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Abstract

Let Fn be the binary n-cube, or binary Hamming space of dimen-
sion n, endowed with the Hamming distance, and En (respectively, On)
the set of vectors with even (respectively, odd) weight. For r ≥ 1 and
x ∈ Fn, we denote by Br(x) the ball of radius r and centre x. A code
C ⊆ Fn is said to be r-identifying if the sets Br(x)∩C, x ∈ Fn, are all
nonempty and distinct. A code C ⊆ En is said to be r-discriminating
if the sets Br(x) ∩ C, x ∈ On, are all nonempty and distinct. We
show that the two definitions, which were given for general graphs, are
equivalent in the case of the Hamming space, in the following sense: for
any odd r, there is a bijection between the set of r-identifying codes
in Fn and the set of r-discriminating codes in Fn+1. We then ex-
tend previous studies on constructive upper bounds for the minimum
cardinalities of identifying codes in the Hamming space.
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1 Introduction

We define identifying and discriminating codes in a connected, undirected
graph G = (V,E), in which a code is simply a nonempty subset of vertices.
These definitions can help, in various meanings, to unambiguously determine
a vertex. The motivations may come from processor networks where we
wish to locate a faulty vertex under certain conditions, or from the need to
identify an individual, given its set of attributes.

In G we define the usual distance d(v1, v2) between two vertices v1, v2 ∈
V as the smallest possible number of edges in any path between them. For
an integer r ≥ 0 and a vertex v ∈ V , we define Br(v) (respectively, Sr(v)),
the ball (respectively, sphere) of radius r centred at v, as the set of vertices
within distance (respectively, at distance exactly) r from v. Whenever two
vertices v1 and v2 are such that v1 ∈ Br(v2) (or, equivalently, v2 ∈ Br(v1)),
we say that they r-cover each other. A set X ⊆ V r-covers a set Y ⊆ V if
every vertex in Y is r-covered by at least one vertex in X.

The elements of a code C ⊆ V are called codewords. For each vertex
v ∈ V , we denote by

KC,r(v) = C ∩Br(v)

the set of codewords r-covering v. Two vertices v1 and v2 with KC,r(v1) 6=
KC,r(v2) are said to be r-separated by code C, and any codeword belonging
to exactly one of the two sets Br(v1) and Br(v2) is said to r-separate v1
and v2.

A code C ⊆ V is called r-identifying [12] if all the sets KC,r(v), v ∈ V ,
are nonempty and distinct. In other words, every vertex is r-covered by at
least one codeword, and every pair of vertices is r-separated by at least one
codeword. Such codes are also sometimes called differentiating dominating
sets [9].

We now suppose that G is bipartite: G = (V = I ∪A,E), with no edges
inside I nor A — here, A stands for attributes and I for individuals. A code
C ⊆ A is said to be r-discriminating [4] if all the sets KC,r(i), i ∈ I, are
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nonempty and distinct. From the definition we see that we can consider
only odd values of r.

In the following, we drop the general case and turn to the binary Ham-
ming space of dimension n, also called the binary n-cube, which is a regular
bipartite graph. First we need to give some specific definitions and notation.

We consider the n-cube as the set of binary row-vectors of length n, and
as so, we denote it by G = (Fn, E) with F = {0, 1} and E = {{x, y} :
d(x, y) = 1}, the usual graph distance d(x, y) between two vectors x and y
being called here the Hamming distance — it simply consists of the number
of coordinates where x and y differ. The Hamming weight of a vector x is its
distance to the all-zero vector, i.e., the number of its nonzero coordinates. A
vector is said to be even (respectively, odd) if its weight is even (respectively,
odd), and we denote by En (respectively, On) the set of the 2n−1 even (re-
spectively, odd) vectors in Fn. Without loss of generality, for the definition
of an r-discriminating code, we choose the set A to be En, and the set I to
be On. Additions are carried coordinatewise and modulo two.

We denote by 0n (respectively, 1n) the all-zero (respectively, all-one)
vector of length n. Given a vector x ∈ Fn, we denote by π(x) its parity-
check bit: π(x) = 0 if x is even, π(x) = 1 if x is odd. Therefore, if | stands for
concatenation of vectors, x|π(x) is an even vector. For two sets X ⊆ Fn1 ,
Y ⊆ Fn2 , the direct sum of X and Y , denoted by X ⊕ Y , is defined by
X ⊕ Y = {x|y ∈ Fn1+n2 : x ∈ X, y ∈ Y }. Finally, we denote by Mr(n)
(respectively, Dr(n)) the smallest possible cardinality of an r-identifying
(respectively, r-discriminating) code in Fn.

In Section 2, we show that in the particular case of Hamming space, the
two notions of r-identifying and r-discriminating codes actually coincide for
all odd values of r and all n ≥ 2, in the sense that there is a bijection between
the set of r-identifying codes in Fn and the set of r-discriminating codes
in Fn+1. In Section 3, we give various methods for constructing identifying
codes, thus obtaining, in Section 4, upper bounds on Mr(n), of which several
are new. These bounds are summarized in Tables at the end of the paper.

2 Identifying is discriminating

As we now show with the following two theorems, for any odd r ≥ 1, any
r-identifying code in Fn can be extended into an r-discriminating code in
Fn+1, and any r-discriminating code in Fn can be shortened into an r-
identifying code in Fn−1. First, observe that r-identifying codes exist in Fn

if and only if r < n.

Theorem 1 Let n ≥ 2, p ≥ 0 be such that 2p + 1 < n, let C ⊆ Fn be a
(2p + 1)-identifying code and let

C ′ = {c|π(c) : c ∈ C}.
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Then C ′ is (2p+ 1)-discriminating in Fn+1. Therefore,

D2p+1(n+ 1) ≤ M2p+1(n). (1)

Proof. Let r = 2p+1. By construction, C ′ contains only even vectors. We
shall prove that (a) any odd vector x ∈ On+1 is r-covered by at least one
codeword of C ′; (b) given any two distinct odd vectors x, y ∈ On+1, there is
at least one codeword in C ′ which r-separates them.

(a) We write x = x1|x2 with x1 ∈ Fn and x2 ∈ F . Because C is
r-identifying in Fn, there is a codeword c ∈ C with d(x1, c) ≤ r. Let
c′ = c|π(c).

If d(x1, c) ≤ r − 1, then whatever the values of x2 and π(c) are, we
have d(x, c′) ≤ r; we assume therefore that d(x1, c) = r = 2p + 1, which
implies that x1 and c have different parities. Since x1|x2 and c|π(c) also
have different parities, we have x2 = π(c) and d(x, c′) = r. So the codeword
c′ ∈ C ′ r-covers x.

(b) We write x = x1|x2, y = y1|y2, with x1, y1 ∈ Fn, x2, y2 ∈ F . Since
C is r-identifying in Fn, there is a codeword c ∈ C which is, say, within
distance r from x1 and not from y1: d(x1, c) ≤ r, d(y1, c) > r. Let c′ =
c|π(c).

For the same reasons as above, x is within distance r from c′, whereas
obviously, d(y, c′) ≥ d(y1, c) > r. So c′ ∈ C ′ r-separates x and y.

Inequality (1) follows. �

Theorem 2 Let n ≥ 3, p ≥ 0 be such that 2p + 2 < n, let C ⊆ En be a
(2p+ 1)-discriminating code and let C ′ ⊆ Fn−1 be any code obtained by the
deletion of one coordinate in C. Then C ′ is (2p + 1)-identifying in Fn−1.
Therefore,

M2p+1(n− 1) ≤ D2p+1(n). (2)

Proof. Let r = 2p + 1. Let C ⊆ En be an r-discriminating code and
C ′ ⊆ Fn−1 be the code obtained by deleting, say, the last coordinate in C.
We shall prove that (a) any vector x ∈ Fn−1 is r-covered by at least one
codeword of C ′; (b) given any two distinct vectors x, y ∈ Fn−1, there is at
least one codeword in C ′ which r-separates them.

(a) The vector x|(π(x) + 1) ∈ Fn is odd. As such, it is r-covered by a
codeword c = c′|u ∈ C ⊆ En: c′ ∈ C ′, u = π(c′), and d(x|(π(x) + 1), c) ≤ r.
This proves that x is within distance r from a codeword of C ′.

(b) Both x|(π(x) + 1) and y|(π(y) + 1) are odd vectors in Fn, and there
is a codeword c = c′|u ∈ C ⊆ En, with c′ ∈ C ′, u = π(c′), which r-
separates them: without loss of generality, d(x|(π(x) + 1), c) ≤ r whereas
d(y|(π(y) + 1), c), which is an odd integer, is at least r+2. Then obviously,
d(x, c′) ≤ r and d(y, c′) ≥ r + 1, i.e., there is a codeword in C ′ which r-
separates x and y.

Inequality (2) follows. �
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Corollary 3 For all n ≥ 2 and p ≥ 0 such that 2p + 1 < n, we have:

D2p+1(n+ 1) = M2p+1(n).

�

It follows that, in the Hamming space, the complexity of problems on dis-
criminating codes is the same as that for identifying codes; in particular, it
is known [11] that deciding whether a given code C ⊆ Fn is r-identifying is
co-NP-complete.

We now turn to constructions of identifying codes in the n-cube, since
this is equivalent to our initial goal of constructing discriminating codes.

For previous works, we refer to, e.g., [1]–[3], [7], [10], [11] or [12]. In the
recent [8], tables for exact values or bounds on M1(n), 2 ≤ n ≤ 19, and
M2(n), 3 ≤ n ≤ 21, are given.

3 Constructing identifying codes

We use the notation (r, n) or (r, n)K for a code in Fn which is r-identifying
and has K elements. Our constructions will use Theorem 5 below, as well
as various heuristics.

3.1 Extending an identifying code

In the constructions of Theorems 5 and 6 below, we use a new definition: a
code is called r-separating if every pair of vertices is r-separated by at least
one codeword [2, Sec. 3] (we do not require anymore that every vertex be
r-covered by at least one codeword). The following remark and lemma are
easy.
Remark 1.

(i) For 0 ≤ r ≤ n − 1, a code C ⊆ Fn is r-separating if, and only if, it
is also (n − r − 1)-separating, because Br(x) = Fn \Bn−r−1(x+ 1n) for all
x ∈ Fn.

(ii) Since a separating code is such that at most one vertex can be covered
by zero codeword, the size of an optimum r-separating code in Fn is Mr(n)
or Mr(n)− 1, and we have:

Mmax{r,n−r−1}(n) ≤ Mmin{r,n−r−1}(n) ≤ Mmax{r,n−r−1}(n) + 1, (3)

i.e., the symmetry, with respect to ⌊(n−1)/2⌋, observed for separating codes,
still holds, within one, for identifying codes.

Lemma 4 For all p ≥ 1 and ∆ ∈ {0, 1, . . . , p − 1}, the set F p \ {0p} is
∆-separating. �
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The following theorem is inspired by [12, Th. 9] and [8, Ex. 2 and Th. 4].
Starting with an (r, n) code C, we intend to see how the direct sum C ⊕F p

can be used for constructing an (r, n + p) code. In construction C2, k is an
additional parameter on which we can act.

More comments on how to understand and use this theorem are given
after its statement.

Theorem 5 Let r ≥ 1, p ≥ 1, and k ∈ {0, 1, . . . , p − 1}; let C be an (r, n)
code and

Xp = {x ∈ Fn : ∀c ∈ C, d(x, c) ≤ r − p or d(x, c) > r}.

Construction C1: Let Yp ⊆ Fn be a (minimum) set such that for every
x ∈ Xp there exists y ∈ Yp with r − p+ 1 ≤ d(x, y) ≤ r. Then

C ′ =
(

C ⊕ F p
)

∪
(

Yp ⊕ (F p \ {0p})
)

(4)

is (r, n + p).
Construction C2: Let Yp,k ⊆ Fn be a (minimum) set such that for every

x ∈ Xp there exists y ∈ Yp,k with d(x, y) = r−k, and let Cp,k be a (minimum)
k-separating code in F p. Then

C ′ = (C ⊕ F p) ∪ (Yp,k ⊕ Cp,k) (5)

is (r, n + p).

Proof. See the proof of Theorem 6, which contains Theorem 5 as a parti-
cular case. �

Theorem 5 calls for several remarks, in order to make its dry technicity more
friendly.

Remark 2. Ideally, Xp = ∅; then C ⊕ F p is (r, n + p). This is Th. 4 in [8]
(Th. 1 in [3] for r = 1). This is the case as soon as p ≥ r + 1, cf. Cor. 3
in [8] (Th. 2 in [3] for r = 1). Therefore we can limit ourselves to

p ≤ r.

On the other hand, we have

X1 ⊇ X2 ⊇ . . . ⊇ Xr,

so the smaller the number p, probably the more difficult to jump to length
n+ p without having a large set Yp or Yp,k.

Remark 3. In construction C1, we build a minimum set Yp using the union
of p spheres of radii ranging from r− p+1 to r, whereas in construction C2,
for Yp,k we use only one sphere of radius r − k. We can therefore hope for
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a set Yp (much) smaller than each set Yp,k. The price to pay is that |Yp| has
to be multiplied by 2p − 1, whereas |Yp,k| has a (much) smaller factor.

When k = 0 or k = p−1, the smallest k-separating codes in F p have size
2p − 1, and construction C2 is not better than construction C1; therefore,
for construction C2 we can limit ourselves to the cases

1 ≤ k ≤ p− 2, 3 ≤ p ≤ r.

For different values of p and k, it seems very difficult to compare construc-
tions C1 and C2, or constructions C2 between themselves. For a fixed p, k
varies from 1 to p− 2. When k increases, up to ⌊(p− 1)/2⌋, it may be that
|Yp,k| increases and |Cp,k| decreases (and, by Remark 1(i) before Theorem 5,
in this case |Cp,k| would increase when k ranges from ⌊(p−1)/2⌋+1 to p−2);
but actually the former hypothesis highly depends on particular situations
(see Example 1 below), and the latter, more general, remains to be proved.

Example 1. In F 10, consider the five vectors x1 = 12|08, x2 = 02|12|06,
x3 = 04|12|04, x4 = 06|12|02, x5 = 08|12. Then 010 is at distance two from
each of them, but it is easy to see that it is impossible to find a vector which
is at distance one from each of them or a vector which is at distance three
from each of them. So, if Xp = {x1, x2, x3, x4, x5}, then we have |Yp,r| = 5,
|Yp,r−1| > 1, |Yp,r−2| = 1 and |Yp,r−3| > 1.

This could indicate that, in the absence of information on |Yp,k|, a reasonable
bet is to take k = ⌊(p − 1)/2⌋, assuming that |Cp,k| is minimum for this k.
Let us give two small examples.

Example 2. We use the notation of Theorem 5.
– Case p = 3; r ≥ 3, k = 1.

Y3 is such that d(x, y) = r − 2, r − 1 or r, and |Y3| is multiplied by 7.
Y3,1 is such that d(x, y) = r − 1, and |Y3,1| is multiplied by M1(3) − 1 = 3:
C3,1 = {000, 001, 100} is 1-separating in F 3 (but not 1-identifying: 111 is
not 1-covered by C3,1).

– Case p = 5; r ≥ 5, k ∈ {1, 2, 3}.
Y5: d(x, y) ∈ {r − 4, r − 3, r − 2, r − 1, r}, and |Y5| multiplied by 31.
Y5,1: d(x, y) = r − 1, |Y5,1| multiplied by M1(5) = 10 or by M1(5) − 1 = 9.
Y5,2: d(x, y) = r − 2, |Y5,2| multiplied by M2(5) = 6 or by M2(5)− 1 = 5.
Y5,3: d(x, y) = r − 3, |Y5,3| multiplied by M1(5) = 10 or by M1(5) − 1 = 9.

Remark 4. The definition of C ′ shows that |C| will have a factor 2p, so it
seems best, in general, to take a code C as small as possible. However, it
may be that a larger C, together with a (smaller) Xp inducing a smaller Yp

or Yp,k, gives better results. In practice, since one cannot try everything, we
were led to use the best identifying codes at our disposal.

Open problem. Among all (r, n) codes C with |C| = Mr(n), is there
at least one such that the set Xr defined in Theorem 5 is empty? If the
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answer is YES, then Mr(n + r) ≤ 2rMr(n); in particular, we would have
M1(n + 1) ≤ 2M1(n). Could this be true for Xp for any p ∈ {1, . . . , r}, so
that we would have Mr(n+ p) ≤ 2pMr(n)?

It is possible to generalize the previous construction, changing both length
(from n to n + p) and radius (from r1 to r1 + r2), the case r2 = 0 being
exactly Theorem 5.

Theorem 6 Let r1 ≥ p ≥ r2 ≥ 1, and k ∈ {0, 1, . . . , p − 1}; let C be an
(r1, n) code and

Xp,r2 = {x ∈ Fn : ∀c ∈ C, d(x, c) ≤ r1 − p+ r2 or d(x, c) > r1 + r2}.

Construction C1: Let Yp,r2 ⊆ Fn be a (minimum) set such that for every
x ∈ Xp,r2 there exists y ∈ Yp,r2 with r1−p+ r2+1 ≤ d(x, y) ≤ r1+ r2. Then

C ′ =
(

C ⊕ F p
)

∪
(

Yp,r2 ⊕ (F p \ {0p})
)

is (r1 + r2, n+ p).
Construction C2: Let Yp,r2,k ⊆ Fn be a (minimum) set such that for

every x ∈ Xp,r2 there exists y ∈ Yp,r2,k with d(x, y) = r1 + r2 − k, and let
Cp,k be a (minimum) k-separating code in F p. Then

C ′ = (C ⊕ F p) ∪ (Yp,r2,k ⊕ Cp,k)

is (r1 + r2, n+ p).

Proof. First, we prove, in both constructions, C1 and C2, that any x ∈ Fn+p

is (r1 + r2)-covered by a codeword in C ′. We write x = x1|x2 with x1 ∈ Fn,
x2 ∈ F p. Because C is r1-identifying in Fn, there is a codeword c ∈ C
such that d(c, x1) ≤ r1. Therefore, d(c|x2, x1|x2) ≤ r1 ≤ r1 + r2, with
c|x2 ∈ C ⊕ F p ⊆ C ′.

Next, we prove that, given any two vectors x, y ∈ Fn+p (x 6= y), there
is a codeword in C ′ which (r1 + r2)-separates them. We write x = x1|x2,
y = y1|y2, with x1, y1 ∈ Fn, x2, y2 ∈ F p. We distinguish between four
cases. The first three cases, (i)—(iii), work for both constructions C1 and C2,
because only C ⊕ F p is needed.

(i) x1 6= y1, x2 6= y2. Then there is a codeword c ∈ C such that,
say, d(c, x1) ≤ r1 and d(c, y1) > r1. If r2 ≤ p − 1, then two spheres with
radius r2 and distinct centres are different in F p, and one is not included in
the other. So there is a vector v ∈ F p which is within distance r2 from x2
and not from y2. If r2 = p, we take v = y2 + 1p, so that d(v, y2) = r2 and
d(v, x2) ≤ r2.

In both cases, d(c|v, x1|x2) ≤ r1 + r2 and d(c|v, y1|y2) > r1 + r2, with
c|v ∈ C ⊕ F p ⊆ C ′.

(ii) x1 6= y1, x2 = y2. Apply the argument in (i) with v = x2+1r2 |0p−r2 .
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(iii) x2 6= y2 and x1 = y1 /∈ Xp,r2 . Then there is a codeword c ∈ C such
that r1 − p+ r2 +1 ≤ d(c, x1) ≤ r1 + r2. If we set ∆ = r1 + r2 − d(c, x1), we
see that 0 ≤ ∆ ≤ p−1. Therefore, as in case (i), we can find a vector v ∈ F p

which is within distance ∆ from x2 and not from y2. Now d(c|v, x1|x2) ≤
d(c, x1) + ∆ = r1 + r2 and d(c|v, x1|y2) > d(c, x1) + ∆ = r1 + r2, with
c|v ∈ C ⊕ F p ⊆ C ′.

(iv) x2 6= y2 and x1 = y1 ∈ Xp,r2 .
In construction C1, there is a vector z ∈ Yp,r2 such that r1− p+ r2+1 ≤

d(z, x1) ≤ r1 + r2. Then if we set ∆ = r1 + r2 − d(z, x1), we see that
0 ≤ ∆ ≤ p − 1, and by Lemma 4, there is a vector v ∈ F p \ {0p} which is
within distance ∆ from x2 and not from y2, or the other way round. Then
d(z|v, x1|x2) ≤ d(z, x1) + ∆ = r1 + r2 and d(z|v, x1|y2) > d(z, x1) + ∆ =
r1 + r2, or the other way round, with z|v ∈ Yp,r2 ⊕ (F p \ {0p}) ⊆ C ′, and we
have proved that x and y are (r1 + r2)-separated by C ′.

In construction C2, there is a vector z ∈ Yp,r2,k such that d(z, x1) =
r1 + r2 − k and a codeword c ∈ Cp,k such that, say, d(c, x2) ≤ k and
d(c, y2) > k. Then d(z|c, x1|x2) ≤ r1 + r2 and d(z|c, x1|y2) > r1 + r2,
with z|c ∈ Yp,r2,k ⊕ Cp,k ⊆ C ′. �

3.2 Heuristics : noising and greedy

We have mentioned at the end of Section 2 a result on complexity which
suggests that constructing good identifying or discriminating codes in the
Hamming space might be hard.

Here, we use two different heuristic methods in order to build good
identifying codes from scratch, noising and greedy.

Noising algorithms have already been used in [6] for the construction of
identifying codes in various grids; they constitute a family of metaheuristics,
of which one is a generalization of simulated annealing [5]. Another of these
consists of the following. Once r, n and a number of codewords, c, have been
fixed, we consider codes C ⊆ Fn with c codewords, and we define NC(C) as
the number of vectors which are not r-covered by C, NS(C) as the number
of pairs of vectors not r-separated by C, and the evaluation function

f(C) = NC(C) +NS(C),

which we try to make equal to zero. An initial random code is chosen, which
will be the current code C. We iteratively modify the current code, using
an elementary transformation which consists in replacing a codeword by a
noncodeword, thus keeping |C| = c.

Now when do we accept an elementary transformation? We cyclically go
through all codewords: after looking into the last codeword, we start again
with the first one. Looking into a codeword m means that we go through
all vectors s in Fn \ C, we note Cm,s = C \ {m} ∪ {s}, and we compute

∆(C,m, s) = f(Cm,s)− f(C).

9



For each s, we also compute a noised value

∆noise(C,m, s) = ∆(C,m, s) + (ρ× ln(R)),

where ρ is a tuning parameter which we make decrease, and R is a number
which is randomly chosen for each new elementary transformation (see below
for more details).

If there is a vector s for which ∆(C,m, s) < 0, then we keep a vector s0
which minimizes ∆(C,m, s).

If for all vectors s, we have ∆(C,m, s) ≥ 0, then we look for a vector s0
which minimizes ∆noise(C,m, s), and we keep s0 only if ∆noise(C,m, s0) < 0.

If a vector s0 has been found in one of the two cases above, then we apply
the elementary transformation with C,m and s0, so that C becomes C \{m}
∪ {s0}. Otherwise, the current code is not modified after looking into m.
After each accepted elementary transformation, we check the evaluation
function of the current code: if f(C) = 0, then C is r-identifying.

If we have found an identifying code, we reinitialize the process by re-
moving from the current code C a codeword m which minimizes f(C \{m}),
and we cyclically go through the remaining codewords.

The parameter R is a real number, randomly chosen, in a uniform way,
between zero and one; the noising rate ρ is a positive real number which we
decrease arithmetically from an initial value down to zero, and for each value
of ρ, we cyclically go through the codewords a certain number of times.

Greedy algorithms are based on the following simple idea: starting from an
empty code C, at each step we choose to add in C a codeword m which will
maximize f(C)−f(C∪{m}). In case of a tie, the choice is made at random.

4 Results

We give tables of lower and upper bounds on Mr(n) for 1 ≤ r ≤ 5, 1 ≤ n ≤
21. There are boldface figures when the exact value is known. Up to now,
the most extensive tables (r = 1, n ≤ 19, and r = 2, n ≤ 21) had been given
in [8].

4.1 Using heuristics

The upper bounds which are marked by a star in our Tables were obtained
by noising methods, whereas a double star indicates a result obtained by a
greedy algorithm. For instance, the code consisting of the length-9 binary
expressions of the following 114 integers
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0 1 8 14 17 20 23 29 31 32 37 39
45 49 58 59 70 72 73 75 79 82 84 99
101 118 120 121 122 126 129 131 139 140 142 148
154 157 172 177 182 183 186 188 194 209 215 216
219 222 226 227 228 233 239 240 247 263 264 267
268 274 276 295 297 300 306 314 317 319 323 325
339 344 348 350 352 358 364 367 368 369 374 383
391 393 395 404 405 406 409 414 416 418 420 425
435 440 448 452 453 458 461 467 475 485 489 490
494 495 499 508 509 510

is a (1, 9)114 code obtained by noising. All our best codes can be found, in
the same form, at

http://www.infres.enst.fr/∼charon/identifyingNcube.html

4.2 Applying Theorem 5

As more or less direct consequences of the results obtained by noising and
greedy methods, we also obtain the following results — note that the various
sets Yi, Yi,j below are obtained via a greedy-type algorithm.

(1) Using [8, Cor. 3] ([3, Th. 2] for r = 1), mentioned in Remark 2:

M1(21) ≤ 4M1(19) ≤ 262144. (6)

M2(19) ≤ 8M2(16) ≤ 14864; M2(20) ≤ 16M2(16) ≤ 29728; (7)

M2(21) ≤ 32M2(16) ≤ 59456. (8)

M3(18) ≤ 16M3(14) ≤ 2896; M3(19) ≤ 32M3(14) ≤ 5792; (9)

M3(20) ≤ 64M3(14) ≤ 11584; M3(21) ≤ 128M3(14) ≤ 23168. (10)

M4(19) ≤ 32M4(14) ≤ 2432; M4(20) ≤ 64M4(14) ≤ 4864; (11)

M4(21) ≤ 128M4(14) ≤ 9728. (12)

M5(19) ≤ 64M5(13) ≤ 1792; M5(20) ≤ 128M5(13) ≤ 3584; (13)

M5(21) ≤ 256M5(13) ≤ 7168. (14)

(2a) Because we have a (1, 13)1322 code with X1 = ∅, we have

M1(14) ≤ 2 · 1322 = 2644. (15)
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(2b) We have a (1, 15)4848 code with |X1| = 128; unfortunately, because of
the distance distribution in X1, it is impossible to obtain a set Y1 with fewer
than 128 elements, and therefore, by construction C1:

M1(16) ≤ 2 · 4848 + 128 = 9824. (16)

(2c) Because the (1, 19)65536 code from [8] is such that every vector is 1-
covered by at least two codewords, we have X1 = ∅ and

M1(20) ≤ 2 · 65536 = 131072. (17)

(2d) We have a (2, 16)1858 code with |X1| = 441 and we found a corres-
ponding set Y1 with 151 elements; therefore, by construction C1:

M2(17) ≤ 2 · 1858 + 151 = 3867. (18)

The same (2, 16)1858 code has |X2| = 283, with |Y2| = 105, consequently:

M2(18) ≤ 4 · 1858 + 105 · 3 = 7747. (19)

(2e) We have a (3, 14)181 code with |X1| = 60 and a set Y1 with 13 elements;
therefore,

M3(15) ≤ 2 · 181 + 13 = 375. (20)

This (3, 14)181 code has |X2| = 6, a set Y2 with 4 elements, and we obtain:

M3(16) ≤ 4 · 181 + 4 · 3 = 736. (21)

The same (3, 14)181 code has X3 = ∅, and

M3(17) ≤ 8 · 181 = 1448. (22)

(2f) We have a (4, 14)76 code with |X1| = 26, |Y1| = 4, yielding

M4(15) ≤ 2 · 76 + 4 = 156. (23)

The same (4, 14)76 code has X2 = X3 = X4 = {7577, 8802}; these two
numbers represent two length-14 vectors at distance 13 from one another,
so all the sets Yi, Yi,j have size two for i = 2, 3, 4. In particular, |Y2| =
|Y3,1| = |Y4,1| = 2; therefore, by construction C1:

M4(16) ≤ 4 · 76 + 2 · 3 = 310, (24)

and by construction C2:

M4(17) ≤ 8 · 76 + 2 · 3 = 614, M4(18) ≤ 16 · 76 + 2 · 6 = 1228, (25)

because optimum 1-separating codes have size three in F 3 (see Example 2)
and have size six in F 4 — this comes from Remark 1(ii) on separating codes
and the fact that M1(4) = 7 and M2(4) = 6 (see Tables 1 and 2).
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(2g) We have a (5, 13)28 code with |X1| = 43, |Y1| = 4, yielding

M5(14) ≤ 2 · 28 + 4 = 60. (26)

This (5, 13)28 code has |X2| = 1, |Y2| = 1, and therefore

M5(15) ≤ 4 · 28 + 1 · 3 = 115. (27)

This same (5, 13)28 code has X3 = X4 = X5 = ∅, and so:

M5(16) ≤ 8·28 = 224, M5(17) ≤ 16·28 = 448, M5(18) ≤ 32·28 = 896. (28)

All the nonempty sets Xi, Yi, Yi,j mentioned above are given at
http://www.infres.enst.fr/∼charon/identifyingNcube.html

4.3 Further improvements: removing codewords

Perhaps Theorems 5 and 6 can be sharpened, since in practice we observe
(with the help of a computer) that the sizes of several codes obtained by
Theorem 5 can be reduced by simply removing some of their codewords,
which are “useless”. This can also be done with two of the codes obtained
by a greedy algorithm.

As a consequence, we have new upper bounds for some values of n and r,
which are marked by a triple star in the Tables. The corresponding codes
can be found at

http://www.infres.enst.fr/∼charon/identifyingNcube.html
We can observe that when r increases, the reductions can be drastic —
almost 50% in the case r = 5, n = 18 !

4.4 Re-applying Theorem 5

We can again use Theorem 5 with the newly improved codes obtained in
Section 4.3.

(3a) We have a (2, 20)29346 code with X1 = ∅, and so

M2(21) ≤ 2 · 29346 = 58692. (29)

(3b) We have a (3, 19)5532 code with X1 = X2 = ∅, and so

M3(20) ≤ 2 · 5532 = 11064, M3(21) ≤ 4 · 5532 = 22128. (30)

(3c) We have a (4, 18)1045 code with |X1| = 2, |Y1| = 2, yielding

M4(19) ≤ 2 · 1045 + 2 = 2092. (31)

This (4, 18)1045 code has X2 = X3 = ∅ and therefore

M4(20) ≤ 4 · 1045 = 4180, M4(21) ≤ 8 · 1045 = 8360. (32)
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(3d) We have a (5, 18)454 code with |X1| = 1, |Y1| = 1, yielding

M5(19) ≤ 2 · 454 + 1 = 909. (33)

This (5, 18)454 code has |X2| = 1, |Y2| = 1, and therefore

M5(20) ≤ 4 · 454 + 1 · 3 = 1819. (34)

This same (5, 18)454 code has X3 = ∅, and so:

M5(21) ≤ 8 · 454 = 3632. (35)

Due to time and space limitations, we could not try to remove codewords
from these new codes.

4.5 Tables

We give our results for 1 ≤ r ≤ 5, r + 1 ≤ n ≤ 21. For some values of r
and n, we give two upper bounds, the first one from Section 4.2, the second
one from Sections 4.3 or 4.4, so that one can see how we used Theorem 5
then possibly removed codewords and possibly reused Theorem 5.

We think that there is still room for ameliorations, and we encourage
the reader to improve on these upper bounds.

Key to Tables

Lower bounds Upper bounds

a [12, Th. 1(iii)] A [12]
b [12, Th. 2] B Mn−1(n) = 2n − 1 [2, Th. 5]
c [12, Th. 3] C [3, Th. 4]
d [3, Th. 4] D [3, Th. 5]
e [3, Th. 11] E [3, Th. 6]
f Mn−1(n) = 2n − 1 [2, Th. 5] F [8, Tables 3 and 4]
g [2, Th. 6] G [7]
h [8, Table 4] H [2, Th. 6]
i [13, Cor. 4] ∗ noising
j [13, Cor. 5] ∗∗ greedy
k [13, Cor. 7] ∗∗∗ removing codewords
ℓ by (3) and M1(5) = 10 (x) inequality (x)
m [14, Table 3.1]
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n lower bound 1st upper bound 2nd upper bound

2 a 3 3 B
3 b 4 4 A
4 d 7 7 C
5 b 10 10 A
6 c 18 19 D
7 e 32 32 E
8 c 56 62 G,F
9 c 101 114∗

10 c 183 211∗

11 c 337 352 F
12 c 623 688∗

13 c 1158 1322∗

14 c 2164 2644 (15)
15 c 4063 4848∗

16 c 7654 9824 (16) 9779∗∗∗

17 c 14469 19043∗∗ 19026∗∗∗

18 c 27434 36423∗∗ 36406∗∗∗

19 c 52155 65536 F
20 c 99392 131072 (17)
21 c 189829 262144 (6)

Table 1: Lower and upper bounds, r = 1.

n lower bound 1st upper bound 2nd upper bound

3 f 7 7 B
4 g 6 6 H
5 a 6 6 H
6 a 8 8 H
7 h 14 14 F
8 h 20 21 F
9 m 26 32∗

10 i 41 60∗

11 i 67 106∗∗

12 i 112 185∗∗

13 i 190 328∗∗

14 i 326 580∗∗

15 i 567 1032∗∗

16 i 995 1858∗∗

17 i 1761 3867 (18) 3785∗∗∗

18 i 3141 7747 (19) 7609∗∗∗

19 i 5638 14864 (7) 14673∗∗∗

20 i 10179 29728 (7) 29346∗∗∗

21 i 18471 59456 (8) 58692 (29)

Table 2: Lower and upper bounds, r = 2.
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n lower bound 1st upper bound 2nd upper bound

4 f 15 15 B
5 ℓ 9 10∗

6 a 7 7∗

7 a 8 8∗

8 a 10 13∗

9 a 13 17∗

10 a 18 28∗

11 a 25 37∗∗

12 a 39 68∗∗

13 a 61 112∗∗

14 a 95 181∗∗

15 a 151 375 (20) 356∗∗∗

16 a 241 736 (21) 700∗∗∗

17 a 383 1448 (22) 1387∗∗∗

18 a 608 2896 (9) 2766∗∗∗

19 a 959 5792 (9) 5532∗∗∗

20 k 1593 11584 (10) 11064 (30)
21 j 2722 23168 (10) 22128 (30)

Table 3: Lower and upper bounds, r = 3.

n lower bound 1st upper bound 2nd upper bound

5 f 31 31 B
6 a 7 18∗

7 a 8 14∗

8 a 9 13∗

9 a 10 14∗

10 a 12 16∗

11 a 15 20∗

12 a 19 34∗∗

13 a 27 48∗∗

14 a 38 76∗∗

15 a 54 156 (23) 142∗∗∗

16 a 77 310 (24) 272∗∗∗

17 a 121 614 (25) 530∗∗∗

18 a 190 1228 (25) 1045∗∗∗

19 a 304 2432 (11) 2092 (31)
20 a 489 4864 (11) 4180 (32)
21 a 792 9728 (12) 8360 (32)

Table 4: Lower and upper bounds, r = 4.
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n lower bound 1st upper bound 2nd upper bound

6 f 63 63 B
7 a 8 35∗

8 a 9 22∗

9 a 10 17∗

10 a 11 19∗

11 a 12 19∗∗

12 a 14 25∗∗

13 a 17 28∗∗

14 a 21 60 (26) 48∗∗∗

15 a 28 115 (27) 75∗∗∗

16 a 37 224 (28) 127∗∗∗

17 a 53 448 (28) 232∗∗∗

18 a 77 896 (28) 454∗∗∗

19 a 112 1792 (13) 909 (33)
20 a 161 3584 (13) 1819 (34)
21 a 229 7168 (14) 3632 (35)

Table 5: Lower and upper bounds, r = 5.

4.6 Conclusion

By mixing both heuristic and theoretical constructing arguments, we were
able to present numerous upper bounds on Mr(n), the smallest possible
cardinality of an r-identifying code in Fn: we first used heuristics for con-
structions of codes from scratch, we then used some of these codes to build
new codes with the help of Theorem 5; after that, the computer possibly re-
moved codewords from these codes, and eventually we reapplied Theorem 5.

There still remains a large, challenging gap between the lower and upper
bounds for most of the values of r, n in Tables 1–5.

Of course, all these bounds are transposable to discriminating codes, by
Corollary 3.
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