unique. We are going
to show the existence of a transversal a6. Our proof is essentially the same as the
ones in [1] pp. 159–160, and [12]. For i 6= j, let Pij be the intersection of ai and bj.

Lemma 2.7. There exist a transversal a of four lines b1, b2, b3, b4, passing through a
point P , where P is the intersection of b1 and the plane determined by three points
P23, P32, P16. (Actually, we will see that a = a6 and P = P61 later).

Proof. Let Q1 and Q2 be the quadrics containing {a2, a3, a5} and {b2, b3, b4} respec-
tively. Since a5 meets b2, b3, b4, we have a5 ⊂ Q1 ∩Q2 by Theorem 2.1 (i). Similarly,
b4 meets a2, a3, a5, and b4 ⊂ Q1 ∩ Q2. Thus Q1 ∩ Q2 contains two intersecting lines
a5 and b4.

Let us find points in (Q1∩Q2)\(a5∪b4). Clearly, we have P23, P32. Also P16 is such
a point, for a1 meets b2, b3, b4, and a1 ⊂ Q2 \ a5 by (i), similarly, b6 meets a2, a3, a5,
and b6 ⊂ Q1 \ b4. Now we show that the three points P23, P32, P16 determine a plane
π. Suppose for a contradiction that the three points lie on a line `. Then ` ⊂ Q1,
and ` meets a2 at P23. Thus, by (iv), ` meets a3 and a5, too. Moreover ` meets a1

at P16. Then ` is a transversal of four lines a1, a2, a3, a5 in regular position, and thus
` = b4 or b6. But this is impossible, because ` meets b3 at P23.

By Lemma 2.2 the points in (Q1∩Q2)\(a5∪b4) lie in the plane π and Q1∩π = Q2∩π.
To see b1 6⊂ π, suppose for a contradiction that b1 ⊂ π. Using b1 ⊂ Q1, we have
b1 ⊂ Q1 ∩ π = Q2 ∩ π ⊂ Q2. By (iv) this is impossible, because a1, b2 ⊂ Q2.
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Let P be the intersection of b1 and π. Since b1 ⊂ Q1 and P ∈ Q1 ∩ π = Q2 ∩ π,
we also have P ∈ Q2. By (iv), there are two lines in Q2 passing through P , and one
of them is the desired transversal a. ¤

Similarly there is a transversal a′ of b1, b2, b3, b5, passing through the same point
P . To see this, just replace a5 and b4 with a4 and b5, respectively, in Lemma 2.7.
In this replacement, the plane π remains the same, and so does the point P . Since
both a and a′ pass through the point P ∈ b1 and intersect two skew lines b2, b3 with
P 6∈ b2 ∪ b3, they must coincide with each other. This is the transversal of five line
b1, b2, b3, b4, b5, namely, a = a′ = a6. This completes the proof of Theorem 2.5. ¤

We have shown that if five skew lines a1, a2, a3, a4, a5 are in regular position, then
the line table (2) can be extended uniquely to the following line table:

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5 b6
(3)

and then extended uniquely to the line table (1). Let us state this fact as a corollary,
which we will use to prove Theorem 6.3, an analogous result for spheres.

Corollary 2.8. If a set {a1, . . . , a5, b1, . . . , b6} of eleven lines constitute the line table
(3), then there is a unique line a6 that intersects only the five lines b1, b2, b3, b4, b5

among the eleven lines.

Let us briefly explain the relation between a double six and the 27 lines in a cubic
surface. Let {a1, . . . , a6, b1, . . . , b6} be a double six in P3. Then there is a unique
nonsingular cubic surface containing these 12 lines. This surface contains exactly
27 lines, and the remaining 15 lines are given by (ij), 1 ≤ i < j ≤ 6, where (ij) is
the line of intersection between the plane containing ai, bj and the plane containing
aj, bi. See [10], [11] §25, [19] §7 for more details. We will not use the facts mentioned
in this paragraph to prove our results.

3. Plücker coordinates of lines

Plücker coordinate [18] is a homogeneous coordinate which represents a line in P3

as a point in P5. The set of Plücker coordinates of all lines in P3 form a quadric M in
P5. Moreover, for a pair of points on M corresponding to two mutually intersecting
lines in P3, the line in P5 determined by the two points on M is entirely contained in
M . This property gives a condition for the Plücker coordinates of two intersecting
lines. In this section we derive these things, cf. [5] Chap. 8 §6, [21] Chap. 1 §7.

Fix a base field R or C. We use bold lower-case characters x etc. for points in
P3, and [x1, x2, x3, x4] etc. for the corresponding homogeneous coordinates. For two
distinct points a, b in P3, let `(a, b) denote the line determined by a, b, that is,

`(a, b) = {sa + tb : [s, t] ∈ P1}. (4)

For 1 ≤ i, j ≤ 4, i 6= j, set

pij = pij(a, b) = aibj − ajbi. (5)

Then a straightforward calculation shows

p12p34 + p13p42 + p14p23 = 0. (6)



6 HIROSHI MAEHARA AND NORIHIDE TOKUSHIGE

If a 6= b, then the two vectors (a1, a2, a3, a4) and (b1, b2, b3, b4) are linearly indepen-
dent, and the matrix (

a1 a2 a3 a4

b1 b2 b3 b4

)

has rank 2. Since pij is a determinant of a minor matrix of this matrix, some pij is
nonzero. The Plücker coordinate f(`) ∈ P5 of a line ` = `(a, b) is defined by

f(`) = [p12, p13, p14, p34, p42, p23] = [a1b2 − a2b1, . . . , a2b3 − a3b2]. (7)

We have to check that (7) is independent of a choice of two points that determine the
line `. Choose two distinct points a′, b′ ∈ `(a, b). Then we can write a′ = sa + tb,
b′ = ua + vb with some [s, t], [u, v] ∈ P1 by (4). Using (5) and (7) with sv − tu 6= 0,
we get f(`(a′, b′)) = (sv − tu)f(`(a, b)) = f(`(a, b)).

Lemma 3.1. Let L be the set of all lines in P3 and let M be a quadric in P5 defined
by

M = {[α, β, γ, ξ, η, ζ] ∈ P5 : αξ + βη + γζ = 0}.
Then, for each line ` ∈ L, the Plücker coordinate f(`) is a point of M by (6), and
f : L → M is a bijection.

Proof. First we show that f is injective. Suppose that two lines `, `′ ∈ L satisfy
f(`) = f(`′). Choose two points a, b on `. Then f(`) is defined by (7), and we may
assume that p12 6= 0 by changing the coordinate system if necessary. By (4), we have
the following two distinct points on `:

c = b1a− a1b = [0, p12, p13, p14], d = b2a− a2b = [p12, 0,−p23, p42]. (8)

Let f(`′) = [p′12, p
′
13, p

′
14, p

′
34, p

′
42, p

′
23]. Since f(`) = f(`′) there is some λ 6= 0 such

that pij = λp′ij for all i, j. This together with (8) gives c = [0, p12, p13, p14] =

[0, p′12, p
′
13, p

′
14] = b′1a

′− a′1b
′ for any distinct a′, b′ ∈ `′, and thus c ∈ `′. Similarly we

get d ∈ `′. Since c and d are two distinct points on ` and `′, the two lines ` and `′

must coincide.
Next we show that f is surjective. Let P = [α, β, γ, ξ, η, ζ] be an arbitrary point

in M . We may assume that α 6= 0. For two distinct points c = [0, α, β, γ] and
d = [α, 0,−ζ, η] in P3, let ` = `(c,d) ∈ L. Then by (7) we have

f(`) = [α2, αβ, αγ,−βη − γζ, αη, αζ]. (9)

Since P ∈ M , we have αξ = −βη − γζ, and the fourth coordinate of (9) is equal to
αξ. Then, dividing the RHS of (9) by α 6= 0, we have P = f(`). ¤

Lemma 3.2. Let ` and `′ be two lines in P3, and let f(`) = [α, β, γ, ξ, η, ζ] and
f(`′) = [α′, β′, γ′, ξ′, η′, ζ ′] be their Plücker coordinates in M . Then the following (i),
(ii), and (iii) are equivalent.

(i) Two lines ` and `′ intersect.
(ii) The line in P5 determined by two points f(`) and f(`′) is entirely contained

in M .
(iii) αξ′ + α′ξ + βη′ + β′η + γζ ′ + γ′ζ = 0.
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Proof. (i)⇒(ii). Suppose that the line ` contains two points a and b, and `′ contains
a and c. Then we have

f(`) = [a1b2 − a2b1, . . . , a2b3 − a3b2], f(`′) = [a1c2 − a2c1, . . . , a2c3 − a3c2]. (10)

Let [α′′, β′′, γ′′, ξ′′, η′′, ζ ′′] ∈ P5 be a point on the line determined by the two points
in (10). Then we have [α′′, . . . , ζ ′′] = sf(`) + tf(`′) with some [s, t] ∈ P1, and α′′ =
s(a1b2−a2b1)+t(a1c2−a2c1) etc. A simple computation shows α′′ξ′′+β′′η′′+γ′′ζ ′′ = 0,
which means [α′′, . . . , ζ ′′] ∈ M .

(ii)⇒(iii). Let P = f(`)+f(`′) = [α, . . . , ζ]+ [α′, . . . , ζ ′]. Then P is a point on the
line determined by f(`) and f(`′), and P ∈ M by our assumption. Then (6) gives

0 = (α + α′)(ξ + ξ′) + (β + β′)(η + η′) + (γ + γ′)(ζ + ζ ′)

= (αξ + βη + γζ) + (α′ξ′ + β′η′ + γ′ζ ′) + (αξ′ + α′ξ + βη′ + β′η + γζ ′ + γ′ζ).

Again (6) gives (iii), because f(`), f(`′) ∈ M .
(iii)⇒(i). Suppose that ` contains a, b, and `′ contains c,d. Then, by (5), we have

α = a1b2− a2b1, ξ
′ = c3d4− c4d3, etc, and the LHS of (iii) is nothing but the Laplace

expansion of

det




a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4


 .

By the assumption of (iii), the above determinant vanishes. This means four points
a, b, c,d are coplanar in P3, and thus two lines ` and `′ intersect. ¤

4. A family of lines in P3(C)

In this section, we identify a line in P3 and its Plücker coordinate. Thus a line in
P3 is sometimes regarded as a point in P5. Let us write the Plücker coordinate of a
line in P3(C) in the form

[a, x + y
√−1, b, c, x− y

√−1, d], (11)

where a, b, c, d, x, y ∈ C. We denote this coordinates by λ(a, b, c, d, x, y). Then (6)
becomes

ac + bd + x2 + y2 = 0. (12)

Definition 4.1. Let Λ be the set of lines in P3(C) whose Plücker coordinate can be
written in the form of (11) with reals a, b, c, d, x, y, that is,

Λ = {λ(a, b, c, d, x, y) ∈ P5(C) : a, b, c, d, x, y are reals satisfying (12)}.
Lemma 4.2. Let g1, g2, g3, g4 ∈ Λ be four skew lines. Suppose that these four lines
have exactly two transversals in P3(C). If one of the transversals belongs to Λ, then
so does the other.

Proof. For two vectors u = (a, b, c, d, x, y) and u′ = (a′, b′, c′, d′, x′, y′), we write

〈u, u′〉 = ac′ + a′c + bd′ + b′d + 2xx′ + 2yy′.
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Let gj = λ(uj) (j = 1, 2, 3, 4) be four skew lines such that uj ∈ R6. Then λ(v)
(v ∈ C6) is a transversal of all gj’s if and only if v satisfies, by Lemma 3.2 (iii), the
linear system of equations

〈uj, v〉 = 0 (j = 1, 2, 3, 4), (13)

as well as, by (12), the quadratic equation

〈v, v〉 = 0. (14)

Since (13) has real coefficients as equations for v, we have linearly independent real
solutions vk ∈ R6 (k = 1, 2, . . . ) of (13), and each transversal of g1, g2, g3, g4 are
represented by a linear combination (with coefficient in C) of these real solutions.
(Notice that λ(vk) is not a line unless vk satisfies (14).) Suppose that one of the two
transversals belongs to Λ, say, v1 satisfies (14) and λ(v1) ∈ Λ.

Let λ(u) (u ∈ C6) be the other transversal of g1, g2, g3, g4. If some vk (k ≥ 2)
satisfies (14), then we have λ(u) = λ(vk) and λ(vk) ∈ Λ, as desired. So, suppose
that 〈vk, vk〉 6= 0 for all k ≥ 2. In this case u is a linear combination of vk, that is,
u =

∑
k≥1 αkvk (αk ∈ C). Since v1 satisfies (14) we have 〈u, v1〉 = 〈∑k≥1 αkvk, v1〉 =∑

k≥2 αk〈vk, v1〉. On the other hand, λ(u) and λ(v1) do not meet (see the comment
just before Definition 2.3), and it follows from Lemma 3.2 that 〈u, v1〉 6= 0. Thus
there is some j ≥ 2 such that 〈vj, v1〉 6= 0, say, 〈v2, v1〉 6= 0.

Let µ = 2〈v2, v1〉/〈v2, v2〉 ∈ R, and let v′ = v1−µv2 ∈ R6. Then v′ is a real solution
of the equations (13) and (14). In fact, we have 〈uj, v

′〉 = 〈uj, v1〉 − µ〈uj, v2〉 = 0
(because 〈uj, vk〉 = 0 for all j, k), and 〈v′, v′〉 = 〈v1, v1〉 − 2µ〈v2, v1〉 + µ2〈v2, v2〉 = 0
(due to the definition of µ). So, λ(v′) ∈ Λ is a transversal of g1, g2, g3, g4. Moreover,
we have λ(v′) 6= λ(v1), because v′ = v1 − µv2 (µ 6= 0) is linearly independent from
v1. Finally, λ(v′) is the other transversal and λ(v′) ∈ Λ. ¤

The set Λ is closed under the extensions of the line tables from (2) to (1). Namely,
we have the following.

Theorem 4.3 (Double six in Λ). If a double six a1, a2, . . . , a6; b1, b2, . . . , b6 in P3(C)
satisfies a1, a2, a3, a4, a5, b6 ∈ Λ, then the remaining six lines also belong to Λ.

Proof. By Lemma 4.2, all of b1, . . . , b5 and a6 belong to Λ. ¤

5. Oriented spheres in R3 ∪ {∞}
By adding a point ∞ at infinity to R3, we get a compact space R3 ∪ {∞}. An

oriented sphere in R3 ∪ {∞} is one of the following:

oriented true sphere: a usual sphere in R3 in which one side (inside or out-
side) is distinguished as its positive side.

oriented plane: a plane in R3 (with ∞ at infinity) in which one side is dis-
tinguished as its positive side.

null sphere: a singleton in R3 ∪ {∞} (whose ‘positive side’ is defined to be
the empty set ∅).
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Let us present a homogeneous coordinate of an oriented sphere in R3 ∪ {∞}. For
reals a, b, c, d, e (not all 0), consider a geometric figure defined by

a(x2 + y2 + z2) + b− 2cx− 2dy − 2ez = 0. (15)

When a, b, c, d, e are replaced with λa, λb, λc, λd, λe (λ 6= 0), the equation (15) still
defines the same figure. So, we may use the homogeneous coordinate [a, b, c, d, e] ∈
P4(R) as the parameter for the figure.

If a 6= 0, we can rewrite (15) as (x − c/a)2 + (y − d/a)2 + (z − e/a)2 = (f/a)2,
where

f 2 = c2 + d2 + e2 − ab. (16)

If f 6= 0, then (15) represents a true sphere in R3 with center (c/a, d/a, e/a) and
radius |f/a|. If f = 0, then (15) represents a singleton in R3. Notice that a, b, c, d, e
have to be chosen so that the RHS of (16) is nonnegative. If f 6= 0 there are two
choices for f (either positive or negative). Hence, we can designate the positive side
of the sphere by the sign of f/a. Namely, we can define the positive side of the sphere
to be the inside if f/a > 0, and to be the outside if f/a < 0. Thus, an oriented true
sphere or a null sphere can be presented by a homogeneous coordinate [a, b, c, d, e, f ]
satisfying (16) and a 6= 0.

If a = 0 and c2 + d2 + e2 > 0 then (15) represents a plane, and the unit normal
vector of this plane is given by (c/f, d/f, e/f). Therefore, we can define the positive
side of the plane by this normal vector. Thus, an oriented plane is also presented by
a homogeneous coordinate [0, b, c, d, e, f ] satisfying (16) and f 6= 0.

Finally, in the case b 6= 0, a = c = d = e = 0, the equation (15) gives a void
statement. So, let us assign [0, b, 0, 0, 0, 0] with b 6= 0 to the null sphere {∞} with
empty positive side.

Thus, every oriented sphere in R3 ∪ {∞} can be represented uniquely by a homo-
geneous coordinate [a, b, c, d, e, f ] satisfying (16). For example, the null sphere {P}
with P = (c, d, e) ∈ R3 has coordinate [1, c2 + d2 + e2, c, d, e, 0], and the null sphere
{∞} has coordinate [0, 1, 0, 0, 0, 0]. An oriented true sphere with center (x0, y0, z0)
and radius r has coordinate [1, x2

0 + y2
0 + z2

0 − r2, x0, y0, z0,±r].

Definition 5.1. Let Θ be the set of all oriented spheres in R3 ∪ {∞}, that is,

Θ = {[a, b, c, d, e, f ] ∈ P5(R) : −ab + c2 + d2 + e2 − f 2 = 0}.
For an oriented sphere σ ∈ Θ, let us denote the positive side of σ by [σ]. For

a true sphere S in R3, the oriented true sphere S+ and S− are defined by setting
[S+] = (the inside) and [S−] = (the outside). Then, every oriented true sphere
can be represented as S+ or S− using some true sphere S in R3. The sign + or
− appearing in the shoulder is called the sign of the oriented true sphere. For an
oriented true sphere with coordinate [a, b, c, d, e, f ], its sign coincides with the sign
of f/a.

Two distinct oriented spheres σ, τ ∈ Θ are said to be in oriented contact if (i)
σ ∩ τ = {one point}, and (ii) [σ] ⊂ [τ ] or [τ ] ⊂ [σ]. Then, by definition,

two true spheres S and T touch externally (resp. internally)
iff S+ and T− (resp. T+) are in oriented contact (see Figure 2).

(17)
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Since the positive side of a null sphere {P} is empty, {P} and an oriented sphere σ
are in oriented contact if and only if P lies on the oriented sphere σ. Since ∞ lies
on every oriented plane, the null sphere {∞} and an oriented plane are always in
oriented contact.
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Figure 2. Oriented spheres in oriented contact

Lemma 5.2. Two oriented spheres [a, b, c, d, e, f ] and [a′, b′, c′, d′, e′, f ′] are in ori-
ented contact if and only if

−ab′ − ba′ + 2cc′ + 2dd′ + 2ee′ − 2ff ′ = 0.

Proof. We prove only the case of two oriented true spheres. We may assume that
a = a′ = 1, and the two spheres have centers (c, d, e) and (c′, d′, e′), and radii |f | and
|f ′|. Then these spheres are in oriented contact if and only if

(c− c′)2 + (d− d′)2 + (e− e′)2 = (f − f ′)2

⇔ −2cc′ − 2dd′ − 2ee′ + 2ff ′ + (c2 + d2 + e2 − f 2) + (c′2 + d′2 + e′2 − f ′2) = 0

⇔ −2cc′ − 2dd′ − 2ee′ + 2ff ′ + b + b′ = 0 (∵ (16))

⇔ −ab′ − a′b + 2cc′ + 2dd′ + 2ee′ − 2ff ′ = 0. (∵ a = a′ = 1)

One can show other cases similarly. ¤

6. Lie’s line-sphere transformation

We can assign a line with Plücker coordinate [α, β, γ, ξ, η, ζ] to an oriented sphere
with coordinate [a, b, c, d, e, f ] by setting

α = a, β = c + d
√−1, γ = e + f,

ξ = −b, η = c− d
√−1, ζ = e− f.

(18)

In fact, we have αξ + βη + γζ = −ab + c2 + d2 + e2 − f 2 = 0 by (18), (6) and (16).
Moreover, (18) gives a bijection from Θ to Λ, and the inverse is as follows:

a = α, c = (β + η)/2, e = (γ + ζ)/2,
b = −ξ, d = (β − η)/(2

√−1), f = (γ − ζ)/2.
(19)

Definition 6.1. The bijection ϕ : Λ → Θ, [α, β, γ, ξ, η, ζ] 7→ [a, b, c, d, e, f ] given by
(19) is called Lie’s line-sphere transformation [4, 9, 13, 16].
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Lemma 6.2. Let ϕ : Λ → Θ be the line-sphere transformation. Then two lines a
and b intersect if and only if the corresponding two oriented spheres ϕ(a) and ϕ(b)
are in oriented contact.

Proof. Let [α, β, γ, ξ, η, ζ], [α′, β′, . . . , ζ ′] be lines, and [a, b, c, d, e, f ], [a′, b′, . . . , f ′] be
the corresponding oriented spheres. Then (18) (or (19)) gives

αξ′ + α′ξ + βη′ + β′η + γζ ′ + γ′ζ = 0 ⇔ −ab′ − ba′ + 2cc′ + 2dd′ + 2ee′ − 2ff ′ = 0.

Now the lemma follows from Lemma 3.2 and Lemma 5.2. ¤

A sphere table is just a sphere version of a line table, and it is defined similarly
as in Definition 2.4 by replacing “line” with “oriented sphere,” and “intersect” with
“are in oriented contact.” The next theorem guarantees the following extension of
sphere tables:

σ1 σ2 σ3 σ4 σ5

τ1 τ2 τ3 τ4 τ5 τ6
⇒ σ1 σ2 σ3 σ4 σ5 σ6

τ1 τ2 τ3 τ4 τ5 τ6

This is a sphere version of Corollary 2.8. The twelve riented spheres σ1, . . . , σ6;
τ1, . . . , τ6 in the table (above right) are called a double six of spheres. See Exam-
ple 9.1 for an example of a double six of spheres in R3.

Theorem 6.3 (Double six of spheres in Θ). Let {σ1, . . . , σ5, τ1, . . . , τ6} be a set of
eleven oriented spheres in Θ such that σi and τj are in oriented contact if and only
if i 6= j, and no other pair of spheres are in oriented contact. Then there exists
a unique oriented sphere σ6 ∈ Θ, which is in oriented contact with only τ1, . . . , τ5

among the eleven spheres.

Proof. Let ai = ϕ−1(σi) ∈ Λ, bj = ϕ−1(τj) ∈ Λ. Then it follows from Lemma 6.2 that
a1, . . . , a5; b1, . . . , b6 constitute the line table (3). By Corollary 2.8, there is a unique
line a6 in P3(C) that intersects only the five lines b1, . . . , b5. Then Theorem 4.3
implies that a6 ∈ Λ. Set σ6 = ϕ(a6). Now the theorem follows from Lemma 6.2. ¤

7. Grace’s theorem on a tetrahedron

Throughout this section, T denotes a tetrahedron in R3 (⊂ R3∪{∞}) with vertices
A,B,C,D. By a face of a tetrahedron, we mean an extended face, that is, a plane de-
termined by three vertices of the tetrahedron. Let a, b, c, d be the faces of T opposite
to the vertices A,B,C,D, respectively. Let a+ be the oriented plane determined by a
whose positive side contains A, and let a− be the oriented plane such that A 6∈ [a−].
Define b+, b−, c+, c−, d+, d− similarly. Then [a+] ∩ [a−] = a, [a+] ∪ [a−] = R3 ∪ {∞}
and T ⊂ [a+] ∩ [b+] ∩ [c+] ∩ [d+].

A circumsphere of T is the sphere passing through the vertices A,B,C,D. A
tangent sphere of T is a sphere that is tangent to all the faces a, b, c, d. Tangent
spheres of a tetrahedron are classified in the following way, see [2] p.296.

inscribed sphere: a unique tangent sphere lying inside the tetrahedron.
escribed sphere: a sphere that is tangent to three faces from the inside, and

tangent to the remaining face from the outside. There are precisely four
such spheres.
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roof sphere: a sphere that is tangent to two faces from the inside, and tangent
to the other two faces from the outside. (This is a tangent sphere inscribed
in a roof such as [a−] ∩ [b−] ∩ [c+] ∩ [d+], or XY ZWCD in Figure 3.)

Not every roof has a roof sphere, in fact, the number of roof spheres varies from 0
to 3 depending on the shape of the tetrahedron. If there is a roof sphere lying in a
roof then no roof sphere lies in the opposite roof. We note that

the circumsphere never enclose any roof sphere, (20)

because, if the roof XY ZWCD contains a tangent sphere, then the contact point of
the sphere and the face d lies in the angular region XCY in the plane d, which is
apparently exterior to the circumsphere.
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Figure 3. A roof of a tetrahedron

Theorem 7.1 (Grace [8] §13). Among the tangent spheres of a tetrahedron, only the
inscribed sphere is enclosed by the circumsphere. Every escribed sphere is cut by the
circumsphere, while every roof sphere is entirely exterior to the circumsphere.

This theorem follows from the next lemma.

Lemma 7.2 (Grace’s sphere [7] §24–25). For a tetrahedron T in R3 with vertices
A,B,C,D, let σI , σC, σE be the inscribed sphere, the circumsphere, and the escribed
sphere in [a−], respectively. Let σR be the roof sphere inscribed in [a−]∩ [b−]∩ [c+]∩
[d+]. Then we have the following:

(i) There is a true sphere τ1 passing through the vertices B, C, D, to which both
σI and σE are internally tangent, and σC cuts σE.

(ii) There is a true sphere τ2 passing through the vertices A,C,D, and externally
tangent to both σE and σR, and σR is entirely exterior to σC.
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Proof. Let σ+
I , σ+

E , σ+
R be oriented true spheres obtained from σI , σE, σR, respectively.

Then we have the following sphere table:

a− a+ b+ c+ d+

σ+
I σ+

E {B} {C} {D} {∞}
By Theorem 6.3 there is an oriented sphere τ1 that is in oriented contact exactly
with σ+

I , σ+
E , {B}, {C}, {D}. The sphere τ1 passes through B, C, D, and τ1 6= a+, a−.

Thus, τ1 is a true sphere tangent to both σI and σE. We notice that τ1 encloses the
triangle BCD, and the face a touches two spheres σI and σE in this triangle. This
implies that σI and σE are both internally tangent to τ1.

If τ1 encloses the cap [a+] ∩ σC (Figure 4 left), then τ1 encloses T (and thus σI),
and this contradicts the fact that τ1 and σI are tangent. So, τ1 must enclose the cap
[a−] ∩ σC (Figure 4 right). Then, σE touches the face a, and σE also touches τ1 at a
point in [a−] ∩ τ1, namely, σC cuts σE. This proves (i).
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Figure 4. τ1 and σC

Next we show (ii). We have the following sphere table:

a− b− b+ c+ d+

{A} σ+
E σ+

R {C} {D} {∞}
Then, by Theorem 6.3, there is a true sphere τ2 passing through A, C, D. Recall from
(17) that τ2 and σE touch internally (resp. externally) iff τ2 and σR touch internally
(resp. externally).

If τ2 encloses the cap [b+] ∩ σC (Figure 5 left), then τ2 encloses T (and also the
contact point of T and σE). Thus, σE is internally tangent to τ2, and so is σR. Then,
σC encloses σR, contradicting (20). So, τ2 must enclose the cap [b−] ∩ σC (Figure 5
right). If σE is internally tangent to τ2 in [b+] ∩ τ2, then σC encloses σE, which
contradicts (i). Consequently, τ2 is externally tangent to both σE and σR. Since τ2

encloses the cap [b−] ∩ σC , we can conclude that σR is external to σC . ¤
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8. On families of five unit spheres in R3

We are ready to prove our main theorem.

Theorem 8.1. In a family of five unit spheres in R3, if each four spheres have
nonempty intersection, then all five spheres have nonempty intersection.

We recall here what an inversion of Rd ∪ {∞} is. An inversion with respect
to a reference sphere of center p ∈ Rd and radius r > 0 is a transformation of
Rd ∪ {∞} that sends each point x ( 6= p,∞) to a point x′ on the ray −→px such that
|x − p| · |x′ − p| = r2, and that switches p and ∞. By an inversion at p, denoted
by ψp, we mean the inversion with respect to a unit sphere centered at p ∈ Rd. This
is an involution (i.e., ψp ◦ ψp = id), which switches the inside and the outside of the
reference sphere, and maps a sphere to another sphere. More precisely, the following
holds.

Lemma 8.2. Let ψp be the inversion at p ∈ Rd.

(i) ψp maps a sphere not passing through p to a sphere not passing through p.
(ii) ψp maps a sphere passing through p to a hyperplane not passing through p.
(iii) ψp maps a hyperplane passing through p to the same hyperplane.
(iv) If p lies inside a sphere S1 and S1 lies inside another sphere S2, then p lies

inside ψp(S2) and ψp(S2) lies inside ψp(S1). If p lies outside S1, then p lies
outside ψ(S1).

Lemma 8.3. Let γ, Γ be circles and ∆ be a triangle in the plane such that γ lies
inside ∆ and ∆ lies inside Γ. Let ψ be the inversion at the center of the circle γ.
Then the diameter of ψ(Γ) is at most the radius of ψ(γ), and they are equal only
when γ is the circumscribed circle of ∆, and γ is the inscribed circle of ∆.

Proof. By replacing ∆ with a larger triangle if necessary, we may assume that ∆
is inscribed in Γ. Since ∆ encloses γ, there is a triangle ∆′ homothetic to ∆ and
circumscribed to γ, see Figure 6. The center of the homothety is contained in ∆′,
and the homothety sends Γ to the circumscribed circle Γ′ of ∆′. Thus Γ′ is contained
in Γ, and by Lemma 8.2 (iv), ψ(Γ) is contained in ψ(Γ′). So, the diameter of ψ(Γ)
is at most the diameter of ψ(Γ′).
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Let O be the center of the circle γ, and r be its radius. Then ψ(γ) has radius
1/r. Let a, b, c be the three lines determined by the sides of the triangle ∆′. Then,
ψ(a), ψ(b), ψ(c) are three circles passing through O with diameter 1/r (and internally
tangent to ψ(γ)). These three circles determine three intersections other than O,
which determine the circle ψ(Γ′). By Theorem 1.1, the diameter of ψ(Γ′) coincides
with the diameter of ψ(a) (= 1/r), which equals to the radius of ψ(γ). So, the
diameter of ψ(Γ) is at most 1/r, and it is equal to 1/r only when Γ = Γ′. ¤
Lemma 8.4. For a tetrahedron T in R3, let σ be the inscribed sphere, and Σ be the
circumsphere. Let ψ be the inversion at the center of σ. Then the diameter of ψ(Σ)
is smaller than the radius of ψ(σ).

Proof. Let O be the center of σ, and let p be the center of Σ. Let π be a plane
determined by O, p and a vertex of T . Cutting Σ, T, σ by the plane π, we get a circle
Γ, a triangle ∆ contained in Γ, and a circle γ contained in ∆ as plane figures on the
plane π. Then ψ(Γ) and ψ(Σ) have the same diameter, and ψ(γ) and ψ(σ) have the
same radius. Since Γ is not the circumcircle of ∆, it follows from Lemma 8.3 that
the diameter of ψ(Σ) is smaller than the radius of ψ(σ). ¤
Proof of Theorem 8.1. Suppose for a contradiction that there are five unit spheres
S0, S1, . . . , S4 such that each four spheres have nonempty intersection, but the inter-
section of the five spheres is empty. Let us call the intersection of each four spheres a
junction. Note that there are five junctions, and they are all different. Let qi be the
junction of the four spheres other than Si. Then q0 is the junction of S1, S2, S3, S4,
and the other four junctions q1, q2, q3, q4 lie on the sphere S0.

We show that there is some i such that qi lies inside Si. Let ψ be the inversion
at q0, and let Σi := ψ(Si), pi := ψ(qi). Then Σ0 is a sphere, and Σ1, Σ2, Σ3, Σ4 are
planes, because q0 6∈ S0 and q0 ∈ Sj for j = 1, 2, 3, 4 (see Lemma 8.2 (i) (ii)). These
four planes span a tetrahedron T with vertices p1, p2, p3, p4. Then Σi is the face
opposite to pi, and Σ0 is the circumsphere of T . Now, suppose that q0 lies outside
S0. Then, q0 also lies outside Σ0 by Lemma 8.2 (iv), and hence lies outside the
tetrahedron T . By (ii), the four planes spanning T do not pass through q0. So we
can choose one of the planes closest to q0, say, Σi. Then the line segment connecting
q0 and pi intersect Σi, and hence qi lies inside ψ(Σi) = Si.

By changing indices if necessary, we may assume that q0 lies inside S0. Let S
be the sphere of radius 2 centered at q0. We claim that σ := ψ(S) is a tangent
sphere of T and it is contained in the circumsphere Σ0. In fact, since all four spheres
S1, S2, S3, S4 (with diameter 2) pass through q0, they are internally tangent to S.
Also it follows from (iv) that Σ0 (= ψ(S0)) encloses σ (= ψ(S)), because S0 lies
inside S

Here we come to the point where we invoke Theorem 7.1 by Grace. The sphere σ
is the inscribed sphere of T . By Lemma 8.4, the diameter of S0 = ψ(Σ0) is smaller
than the radius of ψ(σ), namely, diameter of S0 is less than 2. This contradicts to
the fact that S0 is a unit sphere. ¤

9. Examples and problems on sphere-systems

In this section, a sphere implies a true sphere.
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A double k of spheres is a sphere-system formed by a set of 2k distinct oriented
true spheres A1, . . . , Ak; B1, . . . , Bk in Rd such that if i 6= j then Ai and Bj are in
oriented contact and no other pair of spheres are in oriented contact. Thus, if the
signs of Ai, Bj are the same, then they are internally tangent, otherwise they are
externally tangent. Notice that Ai and Bi may be in contact (non-orientedly).

Example 9.1. The following table presents a double six of spheres in R3.

sphere center radius sign. sphere center radius sign.

A1 (2, 0, 0) 1 + B1 (−2, 0, 0) 3 +

A2 (−1,
√

3, 0) 1 + B2 (1,−√3, 0) 3 +

A3 (−1,−√3, 0) 1 + B3 (1,
√

3, 0) 3 +

A4 (0, 0, 3/2) 1/2 + B4 (0, 0, 3/2) 7/2 +

A5 (0, 0,−3/2) 1/2 + B5 (0, 0,−3/2) 7/2 +

A6 (0, 0, 0) 5 + B6 (0, 0, 0) 1 −
In this example, B6 and Ai are externally tangent for all i 6= 6, and other pair of
spheres Ai and Bj (i 6= j) are internally tangent. (Also Ai and Bi for i = 1, 2, 3
are externally tangent, but not in oriented contact.) Among the twelve lines in
Λ corresponding to these oriented spheres by line-sphere transformation, the lines
corresponding to A2, A3, B2, B3 are not contained in R3.

Example 9.2. One can find an example of double six of lines in R3 with picture
in [11] Chap. 8 §25. The corresponding double six of spheres (obtained by the line-
sphere transformation) are not contained in R3 (but in C3, of course). In general,
there is no double six of lines in R3 whose corresponding double six of spheres are
also in R3.

Theorem 9.3. Let d ≥ 1. If there is a double k of spheres in Rd, then k ≤ d + 3.

Proof. Let A1, . . . , Ak; B1, . . . , Bk be a double k of true spheres. Let Ai have center
(ai1, ai2, . . . , aid), radius ri > 0, and sign εi. Let Bj have center (bj1, bj2, . . . , bjd),
radius r′j > 0, and sign ε′j. Define a polynomial fAi

associated to the sphere Ai by

fAi
(x1, x2, . . . , xd, r) = (x1 − ai1)

2 + (x2 − ai2)
2 + · · ·+ (xd − aid)

2 + (r − εiri)
2.

Then we have

fAi
(Bj) = fAi

(bj1, bj2, . . . , bjd, ε
′
jr
′
j)

{ 6= 0 if i = j
= 0 if i 6= j,

and {fAi
} are linearly independent. The vector space spanned by {fAi

} has a basis

x2
1 + x2

2 + · · ·+ x2
d + r2, x1, x2, . . . , xd, r, 1.

Thus the dimension of the space is at most d+3, which means the number of linearly
independent {fAi

} is at most d + 3, that is, k ≤ d + 3. ¤

Problem 9.4. Determine all possible combinations of signs for a double six of
spheres in R3. Is it possible that Ai and Bj are externally tangent for all i 6= j?
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Example 9.5. There is a double (d + 2) of spheres in Rd in which tangent spheres
are always externally tangent. The following shows a construction. Fix a regular
d-simplex with vertices v1, . . . , vd+1 in Rd. Take spheres A1, . . . , Ad+2 of sufficiently
small radius, and put them at each vertex vi, and put Ad+2 at the barycenter. Then,
for each i = 1, . . . , d+2, we can choose a sphere Bi so that it is externally tangent to
all the spheres of {A1, . . . , Ad+2} \ {Ai}. Assign positive sign to all Ai, and negative
sign to all Bi.

Example 9.6. There is no double four of spheres in R1. To see this, suppose, on the
contrary, that there is a double four of spheres A1, . . . , A4; B1, . . . , B4. Each sphere
consists of two points. Without loss of generality, we may assume that one of the
points in A1 is contained in B2, B3. In this case, since A1 and B2, and also A1 and B3

are in oriented contact, B2 and B3 must become in oriented contact, a contradiction.

Problem 9.7. Let D be the set of d such that there is a double (d + 3) of spheres in
Rd. We know that 1 6∈ D and 3 ∈ D. Is there a double five of circles in the plane?
Determine D.

Example 9.8. There are ten circles A1, . . . , A5; B1, . . . , B5 in the plane such that
if i 6= j then Ai and Bj are tangent, and no other pair of circles are tangent to
each other. They are given in Figure 7, where small circles and big circles are
corresponding to Ai and Bj respectively. It is impossible to assign signs to these
circles so that they become a double five of circles.
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Figure 7. A family of ten circles
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