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ON TREE-PARTITION-WIDTH

DAVID R. WOOD

Abstract. A tree-partition of a graph G is a proper partition of its vertex set into ‘bags’,

such that identifying the vertices in each bag produces a forest. The tree-partition-width

of G is the minimum number of vertices in a bag in a tree-partition of G. An anonymous

referee of the paper by Ding and Oporowski [J. Graph Theory, 1995] proved that every

graph with tree-width k ≥ 3 and maximum degree ∆ ≥ 1 has tree-partition-width at most

24k∆. We prove that this bound is within a constant factor of optimal. In particular, for

all k ≥ 3 and for all sufficiently large ∆, we construct a graph with tree-width k, maximum

degree ∆, and tree-partition-width at least ( 1
8
− ǫ)k∆. Moreover, we slightly improve the

upper bound to 5

2
(k + 1)( 7

2
∆ − 1) without the restriction that k ≥ 3.

1. Introduction

A graph1 H is a partition of a graph G if:

• each vertex of H is a set of vertices of G (called a bag),

• every vertex of G is in exactly one bag of H, and

• distinct bags A and B are adjacent in H if and only if some edge of G has one

endpoint in A and the other endpoint in B.

The width of a partition is the maximum number of vertices in a bag. Informally speaking,

the graph H is obtained from a proper partition of V (G) by identifying the vertices in each

part, deleting loops, and replacing parallel edges by a single edge.

If a forest T is a partition of a graph G, then T is a tree-partition of G. The tree-

partition-width2 of G, denoted by tpw(G), is the minimum width of a tree-partition of G.

Tree-partitions were independently introduced by Seese [23] and Halin [19], and have since

been widely investigated [6, 7, 12, 13, 17, 24]. Applications of tree-partitions include graph

drawing [9, 14, 15, 25], graph colouring [2], partitioning graphs into subgraphs with only

small components [1], monadic second-order logic [20], and network emulations [3, 4, 8, 18].

Planar-partitions and other more general structures have also recently been studied [11, 25].
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What bounds can be proved on the tree-partition-width of a graph? Let tw(G) denote

the tree-width3 of a graph G. Seese [23] proved the lower bound,

2 tpw(G) ≥ tw(G) + 1.

In general, tree-partition-width is not bounded from above by any function solely of tree-

width. For example, wheel graphs have bounded tree-width and unbounded tree-partition-

width [7]. However, tree-partition-width is bounded for graphs of bounded tree-width and

bounded degree [12, 13]. The best known upper bound is due to an anonymous referee of

the paper by Ding and Oporowski [12], who proved that

tpw(G) ≤ 24 tw(G)∆(G)

whenever tw(G) ≥ 3 and ∆(G) ≥ 1. Using a similar proof, we make the following improve-

ment to this bound without the restriction that tw(G) ≥ 3.

Theorem 1. Every graph G with tree-width tw(G) ≥ 1 and maximum degree ∆(G) ≥ 1 has

tree-partition-width

tpw(G) < 5
2

(

tw(G) + 1
)(

7
2 ∆(G)− 1

)

.

Theorem 1 is proved in Section 2. Note that Theorem 1 can be improved in the case of

chordal graphs. In particular, a simple extension of a result by Dujmović et al. [14] implies

that

tpw(G) ≤ tw(G)
(

∆(G)− 1
)

for every chordal graph G with ∆(G) ≥ 2; see [24] for a simple proof. Nevertheless, the

following theorem proves that O(tw(G)∆(G)) is the best possible upper bound, even for

chordal graphs.

Theorem 2. For every ǫ > 0 and integer k ≥ 3, for every sufficiently large integer ∆ ≥
∆(k, ǫ), for infinitely many values of N , there is a chordal graph G with N vertices, tree-width

tw(G) ≤ k, maximum degree ∆(G) ≤ ∆, and tree-partition-width

tpw(G) ≥ (18 − ǫ) tw(G)∆(G).

Theorem 2 is proved in Section 3. Note that Theorem 2 is for k ≥ 3. For k = 1, every

tree is a tree-partition of itself with width 1. For k = 2, we prove that the upper bound

O(∆(G)) is again best possible; see Section 4.

2. Upper Bound

In this section we prove Theorem 1. The proof relies on the following separator lemma by

Robertson and Seymour [22].

Lemma 1 ([22]). For every graph G with tree-width at most k, for every set S ⊆ V (G), there

are edge-disjoint subgraphs G1 and G2 of G such that G1∪G2 = G, |V (G1)∩V (G2)| ≤ k+1,

and |S − V (Gi)| ≤ 2
3 |S − (V (G1) ∩ V (G2))| for each i ∈ {1, 2}.

3A graph is chordal if every induced cycle is a triangle. The tree-width of a graph G can be defined to be

the minimum integer k such that G is a subgraph of a chordal graph with no clique on k + 2 vertices. This

parameter is particularly important in algorithmic and structural graph theory; see [5, 21] for surveys.
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Theorem 1 is a corollary of the following stronger result.

Lemma 2. Let α := 1 + 1/
√
2 and γ := 1 +

√
2. Let G be a graph with tree-width at most

k ≥ 1 and maximum degree at most ∆ ≥ 1. Then G has tree-partition-width

tpw(G) ≤ γ(k + 1)(3γ∆ − 1) .

Moreover, for each set S ⊆ V (G) such that

(γ + 1)(k + 1) ≤ |S| ≤ 3(γ + 1)(k + 1)∆,

there is a tree-partition of G with width at most

γ(k + 1)(3γ∆ − 1),

such that S is contained in a single bag containing at most α|S| − γ(k + 1) vertices.

Proof. We proceed by induction on |V (G)|.
Case 1. |V (G)| < (γ + 1)(k + 1): Then no set S is specified, and the tree-partition in

which all the vertices are in a single bag satisfies the lemma. Now assume that |V (G)| ≥
(γ + 1)(k + 1), and without loss of generality, S is specified.

Case 2. |V (G)− S| < (γ + 1)(k + 1): Then the tree-partition in which S is one bag and

V (G)−S is another bag satisfies the lemma. Now assume that |V (G)−S| ≥ (γ+1)(k+1).

Case 3. |S| ≤ 3(γ+1)(k+1): Let N be the set of vertices in G that are adjacent to some

vertex in S but are not in S. Then |N | ≤ ∆|S| ≤ 3(γ + 1)(k + 1)∆. If |N | < (γ + 1)(k + 1)

then add arbitrary vertices from V (G) − (S ∪N) to N until |N | ≥ (γ + 1)(k + 1). This is

possible since |V (G) − S| ≥ (γ + 1)(k + 1).

By induction, there is a tree-partition of G − S with width at most γ(k + 1)(3γ∆ − 1),

such that N is contained in a single bag. Create a new bag only containing S. Since all the

neighbours of S are in a single bag, we obtain a tree-partition of G. (S corresponds to a leaf

in the pattern.) Since |S| ≥ (γ + 1)(k + 1), it follows that |S| ≤ α|S| − γ(k + 1) as desired.

Now |S| ≤ 3(γ+1)(k+1) < γ(k+1)(3γ∆− 1). Since the other bags do not change we have

the desired tree-partition of G.

Case 4. |S| ≥ 3(γ+1)(k+1): By Lemma 1, there are edge-disjoint subgraphsG1 and G2 of

G such that G1∪G2 = G, |V (G1)∩V (G2)| ≤ k+1, and |S−V (Gi)| ≤ 2
3 |S−(V (G1)∩V (G2))|

for each i ∈ {1, 2}. Let Y := V (G1)∩V (G2). Let a := |S∩Y | and b := |Y −S|. Thus a+b ≤
k+1. Let pi := |(S ∩ V (Gi))− Y |. Then p1 ≤ 2p2 and p2 ≤ 2p1. Let Si := (S ∩ V (Gi))∪Y .

Note that |Si| = pi + a+ b.

Now p1+p2+a = |S| ≥ 3(γ+1)(k+1). Thus 3pi+a ≥ 3(γ+1)(k+1) and 3pi+3a+3b ≥
3(γ + 1)(k + 1). That is, |Si| ≥ (γ + 1)(k + 1) for each i ∈ {1, 2}.

Now p1+p2+a ≤ 3(γ+1)(k+1)∆. Thus 3
2pi+a ≤ 3(γ+1)(k+1)∆ and pi ≤ 2(γ+1)(k+1)∆.

Thus pi + a+ b ≤ 2(γ + 1)(k + 1)∆ + (k + 1). Hence |Si| = pi + a+ b < 3(γ + 1)(k + 1)∆.

Thus we can apply induction to the set Si in the graph Gi for each i ∈ {1, 2}. We obtain

a tree-partition of Gi with width at most γ(k + 1)(3γ∆ − 1), such that Si is contained in a

single bag Ti containing at most α|Si| − γ(k + 1) vertices.

Construct a partition of G by uniting T1 and T2. Each vertex of G is in exactly one bag

since V (G1) ∩ V (G2) = Y ⊆ Si ⊆ Ti. Since G1 and G2 are edge-disjoint, the pattern of
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G1 G2

S

Y

a

b

p1 p2

Figure 1. Illustration of Case 4.

this partition of G is obtained by identifying one vertex of the pattern of the tree-partition

of G1 with one vertex of the pattern of the tree-partition of G2. Since the patterns of the

tree-partitions of G1 and G2 are forests, the pattern of the partition of G is a forest, and we

have a tree-partition of G.

Moreover, S is contained in a single bag T1 ∪ T2 and

|T1 ∪ T2| = |T1|+ |T2| − |Y |
≤ α|S1| − γ(k + 1) + α|S2| − γ(k + 1)− (a+ b)

= α(p1 + a+ b)− γ(k + 1) + α(p2 + a+ b)− γ(k + 1)− (a+ b)

= α(p1 + p2 + a)− 2γ(k + 1) + (α− 1)a+ (2α − 1)b

≤ α|S| − 2γ(k + 1) + (2α − 1)(a+ b)

≤ α|S| − 2γ(k + 1) + (2α − 1)(k + 1)

= α|S| − γ(k + 1) .

Thus |T1 ∪ T2| ≤ α · 3(γ + 1)(k + 1)∆− γ(k + 1) = γ(k + 1)(3γ∆ − 1). Since the other bags

do not change we have the desired tree-partition of G. �

3. General Lower Bound

The remainder of the paper studies lower bounds on the tree-partition-width. The graphs

employed are chordal. We first show that tree-partitions of chordal graphs can be assumed

to have certain useful properties.

Lemma 3. Every chordal graph G has a tree-partition T with width tpw(G), such that for

every independent set S of simplicial4 vertices of G, and for every bag B of T , either B = {v}
for some vertex v ∈ S, or the induced subgraph G[B − S] is connected.

4A vertex is simplicial if its neighbourhood is a clique.
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Proof. Let T0 be a tree-partition of a chordal graph G with width tpw(G). Let T be the

partition of G obtained from T0 by replacing each bag B of T0 by bags corresponding to the

connected components of G[B]. Then T has width at most tpw(G).

To prove that T is a forest, suppose on the contrary that T contains an induced cycle

C. Since each bag in C induces a connected subgraph of G, G contains an induced cycle D

with at least one vertex from each bag in C. Since G is chordal, D is a triangle. Thus C is

a triangle, implying that the vertices in D were in distinct bags in T0 (since the bags of T

that replaced each bag of T0 form an independent set). Hence the bags of T0 that contain

D induce a triangle in T0, which is the desired contradiction since T0 is a forest. Hence T is

a forest.

Let S be an independent set of simplicial vertices of G. Consider a bag B of T . By

construction, G[B] is connected. First suppose that B ⊆ S. Since S is an independent set

and G[B] is connected, B = {v} for some vertex v ∈ S.

Now assume that B − S 6= ∅. Suppose on the contrary that G[B − S] is disconnected.

Thus B ∩S is a cut-set in G[B]. Let v and w be vertices in distinct components of G[B−S]

such that the distance between v and w in G[B] is minimised. (This is well-defined since

G[B] is connected.) Since S is an independent set, every shortest path between v and w in

G[B] has only two edges. That is, v and w have a common neighbour x in B ∩S. Since x is

simplicial, v and w are adjacent. This contradiction proves that G[B − S] is connected. �

The next lemma is the key component of the proof of Theorem 2. For integers a < b, let

[a, b] := {a, a+ 1, . . . , b} and [b] := [1, b].

Lemma 4. For all integers k ≥ 2 and ∆ ≥ 3k + 1, for infinitely many values of N there is

a chordal graph G with N vertices, tree-width tw(G) = 2k − 1, maximum degree ∆(G) ≤ ∆,

and tree-partition-width tpw(G) > 1
4k(∆ − 3k).

Proof. Let n be an integer with n > max{1
2k(∆ − 3k), 2}. Let H be the graph with vertex

set {(x, y) : x ∈ [n], y ∈ [k]}, where distinct vertices (x1, y1) and (x2, y2) are adjacent if and

only if |x1−x2| ≤ 1. The set of vertices {(x, y) : y ∈ [k]} is the x-column. The set of vertices

{(x, y) : x ∈ [n]} is the y-row. Observe that each column induces a k-vertex clique, and each

row induces an n-vertex path.

Let C be an induced cycle in H. If (x, y) is a vertex in C with x minimum then the two

neighbours of (x, y) in C are adjacent. Thus C is a triangle. Hence H is chordal. Observe

that each pair of consecutive columns form a maximum clique of 2k vertices in H. Thus H

has tree-width 2k − 1. Also note that H has maximum degree 3k − 1.

An edge of H between vertices (x, y) and (x+1, y) is horizontal. As illustrated in Figure 2,

construct a graph G from H as follows. For each horizontal edge vw of H, add ⌈12 (∆− 3k)⌉
new vertices, each adjacent to v and w. Since H is chordal and each new vertex is simplicial,

G is chordal. The addition of degree-2 vertices to H does not increase the maximum clique

size (since k ≥ 2). ThusG has clique number 2k and tree-width 2k−1. Since each vertex ofH

is incident to at most two horizontal edges, G has maximum degree 3k−1+2⌈12 (∆−3k)⌉ ≤ ∆.

Observe that V (G)−V (H) is an independent set of simplicial vertices in G. By Lemma 3,

G has a tree-partition T with width tpw(G), such that for every bag B of T , either B = {v}
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Figure 2. The graph G with k = 4, ∆ = 15, and n = 9.

for some vertex v of G−H, or the induced subgraphH[B] is connected. Since G is connected,

T is a (connected) tree. Let U be the tree-partition of H induced by T . That is, to obtain

U from T delete the vertices of G − H from each bag, and delete empty bags. Since H

is connected, U is a (connected) tree. By Lemma 3, each bag of U induces a connected

subgraph of H.

Suppose that U only has two bags B and C. Then one of B and C contains at least 1
2nk

vertices. Since k ≥ 2, we have tpw(G) ≥ 1
2nk > 1

4k(∆− 3k), as desired. Now assume that U

has at least three bags.

Consider a bag B of U . Let ℓ(B) be the minimum integer such that some vertex in

B is in the ℓ(B)-column, and let r(B) be the maximum integer such that some vertex in

B is in the r(B)-column. Since H[B] is connected, there is a path in B from the ℓ(B)-

column to the r(B)-column. By the definition of H, for each x ∈ [ℓ(B), r(B)], the x-column

contains a vertex in B. Let I(B) be the closed real interval from ℓ(B) − 1
2 to r(B) + 1

2 .

Observe that two bags B and C of U are adjacent if and only if I(B) ∩ I(C) 6= ∅. Thus

{I(B) : B is a bag of U} is an interval representation of the tree U . Every tree that is an

interval graph is a caterpillar5; see [16] for example. Thus U is a caterpillar.

Let � be the relation on the set of non-leaf bags of U defined by A � B if and only if

ℓ(A) ≤ ℓ(B) and r(A) ≤ r(B). We claim that � is a total order. It is immediate that �
is reflexive and transitive. To prove that � is antisymmetric, suppose on the contrary that

A � B and B � A for distinct non-leaf bags A and B. Thus ℓ(A) = ℓ(B) and r(A) = r(B).

5A caterpillar is a tree such that deleting the leaves gives a path.
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Since U has at least three bags, there is a third bag C that contains a vertex in the (ℓ(A)−1)-

column or in the (r(A) + 1)-column. Thus {A,B,C} induce a triangle in U , which is the

desired contradiction. Hence � is antisymmetric. To prove that � is total, suppose on the

contrary that A 6� B and B 6� A for distinct non-leaf bags A and B. Now A 6� B implies that

ℓ(A) > ℓ(B) or r(A) > r(B). Without loss of generality, ℓ(A) > ℓ(B). Thus B 6� A implies

that r(B) > r(A). Hence the interval [ℓ(A), r(A)] is strictly within the interval [ℓ(B), r(B)]

at both ends. For each x ∈ [ℓ(A), r(A)], every vertex in the x-column is in A∪B, as otherwise

U would contain a triangle (since each column is a clique in H). Moreover, every vertex in

the (ℓ(A) − 1)-column or in the (r(A) + 1)-column is in B, as otherwise U would contain a

triangle (since the union of consecutive columns is a clique in H). Thus every neighbour of

every vertex in A is in B. That is, A is a leaf in U . This contradiction proves that � is a

total order on the set of non-leaf bags of U .

Suppose that U has a 4-vertex path (A,B,C,D) as a subgraph.

Thus B and C are non-leaf bags. Without loss of generality, B ≺ C. If every column

contains vertices in both B and C, then B and C and any other bag would induce a triangle

in U (since each column induces a clique in H). Thus some column contains a vertex in B

but no vertex in C, and some column contains a vertex in C but no vertex in B. Let p be

the maximum integer such that some vertex in B is in the p-column, but no vertex in C is in

the p-column. Let q be the minimum integer such that some vertex in C is in the q-column,

but no vertex in B is in the q-column. Now p < q since B ≺ C.

We claim that the (p+1)-column contains a vertex in C. If not, then the (p+ 1)-column

contains no vertex in B by the definition of p. Thus r(B) = p since H[B] is connected. Since

B is adjacent to C in U , ℓ(C) ≤ r(B)+1 = p+1. In particular, the (p+1)-column contains

a vertex in C. Since H[C] is connected, for x ∈ [p + 1, q], each x-column contains a vertex

in C. In fact, ℓ(C) = p + 1 since the p-column contains no vertex in C. By symmetry, for

x ∈ [p, q − 1], each x-column contains a vertex in B, and r(C) = q − 1.

The union of the p-column and the (p + 1)-column only contains vertices in B ∪ C, as

otherwise U would contain a triangle (since the union of two consecutive columns is a clique

in H). By the definition of p, no vertex in the p-column is in C. Thus every vertex in the

p-column is in B. By symmetry, every vertex in the q-column is in C. Now for each y ∈ [k],

the vertices (p, y), (p+1, y), . . . , (q, y) are all in B ∪C, the first vertex (p, y) is in B, and the

last vertex (q, y) is in C. Thus (x, y) ∈ B and (x + 1, y) ∈ C for some x ∈ [p, q − 1]. That

is, in every row of H there is a horizontal edge with one endpoint in B and the other in C.

Thus there are at least k horizontal edges with one endpoint in B and the other in C

(now considered to be bags of T ). For each such horizontal edge vw, each vertex of G −H

adjacent to v and w is in B ∪ C, as otherwise T would contain a triangle. There are

⌈12 (∆ − 3k)⌉ such vertices of G − H for each of the k horizontal edges between B and C.

Thus |B ∪C| ≥ 1
2k(∆− 3k). Thus one of B and C has at least 1

4k(∆ − 3k) vertices. Hence

tpw(G) ≥ 1
4k(∆− 3k) as desired.

Now assume that U has no 4-vertex path as a subgraph.

A tree is a star if and only if it has no 4-vertex path as a subgraph. Hence U is a star.

Let R be the root bag of U . If R contains a vertex in every column then |R| ≥ n, implying
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tpw(G) ≥ n ≥ 1
4k(∆ − 3k), as desired. Now assume that for some x ∈ [n], the x-column of

H contains no vertex in R. Let B be a bag containing some vertex in the x-column. The

x-column induces a clique in H, the only bag in U that is adjacent to B is R, and R contains

no vertex in the x-column. Thus every vertex in the x-column is in B. Since R is the only

bag in U adjacent to B, there are at least k horizontal edges with one endpoint in B and

the other endpoint in R. As in the case when U contained a 4-vertex path, we conclude that

tpw(G) ≥ 1
4k(∆− 3k) as desired. �

Proof of Theorem 2. Let ℓ := ⌈k2⌉. Thus ℓ ≥ 2. By Lemma 4, for each integer ∆ ≥ ∆(k, ǫ) :=

max{3ℓ + 1, 3ℓ8ǫ}, there are infinitely many values of N for which there is a chordal graph

G with N vertices, tree-width tw(G) = 2ℓ − 1 ≤ k, maximum degree ∆(G) ≤ ∆, and

tree-partition-width tpw(G) > 1
4ℓ(∆− 3ℓ), which is at least (18 − ǫ)k∆ since ∆ ≥ 3ℓ

8ǫ . �

A domino tree decomposition6 is a tree decomposition in which each vertex appears in at

most two bags. The domino tree-width of a graph G, denoted by dtw(G), is the minimum

width of a domino tree decomposition of G. Domino tree-width behaves like tree-partition-

width in the sense that dtw(G) ≥ tw(G), and dtw(G) is bounded for graphs of bounded

tree-width and bounded degree [7]. The best upper bound is

dtw(G) ≤
(

9 tw(G) + 7
)

∆(G)
(

∆(G) + 1
)

− 1,

which is due to Bodlaender [6], who also constructed a graph G with

dtw(G) ≥ 1
12 tw(G)∆(G) − 2.

Tree-partition-width and domino tree-width are related in that every graph G satisfies

dtw(G) ≥ tpw(G) − 1,

as observed by Bodlaender and Engelfriet [7]. Thus Theorem 2 provides examples of graphs

G with

dtw(G) ≥ (18 − ǫ) tw(G)∆(G).

This represents a small constant-factor improvement over the above lower bound by Bod-

laender [6].

4. Lower Bound for Tree-width 2

We now prove a lower bound on the tree-partition-width of graphs with tree-width 2.

Theorem 3. For all odd ∆ ≥ 11 there is a chordal graph G with tree-width 2, maximum

degree ∆, and tree-partition-width tpw(G) ≥ 2
3(∆− 1).

Proof. As illustrated in Figure 3, let G be the graph with

V (G) := {r} ∪ {vi : i ∈ [∆]} ∪ {wi,ℓ : i ∈ [∆ − 1], ℓ ∈ [12(∆− 3)]}
and

E(G) := {rvi : i ∈ [∆]}∪{vivi+1 : i ∈ [∆−1]}∪{viwi,ℓ, vi+1wi,ℓ : i ∈ [∆−1], ℓ ∈ [12 (∆−3)]}.
6See [10] for an introduction to tree decompositions.
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Observe that G has maximum degree ∆. Clearly every induced cycle of G is a triangle. Thus

G is chordal. Observe that G has no 4-vertex clique. Thus G has tree-width 2.

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

v1 v13

r

Figure 3. Illustration for Theorem 3 with ∆ = 13.

Let T be the tree-partition of G from Lemma 3. Then T has width tpw(G), and every

bag induces a connected subgraph of G. Let R be the bag containing r. Let B1, . . . , Bd be

the bags, not including R, that contain some vertex vi. Thus R is adjacent to each Bj (since

r is adjacent to each vi). Since {wi,ℓ : i ∈ [∆ − 1], ℓ ∈ [12(∆ − 3)]} is an independent set of

simplicial vertices, by Lemma 3, for each j ∈ [d], the vertices {v1, v2, . . . , v∆} ∩Bj induce a

(connected) subpath of G.

First suppose that d = 0. Then the ∆+1 vertices {r, v1, . . . , v∆} are contained in one bag

R. Thus tpw(G) ≥ ∆+ 1 ≥ 2
3(∆− 1).

Now suppose that d = 1. Thus {r, v1, . . . , v∆} ⊆ R ∪ B1. In addition, at least one edge

vivi+1 has one endpoint in R and the other endpoint in B1. Thus wi,ℓ ∈ R ∪ B1 for each

ℓ ∈ [12 (∆− 3)}]. Hence 1 + ∆ + 1
2(∆ − 3) vertices are contained in two bags. Thus one bag

contains at least 1
4(3∆ − 1) vertices, and tpw(G) ≥ 1

4(3∆ − 1) ≥ 2
3(∆− 1).

Finally suppose that d ≥ 2. Since {v1, v2, . . . , v∆} ∩Bj induce a subpath in each bag Bj,

we can assume that {v1, v2, . . . , v∆} ∩Bj = {vi : i ∈ [f(j), g(j)]}, where
1 ≤ f(1) ≤ g(1) < f(2) ≤ g(2) < · · · < f(d) ≤ g(d) ≤ ∆.

Distinct Bj bags are not adjacent (since T is a tree). Thus vf(j)−1 ∈ R for each j ∈ [2, d].

Similarly, vg(j)+1 ∈ R for each j ∈ [d − 1]. Thus wf(j)−1,ℓ ∈ R ∪ Bj for each j ∈ [2, d] and

ℓ ∈ [12 (∆− 3)}]. Similarly, wg(j),ℓ ∈ R ∪Bj for each j ∈ [d− 1] and ℓ ∈ [12(∆ − 3)}].
Hence the bags R,B1, . . . , Bd contain at least

1 + ∆+ 2(d− 1) · 1
2 (∆− 3)

vertices. Therefore one of these bags has at least

(1 + ∆+ (d− 1)(∆ − 3))/(d + 1)

vertices, which is at least 2
3(∆− 1). Hence tpw(G) ≥ 2

3(∆ − 1). �
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[14] Vida Dujmović, Pat Morin, and David R. Wood. Layout of graphs with bounded

tree-width. SIAM J. Comput., 34(3):553–579, 2005.
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