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The largest and the smallest fixed points of permutations

Emeric Deutsch ∗ Sergi Elizalde †

Abstract

We give a new interpretation of the derangement numbers dn as the sum of the
values of the largest fixed points of all non-derangements of length n− 1. We also show
that the analogous sum for the smallest fixed points equals the number of permutations
of length n with at least two fixed points. We provide analytic and bijective proofs of
both results, as well as a new recurrence for the derangement numbers.

1 Largest fixed point

Let [n] = {1, 2, . . . , n}, and let Sn denote the set of permutations of [n]. Throughout
the paper, we will represent permutations using cycle notation unless specifically stated
otherwise. Recall that i is a fixed point of π ∈ Sn if π(i) = i. Denote by Dn the set
of derangements of [n], i.e., permutations with no fixed points, and let dn = |Dn|. Given
π ∈ Sn \ Dn, let ℓ(π) denote the largest fixed point of π. Let

an,k = |{π ∈ Sn : ℓ(π) = k}|.

Clearly,
an,1 = dn−1 and an,n = (n− 1)!. (1)

It also follows from the definition that

an,k = dn−1 +
k−1∑

j=1

an−1,j, (2)

since by removing the largest fixed point k of a permutation in Sn\Dn, we get a permutation
of {1, . . . , k − 1, k + 1, . . . , n} whose largest fixed point (if any) is less than k. If in (2) we
replace k by k − 1, then by subtraction we obtain

an,k = an,k−1 + an−1,k−1 (3)

for k ≥ 2, or equivalently, an,k = an,k+1 − an−1,k for k ≥ 1. Together with the second
equation in (1), it follows that the numbers an,k form Euler’s difference table of the factorials
(see [2, 3, 4]). Table 1 shows the values of an,k for small n. The combinatorial interpretation
given in [2, 3] is that a(n, k) is the number of permutations of [n − 1] where none of
k, k + 1, . . . , n − 1 is a fixed point. This interpretation is clearly equivalent to ours using
the same reasoning behind equation (2).
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n\k 1 2 3 4 5 6

1 1
2 0 1
3 1 1 2
4 2 3 4 6
5 9 11 14 18 24
6 44 53 64 78 96 120

Table 1: The values of an,k for n up to 6.

We point out that it is possible to give a direct combinatorial proof of the recurrence (3)
from our definition of the an,k. Indeed, let π ∈ Sn with ℓ(π) = k. If π(1) = m 6= 1, then
the permutation of [n] obtained from the one-line notation of π by moving m to the end,
replacing 1 with n+1, and subtracting one from all the entries has largest fixed point k−1.
If π(1) = 1, then removing 1 and subtracting one from the remaining entries of π we get a
permutation of [n− 1] whose largest fixed point is k − 1.

Define

αn =

n∑

k=1

kan,k =
∑

π∈Sn\Dn

ℓ(π). (4)

We now state our main result, which we prove analytically and bijectively in the next
two subsections.

Theorem 1.1 For n ≥ 1, we have

αn = dn+1.

1.1 Analytic proof

Replacing n by n+ 1, from (4) we have

αn+1 = an+1,1 + 2an+1,2 + · · ·+ nan+1,n + (n+ 1)an+1,n+1. (5)

Adding (4) and (5) and taking into account (3), we obtain

αn + αn+1 = an+1,2 + 2an+1,3 + · · ·+ nan+1,n+1 + (n + 1)!. (6)

Adding (6) with the obvious equality

(n + 1)! − dn+1 = an+1,1 + an+1,2 + · · ·+ an+1,n + an+1,n+1,

we obtain
αn + αn+1 + (n+ 1)!− dn+1 = αn+1 + (n+ 1)!,

whence αn = dn+1.
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1.2 Bijective proof

To find a bijective proof of Theorem 1.1, we first construct a set whose cardinality is αn.
Let Mn ⊂ (Sn \ Dn) × [n] be the set of pairs (π, i) where π ∈ Sn \ Dn and i ≤ ℓ(π).
We underline the number i in π to indicate that it is marked. For example, we write
(2)(3)(7)(8)(1, 4, 9)(5, 6) instead of the pair ((2)(3)(7)(8)(1, 4, 9)(5, 6), 4). It is clear that

|Mn| =
n∑

k=1

kan,k = αn.

To prove Theorem 1.1, we give a bijection between Dn+1 and Mn.
Given π ∈ Dn+1, we assign to it an element π̂ ∈ Mn as follows. Write π as a product

of cycles, starting with the one containing n+ 1, say

π = (n+ 1, i1, i2, . . . , ir)σ.

Let q be the largest index, 1 ≤ q ≤ r, such that i1 < i2 < · · · < iq. We define

π̂ =

{
(i1)(i2) . . . (ir)σ if q = r,

(i1)(i2) . . . (iq)(iq+1, iq+2, . . . , ir)σ if q < r.

Now we describe the inverse map. Given π̂ ∈ Mn, let its unmarked fixed points be i1 <
i2 < · · · < iq, and let j1 be the marked element. We can write π̂ = (i1) . . . (iq)(j1, j2, . . . , jt)σ.
Notice that t = 1 if the marked element is a fixed point. Define

π = (n+ 1, i1, i2, . . . , iq, j1, j2, . . . , jt)σ.

Here are some examples of the bijection between Dn+1 and Mn:

π = (12, 2, 4, 9, 7, 5, 6)(1, 3)(8, 11, 10) ↔ π̂ = (2)(4)(9)(7, 5, 6)(1, 3)(8, 11, 10),

π = (10, 2, 7, 8, 3)(1, 4, 9)(5, 6) ↔ π̂ = (2)(7)(8)(3)(1, 4, 9)(5, 6),

π = (10, 2, 3, 7, 8, 4, 9, 1)(5, 6) ↔ π̂ = (2)(3)(7)(8)(4, 9, 1)(5, 6).

2 Smallest fixed point

In a symmetric fashion to the statistic ℓ(π), we can define s(π) to be the smallest fixed
point of π ∈ Sn \ Dn. Let

bn,k = |{π ∈ Sn : s(π) = k}|.

The numbers bn,k appear in [1, pp. 174-176,185] as Rn,k (called rank). Define

βn =
n∑

k=1

kbn,k =
∑

π∈Sn\Dn

s(π). (7)

It is not hard to see by symmetry that

bn,k = an,n+1−k. (8)
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Indeed, one can use the involution π 7→ π′ on Sn where π′(i) = n + 1 − π(n + 1 − i).
Alternatively, another involution that proves (8) consists of replacing each entry i in the
cycle representation of π ∈ Sn by n + 1 − i; for example, (183)(2)(4975)(6) is mapped to
(927)(8)(6135)(4).

To find a combinatorial interpretation of βn, let En+1 be the set of permutations of [n+1]
that have at least two fixed points. We have that

|En+1| = (n+ 1)!− dn+1 − (n+ 1)dn, (9)

since out of the (n+1)! permutations of [n+1], there are dn+1 derangements and (n+1)dn
permutations having exactly one fixed point.

The following result is the analogue of Theorem 1.1 for the statistic s(π). We give an
analytic proof based on that theorem, and a directive bijective proof as well.

Theorem 2.1 For n ≥ 1, we have

βn = |En+1|.

2.1 Analytic proof

From the definitions of αn and βn, and equation (8), it follows that

αn + βn = (n+ 1)

n∑

k=1

an,k = (n+ 1)(n! − dn).

Using Theorem 1.1, we have

βn = (n+ 1)! − (n + 1)dn − dn+1,

which by (9) is just the cardinality of En+1 as claimed.
Note also the following identities involving βn which follow from the known recurrence

dn = ndn−1 + (−1)n:

βn = (n+ 1)! + (−1)n − 2(n + 1)dn,

βn = (n+ 1)βn−1 + n(−1)n+1.

The sequence βn starts 0, 1, 1, 7, 31, 191, . . . . Using the well known fact that

lim
n→∞

dn
n!

=
1

e
, (10)

we see that

lim
n→∞

βn
(n+ 1)!

= 1−
2

e
.
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2.2 Bijective proof

Let M′
n ⊂ (Sn \ Dn) × [n] be the set of pairs (π, i) where π ∈ Sn \ Dn and i ≤ s(π). As

before, we underline the number i in π to indicate that it is marked. It is clear that

|M′
n| =

n∑

k=1

kbn,k.

We now give a bijection between En+1 and M′
n. Given π ∈ En+1, let i be its smallest

fixed point. We can write
π = (i)(n + 1, j2, . . . , jt)σ,

where no js appear if n+ 1 is a fixed point. Define

π̃ = (i, j2, . . . , jt)σ.

Note that π̃ ∈ M′
n, because if σ has fixed points then they are all larger than i, and if it

does not, then t = 1 and i is the smallest fixed point of π̃. Essentially, π and π̃ are related
by conjugation by the transposition (i, n + 1).

Conversely, given π̃ ∈ M′
n, let i be the marked entry. We can write

π̃ = (i, j2, . . . , jt)σ,

where no js appear if i is a fixed point. Then

π = (i)(n + 1, j2, . . . , jt)σ.

Roughly speaking, we replace i with n + 1 and add i as a fixed point. Note that if t ≥ 2
then σ must have fixed points.

Here are some examples of the bijection between En+1 and Mn:

π = (3)(10, 1, 7, 2, 8)(5)(6)(4, 9) ↔ π̃ = (3, 1, 7, 2, 8)(5)(6)(4, 9),

π = (5)(10)(6)(3, 1, 7, 2, 8)(4, 9) ↔ π̃ = (5)(6)(3, 1, 7, 2, 8)(4, 9).

3 Other remarks

3.1 A recurrence for the derangement numbers

An argument similar to the bijective proof of Theorem 1.1 can be used to prove the recur-
rence

dn =

n∑

j=2

(j − 1)

(
n

j

)
dn−j (11)

combinatorially as follows.
A derangement π ∈ Dn can be written as a product of cycles, starting with the one

containing n, say
π = (n, i1, i2, . . . , ir)σ.

Consider two cases:
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• If i1 < i2 < · · · < ir−1 (this is vacuously true for r = 1, 2), then the number of choices
for the numbers i1, . . . , ir satisfying this condition is r

(
n−1

r

)
, since we can first choose

an r-subset of [n− 1] and then decide which one is ir. Now, the number of choices for
σ is dn−r−1.

• Otherwise, there is an index 1 ≤ q ≤ r− 1 such that i1 < i2 < · · · < iq > iq+1. In this
case, there are q

(
n−1

q+1

)
choices for the numbers i1, . . . , iq+1, since we can first choose a

(q + 1)-subset of [n − 1] and then decide which element other than the maximum is
iq+1. Now, there are dn−q−1 choices for (iq+1, . . . , ir)σ.

The total number of choices is

n−1∑

r=1

r

(
n− 1

r

)
dn−r−1 +

n−1∑

q=1

q

(
n− 1

q + 1

)
dn−q−1 =

n−1∑

r=1

r

((
n− 1

r

)
+

(
n− 1

r + 1

))
dn−r−1

=
n−1∑

r=1

r

(
n

r + 1

)
dn−r−1,

which equals the right hand side of (11).

Alternatively, the recurrence (11) is relatively straightforward to prove using generating
functions. Indeed, let

D(x) =
∑

n≥0

dn
xn

n!
=

e−x

1− x

be the generating function for the number of derangements. The generating function for
the right hand side of (11), starting from n = 1, is

∑

n≥1

n∑

j=2

(j − 1)

(
n

j

)
dn−j

xn

n!
=



∑

i≥0

di
xi

i!






∑

j≥1

(j − 1)
xj

j!




=
e−x

1− x
(xex − ex + 1) = −1 +

e−x

1− x
= D(x)− 1.

3.2 Probabilistic interpretation

Let Xn be the random variable that gives the value of the largest fixed point of a random
element of Sn \ Dn. Its expected value is then

E[Xn] =

∑n
k=1

kan,k
|Sn \ Dn|

.

Theorem 1.1 is equivalent to the fact that

E[Xn] =
dn+1

n!− dn
. (12)

Using (10), we get from equation (12) that

lim
n→∞

E[Xn]

n
=

1

e− 1
. (13)
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Occurrences of fixed points in a random permutation of [n], normalized by dividing by
n, approach a Poisson process in the interval [0, 1] with mean 1 as n goes to infinity. An
interpretation of equation (13) is that, in such a Poisson process, if we condition on the fact
that there is at least one occurrence, then the largest event occurs at 1/(e− 1) on average.
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