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Abstract. We study two enumeration problems for up-down alternating trees, i.e., rooted
labelled trees T , where the labels v1, v2, v3, . . . on every path starting at the root of T satisfy
v1 < v2 > v3 < v4 > · · · . First we consider various tree families of interest in combinatorics
(such as unordered, ordered, d-ary and Motzkin trees) and study the number Tn of different
up-down alternating labelled trees of size n. We obtain for all tree families considered an
implicit characterization of the exponential generating function T (z) leading to asymptotic
results of the coefficients Tn for various tree families. Second we consider the particular
family of up-down alternating labelled ordered trees and study the influence of such an
alternating labelling to the average shape of the trees by analyzing the parameters label of
the root node, degree of the root node and depth of a random node in a random tree of size
n. This leads to exact enumeration results and limiting distribution results.

1. Introduction

The family T of unrooted unordered alternating trees (also called intransitive trees) consists
of all unrooted unordered labelled trees T , where the nodes of T with |T | = n (the number
|T | of nodes of T will be called the size of T ) are labelled by distinct integers of {1, 2, . . . , n}
in such a way that for every path v1, v2, v3, . . . in T it holds v1 < v2 > v3 < v4 > · · · or
v1 > v2 < v3 > v4 > · · · (we always identify a node v ∈ T with its label).

This tree family appears in various contexts in combinatorics as in the enumeration of
admissible bases of certain hypergeometric systems [5], in the enumeration of so called local
binary search trees [11] and when enumerating the number of regions of certain hyperplane
arrangements [12].

The enumeration problem for the number Tn of unrooted unordered alternating trees of
size n has been solved by A. Postnikov in [11] by obtaining the following formula for Tn:

Tn =
1

n2n−1

n∑
k=1

(
n

k

)
kn−1, for n ≥ 2.

The corresponding problem for rooted ordered alternating trees has been addressed and
solved by C. Chauve, S. Dulucq and A. Rechnitzer in [1]. They considered trees T , where one
node of T is distinguished as the root and where the subtrees of each node of T are linearly
ordered, which are labelled by distinct integers of {1, 2, . . . , |T |} in an “alternating way”, i.e.,
in such a way that for every path v1, v2, v3, . . . in T it holds v1 < v2 > v3 < v4 > · · · or
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Figure 1. All 21 different up-down alternating labelled Motzkin trees of size 4.

v1 > v2 < v3 > v4 > · · · . The authors of [1] found that the number Tn of rooted ordered
alternating trees of size n ≥ 2 is given by the surprisingly simple formula Tn = 2(n − 1)n−1.

The aim of the present work is to address and to give (up to some extent) solutions to the
following two problems for alternating trees. First we consider the enumeration problem for
other alternating labelled tree families, as, e.g., for binary trees, d-ary trees and Motzkin trees,
where the corresponding families of unlabelled or arbitrary labelled trees appear frequently
in combinatorics or computer science. We remark that all trees considered in this paper are
rooted trees and we remark further that it is sufficient for the enumeration problem to count
“up-down alternating labelled trees”, i.e., it holds for every path v1, v2, v3, . . . starting at the
root of a tree: v1 < v2 > v3 < v4 > · · · . Of course, the number of all alternating labelled
trees of size n ≥ 2 of a rooted tree family is twice the number of up-down alternating labelled
trees of size n. As an example in Figure 1 all 21 up-down alternating labelled Motzkin trees
(ordered trees, where each node has either 0, 1, or 2 children) of size 4 are given.

Our study relies on a description of the combinatorial decomposition of an up-down alter-
nating tree T of a tree family considered with respect to the largest element n = |T | in T .
This decomposition leads to a recursive description of the enumeration problem and to quasi-
linear first order partial differential equations for suitably defined multivariate generating
functions. For all tree families considered the differential equation appearing can be solved
implicitly, which also leads to an implicit characterization of the exponential generating func-
tion T (z) of the number Tn of trees of size n by means of certain functional equations. With
few exceptions, amongst them the already known results for rooted ordered and rooted (or
unrooted) unordered alternating trees, it does not seem that there are explicit formulæ for
Tn available. However, the appearing functional equations for the generating functions of the
number Tn of up-down alternating labelled trees are particularly useful to obtain asymptotic
results of Tn for various tree families.

Second we are interested in the influence of an alternating labelling to the average structure
or shape of the trees in a tree family compared to an arbitrary labelling. We do this by
considering one particular tree family, namely the family of up-down alternating labelled
ordered trees, and studying several tree parameters for random trees of size n (i.e., each of
the Tn different trees of size n is chosen with equal probability). In particular we obtain
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limiting distribution results for the label of the root node, the degree of the root node, and
the depth (i.e., the distance to the root) of a randomly chosen node in a random tree of
size n. Interestingly one even obtains exact formulæ for the number of up-down alternating
labelled ordered trees of size n, where the root is labelled by j, as well as for the number
of up-down alternating labelled ordered trees of size n, where the root has degree m. To
show these results we again use the basic decomposition of an up-down alternating tree T
with respect to the largest element n = |T |, which again leads to certain partial differential
equations for suitably introduced bivariate generating functions. A study of these differential
equations leads then to exact or asymptotic results for the parameters studied.

2. Results

2.1. Enumeration results for up-down alternating labelled trees. We give here our
results for the number Tn of up-down alternating labelled trees of size n for various tree
families T as described in Subsection 3.1.

Theorem 1. The exponential generating function T (z) :=
∑

n≥1 Tn
zn

n! of the numbers Tn

is for the tree families considered implicitly given as solution of the following functional
equations:

Ordered trees: z = (1 − T (z)) log
1

1 − T (z)
, or explicitly T (z) = 1 − e−W (z),

Unordered trees: z =
2T (z)

1 + eT (z)
, or explicitly T (z) =

z

2
+ W

(ze
z
2

2
)
,

d-ary trees: z =
2(

1 + (1 + T (z))d+1
) d−1

d+1

∫ T (z)

0

dx(
1 + (1 + x)d+1

) 2
d+1

,

d-bundled ordered trees: z =
2(

1 +
(

1
1−T (z)

)d−1) d+1
d−1

∫ T (z)

0

(
1 +

( 1
1 − x

)d−1
) 2

d−1
dx,

Motzkin trees: z =
∫ T (z)

0

dx(
4r(x)+4

√
108+r2(x)

) 2
3

16 + 9(
4r(x)+4

√
108+r2(x)

) 2
3
− 3

4

,

with r(x) = 8(T 3(z) − x3) + 12(T 2(z) − x2) + 24(T (z) − x) + 10,

Strict binary trees: z =
∫ T (z)

0

dx(
4r(x)+4

√
4+r2(x)

) 2
3

4 + 4(
4r(x)+4

√
4+r2(x)

) 2
3
− 1

,

with r(x) = (T 3(z) − x3) + 3(T (z) − x),

where the function W (z) :=
∑

n≥1 nn−1 zn

n! appearing is the so called tree function.

Theorem 2. The numbers Tn are for each of the families of up-down alternating labelled
ordered, unordered, d-ary and d-bundled ordered trees asymptotically given by

Tn ∼ Cρ−nn− 3
2 n!,
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where ρ is the radius of convergence of the corresponding exponential generating function
T (z) and C is some computable constant, which may differ for every tree family considered.
For these tree families the radius of convergence ρ and the constant C are given as follows:

Ordered trees: ρ =
1
e
≈ 0.367879 . . . , C =

1√
2π e

≈ 0.146762 . . .

Unordered trees: ρ = −2W (−e−1) ≈ 0.556929 . . . , C =
√

2 + ρ

2
√

π
≈ 0.451080 . . .

d-ary trees: ρ =
2

(d − 1)(1 + τ)d
, C =

√
1 + (1 + τ)d+1

2d(d − 1)(1 + τ)d−1π
,

with τ the positive real solution of the equation(
1 + (1 + τ)d+1

) d−1
d+1

(d − 1)(1 + τ)d
=

∫ τ

0

dx(
1 + (1 + x)d+1

) 2
d+1

,

d-bundled ordered trees: ρ =
2(1 − τ)d

d + 1
, C =

√
(1 − τ)d+1

(
1 + ( 1

1−τ )d−1
)

2d(d + 1)π
,

with τ the positive real solution of the equation(
1 +

(
1

1−τ

)d−1) d+1
d−1

(d + 1)
(

1
1−τ

)d
=

∫ τ

0

(
1 +

( 1
1 − x

)d−1
) 2

d−1
dx.

Furthermore the numbers Tn, n ≥ 1, are for the families of ordered, unordered and 3-
bundled ordered trees given by the following exact formulæ:

Ordered trees: Tn = (n − 1)n−1,

Unordered trees: Tn =
1
2n

n∑
k=0

(
n

k

)
kn−1,

3-bundled ordered trees: Tn =
(n − 1)!

2n+1

2n∑
k=0

(
2n

k

)(5n−3
2 − k

n − 1

)
.

We remark that the exact formulæ of Tn for the families of ordered trees and unordered
trees already appear (or are easily deduced from results) in [1] and [11], respectively.

We finish this subsection by collecting numerical values of the numbers Tn for small values
of n for various tree families considered. These results are given in Table 1.

2.2. Results for tree parameters in up-down alternating labelled ordered trees.
We give here our exact and asymptotic results of parameters described in Section 4 for the
family of up-down alternating labelled ordered trees.

Theorem 3. Let Tn,j denote the number of up-down alternating labelled ordered trees of size
n, where the root node has label j, with 1 ≤ j ≤ n, and let Ln be the random variable, which
gives the label of the root node of a randomly chosen up-down alternating labelled ordered tree
of size-n. Then Tn,j is given by the following exact formula:

Tn,j = (n − j)(n − 1)j−2nn−j−1,



ENUMERATION RESULTS FOR ALTERNATING TREE FAMILIES 5

Tree family T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Ordered trees 1 1 4 27 256 3125 46656 823543 16777216 387420489

Unordered trees 1 1 3 14 90 738 7364 86608 1173240 17990600

Binary trees 1 2 10 72 700 8560 126360 2187200 43452640 974721600

Ternary trees 1 3 24 285 4608 94311 2338560 68157369 2283724800 86502077739

2-bundled trees 1 2 14 160 2548 52064 1298840 38268736 1300468000 50071359296

3-bundled trees 1 3 30 483 10800 309375 10810800 445940775 21208884480 1142594883675

Motzkin trees 1 1 4 21 154 1409 15666 204049 3054946 51654981

Strict binary trees 1 0 2 0 36 0 1672 0 148576 0

Table 1. Numerical values of the numbers Tn of up-down alternating labelled
trees of size n ≤ 10 for various tree families considered.

and the normalized random variable Ln
n converges for n → ∞ in distribution to a random

variable L, i.e., Ln
n

(d)−−→ L, with density function f(x) = (1 − x)e1−x, for 0 ≤ x ≤ 1.

Theorem 4. Let Tn,m denote the number of up-down alternating labelled ordered trees of size
n, where the root node has degree m, with 0 ≤ m < n, and let Rn be the random variable,
which gives the degree of the root node of a randomly chosen up-down alternating labelled
ordered tree of size-n. Then Tn,m is given by the following exact formula:

Tn,m = Hm(n − 1)n−1 +
m∑

�=1

(
m

�

)
(−1)� � + 1

�
(n − 1 − �)n−1,

and the random variable Rn converges for n → ∞ in distribution to a discrete random variable

R, i.e., Rn
(d)−−→ R, whose distribution is given by

P{R = m} =
(e − 1

e

)m − 1 +
m∑

�=1

(
e−1

e

)�

�
, for m ∈ N.

Here Hm :=
∑m

k=1
1
k denotes the m-th harmonic number.

Theorem 5. Let Dn be the random variable, which counts the depth (i.e., the distance to
the root) of a randomly chosen node in a random up-down alternating labelled ordered tree
of size n. Then the normalized random variable Dn√

n
converges for n → ∞ in distribution to

a Rayley-distributed random variable Rα, i.e., Dn√
n

(d)−−→ Rα, with parameter α = 2
3 , where Rα

has density function f(x) = x
α2 e−

x2

2α2 , for x ≥ 0.

3. Enumeration of up-down alternating trees

3.1. Tree families considered. In the following we describe the combinatorial families T
of trees that we consider here. Basically all trees contained in the tree families are up-down
alternating labelled rooted trees. This means that we only consider labelled trees: the nodes
in a tree T of size |T | = n are labelled by distinct integers of {1, 2, . . . , n}, where one of the
n nodes of T is distinguished as the root node. Furthermore the labelling of any tree T is
an “up-down alternating labelling”, i.e., it must hold for any sequence of nodes v1, v2, v3, . . .
lying on the path from the root to an arbitrary node in T that v1 < v2 > v3 < v4 > · · · ,
where we identify a node with its label.
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Figure 2. An example of a 2-bundled tree. A bar separates the subtrees into
left and right ones.

To specify the up-down alternating labelled tree families T we are dealing with, we describe
the corresponding arbitrary labelled tree families T̃ and define that T ⊆ T̃ contains exactly
those trees T ∈ T̃ with an up-down alternating labelling.

Labelled ordered trees: Every tree T ∈ T̃ of size n consists of a root node, where a
(possibly empty) sequence of labelled ordered trees is attached and where the whole
tree is relabelled with the labels {1, 2, . . . , n} in an order preserving way.

Labelled unordered trees: Every tree T ∈ T̃ of size n consists of a root node, where
a (possibly empty) set of labelled unordered trees is attached and where the whole
tree is relabelled with the labels {1, 2, . . . , n} in an order preserving way.

Labelled d-ary trees: Every tree T ∈ T̃ of size n consists of a root node, which has d
positions, where either a labelled d-ary tree is attached or not and where the whole
tree is relabelled with the labels {1, 2, . . . , n} in an order preserving way.

Labelled d-bundled trees: Every tree T ∈ T̃ of size n consists of a root node, which
has d positions, where a (possibly empty) sequence of labelled d-bundled trees is
attached and where the whole tree is relabelled with the labels {1, 2, . . . , n} in an
order preserving way. Alternatively one might think of a d-bundled tree as an ordered
tree, where the sequence of subtrees attached to any node in the tree is separated by
d − 1 bars into d bundles.

Labelled Motzkin trees: Every tree T ∈ T̃ of size n consists of a root node, where a
sequence of 0, 1 or 2 labelled Motzkin trees is attached and where the whole tree is
relabelled with the labels {1, 2, . . . , n} in an order preserving way.

Labelled strict binary trees: Every tree T ∈ T̃ of size n consists of a root node,
where a sequence of 0 or 2 labelled strict binary trees is attached and where the
whole tree is relabelled with the labels {1, 2, . . . , n} in an order preserving way.

Whereas the families of ordered, unordered, d-ary, strict binary and Motzkin-trees are
well-known tree families with a lot of applications (see, e.g., [3, 13]), we remark that d-
bundled trees appear, e.g., in the context of certain “preferential attachment” growth models
for trees (see [7]) and furthermore, that they are satisfying some randomness preservation
properties when studying cutting-down procedures for random trees (see [10]). An example
of a 2-bundled tree is given in Figure 2.

3.2. Combinatorial decompositions. Fundamental to our approach is the description of
the decomposition of an up-down alternating tree T of size |T | = n in a tree family T with
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respect to node n. If we cut-off all edges incident with node n and relabel the resulting
trees with labels from 1 up to their sizes in an order-preserving way we obtain for n ≥ 2 an
alternating tree T̂ of size k ≥ 1 that contains the original root of the tree T and alternating
trees T1, T2, . . . , Tr of sizes k1, . . . , kr ≥ 1, which correspond to the subtrees originally attached
to node n. Of course, it holds that k + k1 + · · · + kr = n − 1.

If T is one of the families of up-down alternating labelled unordered, ordered, d-ary, d-
bundled ordered or Motzkin trees it follows that all the resulting trees T̂ , T1, . . . , Tr are again
alternating trees of the family T . This is not true if T is the family of up-down alternating
labelled strict binary trees: although T1, . . . , Tr are alternating trees of T this does not hold
for the tree T̂ , since there exists now a node in T̂ , where only one subtree is attached. We
first consider the decomposition for those tree families T , where all the resulting trees are
again contained in T and discuss the decomposition for the family of strict binary trees later.

In order to use the decomposition of an up-down alternating labelled tree of a family T
to get a recursive description of the numbers Tn of different size-n trees of T we are now
interested in an answer to the following question. What is the number of different trees
T ∈ T of size |T | = n that we can obtain by starting with alternating trees T̂ , T1, . . . , Tr ∈ T
of corresponding sizes k, k1, . . . , kr, with k + k1 + · · · + kr = n − 1, distributing the labels
{1, 2, . . . , n − 1} amongst the nodes of T̂ , T1, . . . , Tr and relabelling all these trees in an
order-preserving way and afterwards attaching T1, . . . , Tr to a new vertex labelled by n and
attaching node n to a node in T̂ ?

Obviously for all tree families we have a contribution of
(

n−1
k,k1,...,kr

)
stemming from the

distribution of the labels to the trees. Furthermore, depending on the tree family considered,
we obtain a certain factor reflecting the number of possibilities of attaching the subtrees
T1, . . . , Tr to node n. E.g., for d-ary trees this factor is

(
d
r

)
, for unordered trees this factor is

1
r! , whereas for ordered trees this factor is 1.

However, the most interesting contribution is the factor coming from the number of possible
positions, where node n can be attached to a node in T̂ of size |T̂ | = k, such that the up-
down alternating labelling is preserved for the resulting tree. This contribution, which will
be denoted here by w, depends on the specific tree family considered and will be studied now.
We require there the notion of the depth h(v) of a node v in a tree T̂ , which is given by the
distance of v to the root of T̂ , i.e., the number of edges lying on the unique path from the
root of T̂ to node v. It holds then that node n can only be attached to nodes v ∈ T̂ , which
are at an even level, i.e., where it holds h(v) ≡ 0 mod 2. The set of nodes of T̂ at an even
level will be denoted by V := {v ∈ T̂ : h(v) ≡ 0 mod 2} and its cardinality by � := |V |.
Furthermore we denote by d+(v) the out-degree (the number of children) of a node v in a
tree T̂ .

Ordered trees: The number of positions w of attaching node n to one of the nodes of
V is given by

w =
∑
v∈V

(d+(v) + 1) =
∑
v∈V

1 +
∑
v∈V

d+(v) = |V | + |T̂ \ V | = |T̂ | = k,

since
∑

v∈V d+(v) gives exactly the number of nodes in T̂ at an odd level. Thus we
obtain that, independent of the specific tree T̂ , there are always |T̂ | = k positions of
attaching node n, such that the resulting tree is again up-down alternating labelled.
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Unordered trees: The number of positions w of attaching node n to one of the nodes
of V is now simply given by w = |V | = �.

d-ary trees: We obtain now for w:

w =
∑
v∈V

(d − d+(v)) = d
∑
v∈V

1 −
∑
v∈V

d+(v) = d|V | − |T̂ \ V | = d� − (k − �) = (d + 1)� − k.

d-bundled ordered trees: Now w is given as follows:

w =
∑
v∈V

(d+(v) + d) = d
∑
v∈V

1 +
∑
v∈V

d+(v) = d|V | + |T̂ \ V | = d� + (k − �) = (d − 1)� + k.

Motzkin trees: To count the number of positions w of attaching node n to one of the
nodes of V we define the set of nodes in V with out-degree 0 and 1, respectively, by
V [0] := {v ∈ V : d+(v) = 0}, V [1] := {v ∈ V : d+(v) = 1}, and use the notation
�[0] := |V [0]|, �[1] := |V [1]| for their cardinalities. We obtain then:

w =
∑

v∈V [0]

1 +
∑

v∈V [1]

2 = |V [0]| + 2|V [1]| = �[0] + 2�[1].

Thus this combinatorial decomposition only leads for the family of ordered trees directly
to a recurrence for the number Tn of alternating labelled trees of size n, whereas we have to
store additional information for the other tree families considered: for unordered trees, d-ary
trees and d-bundled ordered trees we will introduce the number Tn,m of alternating labelled
trees of size n, where exactly m nodes are at an even level, and for Motzkin trees we will
introduce the number Tn,m[0],m[1] of alternating labelled trees, where exactly m[0] nodes at an
even level have out-degree 0 and m[1] nodes at an even level have out-degree 1. Of course, it
holds Tn =

∑
m≥0 Tn,m and Tn =

∑
m[0],m[1]≥0 Tn,m[0],m[1] , respectively.

Strict binary trees: As mentioned above when applying this decomposition to an up-
down alternating tree T of the family T of strict binary trees the resulting tree T̂
containing the original root of T is no more a strict binary tree. To treat the family of
strict binary trees with the same approach as before we consider a larger tree family
S ⊇ T containing T . The family S consists now of all up-down alternating labelled
rooted trees T , where every node v ∈ T at an odd level (h(v) ≡ 1 mod 2) has a
sequence of 0 or 2 children and where every node v ∈ T at an even level (h(v) ≡ 0
mod 2) has a sequence of 0, 1 or 2 children. Of course, the family T of alternating
labelled strict binary trees contains exactly those trees of S, which do not contain
any nodes of out-degree 1. As immediately seen the basic decomposition of an up-
down alternating labelled tree T ∈ S of size |T | = n with respect to n leads to
up-down alternating labelled trees T̂ , T1, . . . , Tr, which are all elements of S. Thus we
can repeat the considerations made above for the family S. It remains to study the
number w of possible positions, where node n can be attached to a node in T̂ of size
|T̂ | = k, such that the up-down alternating labelling is preserved for the resulting tree.
We denote as above the set of nodes in T̂ at an even level with V and define the set
of nodes in V with out-degree 0 and 1, respectively, by V [0] := {v ∈ V : d+(v) = 0},
V [1] := {v ∈ V : d+(v) = 1}, and use the notation �[0] := |V [0]|, �[1] := |V [1]| for their
cardinalities. We obtain then:

w =
∑

v∈V [0]

2 +
∑

v∈V [1]

1 = 2|V [0]| + |V [1]| = 2�[0] + �[1].
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Thus in order to treat the enumeration problem for strict binary trees we will
introduce the number Tn,m[0],m[1] of alternating labelled trees of the family S defined
above, where exactly m[0] nodes at an even level have out-degree 0 and m[1] nodes at
an even level have out-degree 1. The basic combinatorial decomposition leads then to
a recursive description of these numbers Tn,m[0],m[1] . Of course, we are interested in
particular in the number Tn of up-down alternating labelled strict binary trees, which
are given by Tn =

∑
m[0]≥0 Tn,m[0],0.

General tree families: We remark that one could use this basic decomposition to
obtain a recursive description of the number of up-down alternating labelled trees
for any family T of so called simply generated trees (for a definition see, e.g., [4]; all
tree families considered here are special instances of simply generated tree families),
where the out-degree of a node v ∈ T is bounded a priori for all trees T ∈ T by some
fixed bound d.

As we have seen for the families of up-down alternating labelled unordered, ordered
and d-bundled ordered trees the approach also works for some instances of simply
generated tree families, where the degree of a node v ∈ T is not bounded by some
universal constant for all T ∈ T ; however, in general one would be forced to store
then the whole sequence (m[0], m[1], m[2], . . . ) of the numbers m[i] of nodes v in a tree
T at an even level with out-degree d+(v) = i.

3.3. Recurrences. The basic decomposition of an up-down alternating labelled tree T of size
|T | = n with respect to node n described in Subsection 3.2 immediately leads to recurrences
for the numbers Tn (ordered trees), Tn,m (unordered trees, d-ary trees and d-bundled ordered
trees) or Tn,m[0],m[1] (Motzkin trees and strict binary trees) introduced there. In the following
we collect the recurrences for these tree families, where we use the standard notation δi,j for
the Kronecker δ-function. Furthermore we remark that the appearing numbers are all zero
for values of n, m, m[0], m[1], which are not listed below.

Ordered trees:

Tn =
∑
r≥0

∑
k + k1 + · · · + kr = n − 1,

k, k1, . . . , kr ≥ 1

k

(
n − 1

k, k1, . . . , kr

)
Tk · Tk1 · · ·Tkr , for n ≥ 2, T1 = 1.

Unordered trees:

Tn,m =
∑
r≥0

1
r!

∑
k + k1 + · · · + kr = n − 1,

k, k1, · · · , kr ≥ 1

∑
� + �1 + · · · + �r = m,

�, �1, · · · , �r ≥ 0

�

(
n − 1

k, k1, . . . , kr

)
Tk,� · Tk1,�1 · · ·Tkr,�r ,

for n ≥ 2 and 1 ≤ m ≤ n, T1,m = δ1,m.

d-ary trees:

Tn,m =
d∑

r=0

(
d

r

) ∑
k + k1 + · · · + kr = n − 1,

k, k1, · · · , kr ≥ 1

∑
� + �1 + · · · + �r = m,

�, �1, · · · , �r ≥ 0

(
(d + 1)� − k

)(
n − 1

k, k1, . . . , kr

)
×

× Tk,� · Tk1,�1 · · ·Tkr,�r , for n ≥ 2 and 1 ≤ m ≤ n, T1,m = δ1,m.
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d-bundled trees:

Tn,m =
∑
r≥0

(
r + d − 1

r

) ∑
k + k1 + · · · + kr = n − 1,

k, k1, · · · , kr ≥ 1

∑
� + �1 + · · · + �r = m,

�, �1, · · · , �r ≥ 0

(
(d − 1)� + k

) (
n − 1

k, k1, . . . , kr

)
×

× Tk,� · Tk1,�1 · · ·Tkr,�r , for n ≥ 2 and 1 ≤ m ≤ n, T1,m = δ1,m.

Motzkin trees:

Tn,m[0],m[1] =
2∑

r=0

∑
k + k1 + · · · + kr = n − 1,

k, k1, · · · , kr ≥ 1

∑
�[0] + �

[0]
1 + · · · + �

[0]
r = m[0],

�[0], �
[0]
1 , · · · , �

[0]
r ≥ 0

∑
�[1] + �

[1]
1 + · · · + �

[1]
r = m[1],

�[1], �
[1]
1 , · · · , �

[1]
r ≥ 0(

�[0] + 2�[1]
) (

n − 1
k, k1, . . . , kr

)
Tk,�[0],�[1] · Tk1,�

[0]
1 ,�

[1]
1

· · ·T
kr,�

[0]
r ,�

[1]
r

,

for n ≥ 2 and 0 ≤ m[0], m[1] ≤ n, T1,m[0],m[1] = δ1,m[0] · δ0,m[1] .

Strict binary trees:

Tn,m[0],m[1] =
(
2m[0] + m[1]

)
Tn−1,m[0],m[1]

+
∑

k + k1 + k2 = n − 1,

k, k1, k2 ≥ 1

∑
�[0] + �

[0]
1 + �

[0]
2 = m[0],

�[0], �
[0]
1 , �

[0]
2 ≥ 0

∑
�[1] + �

[1]
1 + �

[1]
2 = m[1],

�[1], �
[1]
1 , �

[1]
2 ≥ 0(

2�[0] + �[1]
)(

n − 1
k, k1, k2

)
Tk,�[0],�[1] · Tk1,�

[0]
1 ,�

[1]
1

· T
k2,�

[0]
2 ,�

[1]
2

,

for n ≥ 2 and 0 ≤ m[0], m[1] ≤ n, T1,m[0],m[1] = δ1,m[0] · δ0,m[1] .

With this recurrences one can compute the numbers Tn of up-down alternating tree families
considered for small values of n by summation for values m, or m[0], m[1], respectively; see the
remarks given in Subsection 3.2. However, for this purpose it seems to be easier to extract
coefficients from the generating functions solutions stated in Theorem 1. E.g., this has been
carried out to generate the values of Tn presented in Table 1.

3.4. Generating functions. We treat the recurrences for the numbers Tn, Tn,m, and
Tn,m[0],m[1] , respectively, appearing in Subsection 3.3 by introducing suitable generating func-
tions:

T (z) :=
∑
n≥1

Tn
zn

n!
, F (z, u) :=

∑
n≥1

∑
m≥0

Tn,m
zn

n!
um,

and F (z, u0, u1) :=
∑
n≥1

∑
m[0]≥0

∑
m[1]≥0

Tn,m[0],m[1]

zn

n!
um[0]

0 um[1]

1 .

This leads, apart from the instance of ordered trees, where a nonlinear ordinary differential
equation occurs, to first order quasilinear partial differential equations for the generating
functions introduced. We will omit here these straightforward computations and just state
the resulting equations below, where we use the abbreviation F := F (z, u0, u1); additionally
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the initial conditions T (0) = F (0, u) = F (0, u0, u1) = 0 hold:

Ordered trees: T ′(z) − 1 =
zT ′(z)

1 − T (z)
, (1a)

Unordered trees: Fz(z, u) − u = ueF (z,u)Fu(z, u), (1b)

d-ary trees: Fz(z, u) − u = (1 + F (z, u))d
(
(d + 1)uFu(z, u) − zFz(z, u)

)
, (1c)

d-bundled ordered trees: Fz(z, u) − u =
1

(1 − F (z, u))d

(
(d − 1)uFu(z, u) + zFz(z, u)

)
,

(1d)

Motzkin trees: Fz − u0 =
(
1 + F + F 2

)(
u1Fu0 + 2Fu1

)
, (1e)

Strict binary trees: Fz − u0 =
(
1 + F 2

)(
2u1Fu0 + Fu1

)
. (1f)

For all the differential equations appearing in (1) we obtain implicit solutions of the gen-
erating functions considered by using the method of characteristics for first order quasilinear
partial differential equations, see, e.g., [14] for a description of this method. These solutions
are given as follows, where we again use the abbreviation F := F (z, u0, u1):

Ordered trees: z =
(
1 − T (z)

)
log

1
1 − T (z)

, (2a)

Unordered trees: z =
1

u + eF (z,u)
log

(eF (z,u)
(
u − 1 + eF (z,u)

)
u

)
, (2b)

d-ary trees: z =
1

u
1

d+1

∫ F (z,u)

0

dx(
u + (1 + F (z, u))d+1 − (1 + x)d+1

) d
d+1

, (2c)

d-bundled ordered trees: z = u
1

d−1

∫ F (z,u)

0

dx(
u +

(
1

1−F (z,u)

)d−1 −
(

1
1−x

)d−1) d
d−1

, (2d)

Motzkin trees: z =
∫ F (z,u0,u1)

0

dx

u0 − u2
1
4 + s2(x)

4

, (2e)

where s(x) = s(x, F, u0, u1) and r(x) = r(x, F, u0, u1) are given as follows:

s(x) =

(
4r(x) + 4

√
256(u0 − u2

1
4 )3 + r2(x)

) 1
3

2
−

8(u0 − u2
1
4 )(

4r(x) + 4
√

256(u0 − u2
1
4 )3 + r2(x)

) 1
3

,

r(x) = 8(F 3 − x3) + 12(F 2 − x2) + 24(F − x) + 12u0u1 − 2u3
1.

Strict binary trees: z =
∫ F (z,u0,u1)

0

dx

u0 − u2
1 + s2(x)

, (2f)

where s(x) = s(x, F, u0, u1) and r(x) = r(x, F, u0, u1) are given as follows:

s(x) =

(
4r(x) + 4

√
4(u0 − u2

1)3 + r2(x)
) 1

3

2
− 2(u0 − u2

1)(
4r(x) + 4

√
4(u0 − u2

1)3 + r2(x)
) 1

3

,

r(x) = (F 3 − x3) + 3(F − x) + 3u0u1 − 2u3
1.
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Remark 1. The functions s(x) appearing in equation (2e) for Motzkin trees and in equa-
tion (2f) for strict binary trees are solutions of the following third order polynomial equations,
with r(x) as given in equation (2e) and (2f), respectively:

Motzkin trees: s3 + 12
(
u0 −

u2
1

4
)
s − r(x) = 0,

Strict binary trees: s3 + 3
(
u0 − u2

1

)
s − r(x) = 0.

It is not difficult to check, e.g., by using a computer algebra system, that the functions
given in equation (2) are satisfying the differential equations and the initial conditions given
in equation (1) and are thus indeed the required solutions. However, as an example we
demonstrate for one particular case how one may solve the differential equations appearing by
using the method of characteristics. This is carried out in Example 1, where the corresponding
differential equation (1c) for d-ary trees is treated and thus the derivation of (2c) is shown.

Example 1. In order to solve the differential equation (1c) for d-ary trees we use the substi-
tution Q(z, u) := F (z, u) + 1 and obtain after simple manipulations the following PDE (we
use the abbreviation Q = Q(z, u)):

(1 + zQd)Qz − (d + 1)uQdQu − u = 0. (3)

We assume now that we have an implicit description of a solution Q = Q(z, u) of (3) via
the equation

f(z, u, Q) = c = const.,

with a certain differentiable function f . Taking derivatives of this equation w.r.t. z and u
we obtain fz + fQQz = 0 and fu + fQQu = 0. Plugging these equations into (3) we obtain
the following linear PDE in reduced form for the function f(z, u, Q):

(1 + zQd)fz − (d + 1)uQdfu + ufQ = 0. (4)

To solve equation (4) we apply the method of characteristics and consider thus the following
system of ordinary differential equations, the so called system of characteristic differential
equations:

ż = (1 + zQd), u̇ = −(d + 1)uQd, Q̇ = u, (5)

where we regard here z, u, and Q as dependent variables of t, namely, z = z(t), u = u(t),
Q = Q(t), and ż = dz(t)

dt , etc. We are searching now for first integrals of the system of
characteristic differential equations (5), i.e., for functions ξ(z, u, Q), which are constant along
any solution curve (a so called characteristic curve) of (5).

One might proceed as follows. From the second and third equation of (5) we obtain the
differential equation

du

dQ
= −(d + 1)Qd,

leading to the general solution
u = −Qd+1 + c1.

This immediately gives the following first integral of (5):

ξ1(z, u, Q) = c1 = u + Qd+1. (6)
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From the first and third equation of (5) we obtain, after the substitution u = c1 −Qd+1, the
differential equation

dz

dQ
=

1
c1 − Qd+1

+ z
Qd

c1 − Qd+1
.

The general solution of this first order linear differential equation is given as follows:

z =
1

(c1 − Qd+1)
1

d+1

∫ Q

1

1

(c1 − td+1)
d

d+1

dt +
c2

(c1 − Qd+1)
1

d+1

,

which leads, after backsubstituting c1 = u+Qd+1, to the following first integral of (5), which
is independent of (6):

ξ2(z, u, Q) = c2 = u
1

d+1 z −
∫ Q

1

dt(
u + Qd+1 − td+1

) d
d+1

. (7)

Thus the general solution of (4) is given as follows:

f(z, u, Q) = G
(
ξ1(z, u, Q), ξ2(z, u, Q)

)
= const., (8)

with arbitrary differentiable functions G in two variables and ξ1(z, u, Q), ξ2(z, u, Q) given in
(6) and (7). One can also solve (8) w.r.t. the variable z and obtains then

z =
1

u
1

d+1

∫ Q

1

dt(
u + Qd+1 − td+1

) d
d+1

+
1

u
1

d+1

g(u + Qd+1), (9)

with arbitrary differentiable functions g(x) in one variable. To characterize the function g(x)
in (9) we use the initial condition Q(0, u) = 1. We obtain then, after plugging z = 0 and
Q = 1 into (9), that g(x) = 0. Therefore we get the following implicit solution of Q(z, u) and
hence the solution of F (z, u) = Q(z, u) − 1 as stated in equation (2c):

z =
1

u
1

d+1

∫ Q(z,u)

1

dt(
u + (Q(z, u))d+1 − td+1

) d
d+1

=
1

u
1

d+1

∫ F (z,u)

0

dx(
u + (1 + F (z, u))d+1 − (1 + x)d+1

) d
d+1

.

The exponential generating functions T (z) =
∑

n≥1 Tn
zn

n! of the number Tn of up-down
alternating trees of size n that we are mainly interested in, can be obtained from the solutions
given in (2) via T (z) = F (z, 1) (for unordered trees, d-ary trees and d-bundled ordered trees),
T (z) = F (z, 1, 1) (for Motzkin trees) and T (z) = F (z, 1, 0) for strict binary trees. We obtain
then that the functions T (z) are given implicitly as solutions of certain functional equations,
which are collected in Theorem 1.

Remark 2. After plugging u = 1 into equation (2c) we obtain the formula

z =
∫ T (z)

0

dx(
1 + (1 + T (z))d+1 − (1 + x)d+1

) d
d+1

, (10)



14 M. KUBA AND A. PANHOLZER

which does not match with the expression

z =
2(

1 + (1 + T (z))d+1
) d−1

d+1

∫ T (z)

0

dx(
1 + (1 + x)d+1

) 2
d+1

(11)

stated in Theorem 1 as solution of T (z) for d-ary trees. However, it can be checked easily that
both equations (10) and (11) characterize the same function T (z), since they are solutions of
the differential equation

T ′(z) =

(
1 + T (z)

)d+1 + 1

2 − (d − 1)z
(
1 + T (z)

)d
(12)

and satisfying also the initial condition T (0) = 0.

Also one can check easily that the formula

z =
∫ T (z)

0

dx(
1 +

(
1

1−T (z)

)d−1 −
(

1
1−x

)d−1) d
d−1

obtained after plugging u = 1 into equation (2d) and the formula

z =
2(

1 +
(

1
1−T (z)

)d−1) d+1
d−1

∫ T (z)

0

(
1 +

( 1
1 − x

)d−1
) 2

d−1
dx

stated in Theorem 1 as solution of T (z) for d-bundled trees characterize the same function
T (z), since they are solutions of the differential equation

T ′(z) =

(
1

1−T (z)

)d−1 + 1

2 − (d + 1)z
(

1
1−T (z)

)d

satisfying the initial condition T (0) = 0.
The implicit characterization given in Theorem 1 turns out to be advantageous when

studying the asymptotic behaviour of the numbers Tn = n![zn]T (z) of up-down alternating
labelled d-ary trees and d-bundled trees, respectively.

Remark 3. The solution of T (z) for Motzkin trees given in Theorem 1 can also be described
as

z =
∫ T (z)

0

4dx

3 + s2(x)
,

with s(x) = s(x, T (z)) the suitable root of the equation

s3 + 9s − r(x) = 0,

and r(x) = r(x, T (z)) as stated in the corresponding part of Theorem 1.

Also the solution of T (z) for strict binary trees given in Theorem 1 can be described as

z =
∫ T (z)

0

dx

1 + s2(x)
,

with s(x) = s(x, T (z)) the suitable root of the equation

s3 + 3s − r(x) = 0,

and r(x) = r(x, T (z)) as stated in the corresponding part of Theorem 1.
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For the instance of ordered and unordered trees the functions T (z) can be expressed via
the so called tree function W (z) =

∑
n≥1

nn−1

n! zn, which satisfies the functional equation

W (z) = zeW (z),

and exact formulæ for the numbers Tn can be obtained by extracting coefficients. This leads
to results obtained by [1] and [11]. For most of the other tree families considered it does not
seem that there are simple explicit formulæ for the numbers Tn available. We only remark
the somewhat curious fact that for the instance of 3-bundled ordered trees the equation for
T (z) as given in Theorem 1 can be simplified to

z =
2T (z)(1 − T (z))3(2 − T (z))

(1 + (1 − T (z))2)2
=

T (z)(
1+(1−T (z))2

)2

2(1−T (z))3(2−T (z))

,

which also leads to an exact formula for Tn by applying the Lagrange inversion formula (see,
e.g., [13]) and a certain binomial identity that can be obtained by combining Pfaff’s reflection
law with Kummer’s formula for hypergeometric series (see [6, p. 217]). The derivation of Tn

for 3-bundled ordered trees is carried out in the following. First we obtain by extracting
coefficients:

[zn]T (z) =
1
n

[Tn−1]
( (1 + (1 − T )2)2

2(1 − T )3(2 − T )

)n
=

1
n2n

[Tn−1]
(1 + (1 − T )2)2n

(1 − T )3n(2 − T )n

=
1

n4n
[Tn−1]

(1 + (1 − T )2)2n

(1 − T )3n

∑
k≥0

(
n − 1 + k

k

)(T

2
)k

=
1

n4n

∑
k≥0

(
n − 1 + k

k

)
1
2k

[Tn−1−k]
(1 + (1 − T )2)2n

(1 − T )3n

=
1

n4n

∑
k≥0

(
n − 1 + k

k

)
1
2k

[Tn−1−k]
∑
�≥0

(
2n

�

)
(1 − T )2�−3n

=
1

n4n

n−1∑
k=0

(
n − 1 + k

k

)
1
2k

2n∑
�=0

(
2n

�

)(
2� − 3n

n − 1 − k

)
(−1)n−1−k.

This gives the following expression for Tn = n![zn]T (z):

Tn =
(n − 1)!

4n

2n∑
�=0

(
2n

�

) n−1∑
k=0

(
n − 1 + k

k

)(
2� − 3n

n − 1 − k

)
(−1)n−1−k 1

2k
. (13)

We consider now the sum

sn =
n−1∑
k=0

(
n − 1 + k

k

)(
m

n − 1 − k

)
(−1)n−1−k 1

2k
= (−1)n−1

(
m

n − 1

)
F

(
n,−n + 1
m − n + 2

∣∣∣∣ 1
2

)
.

In order to simplify sn one can apply the following identity for hypergeometric series (see
[6]):

2−aF
(

a, 1 − a

1 + b − a

∣∣∣∣ 1
2

)
= F

(
a, b

1 + b − a

∣∣∣∣ − 1
)

=
(b/2)!

b!
(b − a)!

(b/2 − a)!
,
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which gives, after specializing for a = −n + 1 and b = m − 2n + 2, the following expression:

sn = 2n−1

(
n − 3

2 − m
2

n − 1

)
. (14)

With (14) equation (13) can be simplified and we obtain the following expression:

Tn =
(n − 1)!

2n+1

2n∑
�=0

(
2n

�

)(5n−3
2 − �

n − 1

)
.

The exact results of Tn for up-down alternating labelled odered, unordered and 3-bundled
trees are collected in Theorem 2.

3.5. Asymptotic enumeration results. An advantage of the implicit characterization of
the generating functions T (z) =

∑
n≥1 Tn

zn

n! as the solution of certain functional equations
(as obtained in Subsection 3.4) is that this often allows to apply analytic techniques leading
to asymptotic results for the coefficients Tn, for n → ∞.

We will not go into all the details here, but also refer to the very general treatment [4]
and to the survey [2]. Basically one has to determine the radius of convergence ρ of the
analytic function T (z), which already leads to some growth estimates of Tn. However, for a
detailed description of the growth of the coefficients Tn one has to locate all singularities on
the radius of convergence (the so called dominant singularities) and describe the behaviour
of T (z) locally in a complex neighbourhood of their dominant singularities. By applying
transfer lemmata, i.e., singularity analysis [4], this leads then in many instances to precise
asymptotic results for Tn.

In the following we briefly show the asymptotic enumeration results of Tn for up-down
alternating labelled ordered, unordered, d-ary and d-bundled ordered trees that are collected
in Theorem 2.

Ordered trees: Of course, there is nothing better than the explicit formula Tn =
(n− 1)n−1, which immediately leads, by applying Stirling’s formula (see, e.g., [6]), to
the following asymptotic equivalent:

Tn = (n − 1)n−1 ∼ nn−1

e
∼ 1

e
√

2π
enn− 3

2 n!.

We just remark that this result could be obtained also by expanding T (z) = 1−e−W (z)

around the unique dominant singularity ρ = 1
e of the tree function W (z) (and thus

also of T (z)) and applying singularity analysis.
Unordered trees: Here we use the explicit formula

T (z) =
z

2
+ W

(ze
z
2

2
)

and the well-known facts (see, e.g., [4]) that the tree function W (z) has a unique
dominant singularity at z = 1

e , it is analytically continuable to a so called Δ region,
and it admits the following local expansion in a complex neighbourhood of z = 1

e :

W (z) = 1 −
√

2
√

1 − ez +
2
3
(1 − ez) + O

(
(1 − ez)

3
2
)
. (15)

The unique dominant singularity ρ of T (z) is then given as the real solution of the
equation ρ

2e
ρ
2 = e−1, which can also be described explicitly as ρ = −2W (−e−1).
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Furthermore T (z) has the following local expansion in a complex neighbourhood of
z = ρ:

T (z) = 1 +
ρ

2
−

√
2 + ρ

√
1 − z

ρ
+ O

(
ρ − z

)
.

Singularity analysis immediately gives then the following asymptotic equivalent of Tn:

Tn = n![zn]T (z) ∼
√

2 + ρ

2
√

π
ρ−nn− 3

2 n!.

d-ary trees: We consider the implicit equation

z =
2(

1 + (1 + T )d+1
) d−1

d+1

∫ T

0

dx(
1 + (1 + x)d+1

) 2
d+1

=: F (T ). (16)

According to the implicit function theorem a function T (z) satisfying (16) is analytic
around z, whenever F ′(T ) = 0. We consider now the equation F ′(T ) = 0, which leads
to (

1 + (1 + T )d+1
) d−1

d+1

(d − 1)(1 + T )d
=

∫ T

0

dx(
1 + (1 + x)d+1)

2
d+1

. (17)

It can be shown easily that equation (17) has a unique positive real solution τ > 0.
One dominant singularity of T (z) is then given by the positive real value ρ = F (τ),
which, of course, satisfies τ = T (ρ). Since τ satisfies (17) we can simplify the relation
between ρ and τ and obtain:

ρ = F (τ) =
1(

1 + (1 + τ)d+1
) d−1

d+1

∫ τ

0

dx(
1 + (1 + x)d+1

) 2
d+1

=
2

(d − 1)(1 + τ)d
, (18)

or equivalently τ = −1 +
(

2
(d−1)ρ

) 1
d .

To show that ρ is the only dominant singularity of T (z) we consider an arbitrary
value ρ̃ = ρeiϕ, with 0 < ϕ < 2π, on the circle of convergence ρ. Let us denote by
τ̃ the value τ̃ := T (ρ̃). Since T (z) =

∑
n≥1 Tn

zn

n! and Tn > 0, for n ≥ 1, it trivially
holds:

|τ̃ | = |T (ρ̃)| ≤ T (|ρ̃|) = T (ρ) = τ.

We assume now that there exists a value ρ̃ = ρeiϕ, with 0 < ϕ < 2π, on the circle of
convergence, which is also a singularity of T (z). Then, due to the implicit function
theorem, τ̃ has to satisfy F ′(τ̃) = 0, which would also lead to the relation

τ̃ = −1 +
( 2
(d − 1)ρ̃

) 1
d .

But from this relation we easily obtain for 0 < ϕ < 2π:

|τ̃ |2 =
(
− 1 +

( 2
(d − 1)ρ

) 1
d

)2
+ 2

( 2
(d − 1)ρ

) 1
d
(
1 − cos

ϕ

d

)
>

(
− 1 +

( 2
(d − 1)ρ

) 1
d

)2
= τ2,

and thus, that |τ̃ | > τ , which is a contradiction.
Therefore we obtain that ρ is the unique dominant singularity of T (z). General

considerations using the Weierstrass preparation theorem, see [2], show then that
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T (z) has a local representation around z = ρ of the kind T (z) = g(z) − h(z)
√

1 − z
ρ ,

with functions g(z), h(z) that are analytic around z = ρ. A Taylor series expansion
of (16) easily gives then the following local expansion of T (z) around z = ρ:

T (z) = τ −

√
2
(
1 + (1 + τ)d+1

)
d(d − 1)(1 + τ)d−1

√
1 − z

ρ
+ O

(
ρ − z

)
,

which, after applying singularity analysis, leads to the following asymptotic equivalent
of the numbers Tn:

Tn ∼
√

1 + (1 + τ)d+1

2d(d − 1)(1 + τ)d−1π
ρ−nn− 3

2 n!.

d-bundled ordered trees: Since the considerations for d-bundled ordered trees are
very similar to the corresponding ones for d-ary trees, we will be more brief. We
consider now the implicit equation

z =
2(

1 +
(

1
1−T (z)

)d−1) d+1
d−1

∫ T (z)

0

(
1 +

( 1
1 − x

)d−1
) 2

d−1
dx =: F (T ) (19)

and study the equation F ′(T ) = 0, which leads to(
1 +

(
1

1−T

)d−1) d+1
d−1

(d + 1)
(

1
1−T

)d
=

∫ T

0

(
1 +

( 1
1 − x

)d−1
) 2

d−1
dx. (20)

Equation (20) has a unique positive real solution τ > 0 and one dominant singularity
of T (z) is given by the positive real value ρ = F (τ), which, of course, satisfies τ =
T (ρ). Due to (20) we obtain further that

ρ =
2(1 − τ)d

d + 1
or equivalently τ = 1 −

((d + 1)ρ
2

) 1
d .

A further singularity ρ̃ = ρeiϕ, with 0 < ϕ < 2π, on the circle of convergence ρ
would also lead to the relation

τ̃ = 1 −
((d + 1)ρ̃

2
) 1

d ,

with τ̃ := T (ρ̃) and thus to

|τ̃ |2 =
(
1 −

((d + 1)ρ
2

) 1
d

)2
+ 2

((d + 1)ρ
2

) 1
d
(
1 − cos

ϕ

d

)
>

(
1 −

((d + 1)ρ
2

) 1
d

)2
= τ2.

This would imply |τ̃ | > τ , which is a contradiction.
Furthermore one gets the following local expansion of T (z) around the unique

dominant singularity z = ρ:

T (z) = τ −

√
2(1 − τ)d+1

(
1 + ( 1

1−τ )d−1
)

d(d + 1)

√
1 − z

ρ
+ O

(
ρ − z

)
,
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which, after applying singularity analysis, leads to the following asymptotic equivalent
of the numbers Tn:

Tn ∼

√
(1 − τ)d+1

(
1 + ( 1

1−τ )d−1
)

2d(d + 1)π
ρ−nn− 3

2 n!.

Remark 4. For the families T of up-down alternating labelled Motzkin trees and strict
binary trees we also determined the radius ρ of convergence, but it seems to be involved to
show that z = ρ is the unique dominant singularity (in the instance of Motzkin trees) or
that there are exactly two dominant singularities z = ρ and z = −ρ (in the instance of strict
binary trees), respectively.

4. Parameters in up-down alternating labelled rooted trees

We study now certain parameters for the family T of up-down alternating labelled ordered
trees. We recall that the number of size-n trees in T is given by Tn = (n − 1)n−1 and that
its exponential generating function T (z) =

∑
n≥1 Tn

zn

n! is given by T (z) = 1 − e−W (z), where
W (z) =

∑
n≥1 nn−1 zn

n! is the tree function.

4.1. Label of the root node. First we want to count the number Tn,j of up-down alter-
nating labelled ordered trees of size n, where the root node has label j, with 1 ≤ j ≤ n. In a
probabilistic setting we introduce the random variable Ln, where P{Ln = j} = Tn,j

Tn
gives the

probability that the root node of a random size-n alternating tree has label j.
By using the basic decomposition of an alternating tree of size n with respect to the largest

element n and counting the number of ways, where the root in the tree labelled by j will get,
after an order preserving relabelling with elements {1, 2, . . . , k}, the label � in the subtree of
size k containing the original root, one obtains the following recurrence for the numbers Tn,j

(where the appearing numbers are all zero for values of n and j, which are not listed below):

Tn,j =
∑
r≥0

∑
k + k1 + · · · + kr = n − 1,

k, k1, . . . , kr ≥ 1

j∑
�=1

k

(
j − 1
� − 1

)(
n − 1 − j

k − �

)(
n − 1 − k

k1, . . . , kr

)
×

× Tk,� · Tk1 · · ·Tkr , for n ≥ 2 and 1 ≤ j ≤ n − 1, (21)
Tn,n = δ1,n, for n ≥ 1.

Recurrence (21) will be treated by introducing the bivariate generating function

F (z, v) :=
∑
n≥1

∑
1≤j≤n

Tn,j
zj−1

(j − 1)!
vn−j

(n − j)!
,

which leads to the following first order linear partial differential equation with initial condition
F (z, 0) = 1 (we omit here these straightforward, but lengthy computations):(

1 − v

1 − T (z + v)
)
Fv(z, v) − z

1 − T (z + v)
Fz(z, v) − 1

1 − T (z + v)
F (z, v) = 0. (22)

Using the explicit solution T (z) = 1 − e−W (z), with W (z) the tree function, which has been
stated in Theorem 1 we can write equation (22) as follows:(

1 − veW (z+v)
)
Fv(z, v) − zeW (z+v)Fz(z, v) − eW (z+v)F (z, v) = 0. (23)
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To solve the PDE (23) we apply the method of characteristics. In the following we briefly
give the occurring computations. First we consider the corresponding reduced PDE(

1 − veW (z+v)
)
Fv(z, v) − zeW (z+v)Fz(z, v) = 0 (24)

and thus the following system of characteristic equations:

v̇ = 1 − veW (z+v), ż = −zeW (z+v). (25)

Introducing u := v + z we further get, after adding the two characteristic equations, the
system

u̇ = 1 − ueW (u), ż = −zeW (u).

From these equations we obtain the separable differential equation

dz

du
= − zeW (u)

1 − ueW (u)
,

whose general solution is given as

log z = −W (u) + c1.

This gives, after backsubstituting u = v + z, the following first integral of the system (25):

ξ(z, v) = c1 = log z + W (z + v).

In order to treat the PDE (23) we use now the following transformation from (z, v)-coordinates
to (ξ, η)-coordinates:

ξ = log z + W (z + v), η = z + v, or equivalently z = eξ−W (η), v = η − eξ−W (η),

which leads to the differential equation:(
1 − ηeW (η)

)
Fη(ξ, η) − eW (η)F (ξ, η) = 0. (26)

The general solution of the separable equation (26) is given as

F (ξ, η) = C(ξ)eW (η),

with arbitrary differentiable functions C(x). Applying the inverse transformation to (z, v)-
coordinates we obtain thus the general solution of (23):

F (z, v) = C
(
log z + W (z + v)

)
eW (z+v) = C

(
log z + W (z + v)

)
elog z+W (z+v)e− log z

=
C̃

(
log z + W (z + v)

)
z

=
G

(
zeW (z+v)

)
z

=
G

( zW (z+v)
z+v

)
z

, (27)

with arbitrary differentiable functions G(x) (and C̃(x)). Since we are interested in the par-
ticular solution of (23) satisfying the initial condition F (z, 0) = 1 we will characterize the
function G(x) appearing in (27) by evaluating at v = 0, which gives

z = G
(
W (z)

)
.

Thus G(x) is given as the functional inverse of the tree function W (x): G(x) = W−1(x). Of
course, due to z = W (z)e−W (z), one obtains

G(x) = W−1(x) = xe−x.

Thus eventually we get the solution of (23) satisfying the initial condition:

F (z, v) =
W (z + v)

z + v
e−

zW (z+v)
z+v = eveW (z+v)

. (28)
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In order to obtain explicit formulæ for the numbers Tn,j of size-n up-down alternating
labelled ordered trees, where the root node has label j, or, equivalently, for the probabilities
P{Ln = j} = Tn,j

(n−1)n−1 that the root node of a randomly chosen up-down alternating labelled
ordered tree of size n is labelled by j, we extract coefficients from F (z, v) given by (28). First
we obtain:

Tn,j = (j − 1)!(n − j)![zj−1vn−j ]F (z, v) = (j − 1)!(n − j)![zj−1vn−j ]
∑
k≥0

vk ekW (z+v)

k!

= (j − 1)!(n − j)!
n−j∑
k=0

1
k!

[zj−1vn−j−k]ekW (z+v)

= (j − 1)!(n − j)!
n−j∑
k=0

1
(n − j − k)!

[zj−1vk]e(n−j−k)W (z+v).

In order to proceed we use that, for a power series A(z) =
∑

n≥1 anzn, the coefficients of
A(z + v) are given as follows: [znvk]A(z + v) =

(
n+k

k

)
an+k. Furthermore we use

[zm]e(n−j−k)W (z) = (n − j − k)
(n − m − j − k)m−1

m!
,

which immediately follows by applying the Lagrange inversion formula. This gives then, for
n ≥ 2 and 1 ≤ j ≤ n, the following explicit formula for the numbers Tn,j stated in Theorem 3:

Tn,j = (j − 1)!(n − j)!
n−j∑
k=0

1
(n − j − k)!

(
j − 1 + k

k

)
(n − j − k)

(n − 1)j−2+k

(j − 1 + k)!

= (n − j)(n − 1)j−2
n−j−1∑

k=0

(
n − j − 1

k

)
(n − 1)k = (n − j) (n − 1)j−2nn−j−1. (29)

Of course, this immediately also shows the following explicit formula for the probabilities
P{Ln = j}:

P{Ln = j} =
(n − j)nn−j−1

(n − 1)n−j+1
, for n ≥ 2 and 1 ≤ j ≤ n. (30)

The limiting distribution result for the probabilities P{Ln = j} as given also in Theorem 3
easily follows from the exact result (30) when considering j ∼ xn, with 0 < x < 1, and the
straightforward computations are thus omitted here.

Using the explicit formula (30) one also easily obtains an exact expression for the expected
value E(Ln) of Ln:

E(Ln) =
n∑

j=1

j P{Ln = j} =
n∑

j=1

j(n − j)nn−j−1

(n − 1)n−j+1
= 3n − 1 − nn

(n − 1)n−1
,

which gives E(Ln) ∼ (3 − e)n = (0.281718 . . . )n. Thus the result matches with the intuition
that smaller labels are preferred to become the label of the root node in up-down alternating
labelled ordered trees, but the exact amount of this preference is covered in the findings
above.
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4.2. Root degree. Next we are interested in the behaviour of the root degree in up-down
alternating labelled ordered trees. To do this we introduce the random variable Rn, which
counts the root degree of a randomly chosen up-down alternating labelled ordered tree of size
n. If we denote now by Tn,m the number of up-down alternating labelled ordered trees of size
n, where the root node has degree m, with 0 ≤ m ≤ n, the probabilities P{Rn = m} are just
given by P{Rn = m} = Tn,m

Tn
.

By using the basic decomposition of an up-down alternating labelled ordered tree of size n
with respect to the largest element n and using the fact that by cutting off node n the subtree
of size k containing the root has either also degree m (this is obtained for k−m−1 positions
of n) or has degree m − 1 (this is obtained for m positions of n) we obtain the following
recurrence for the numbers Tn,m (where the appearing numbers are all zero for values of n
and m, which are not listed below):

Tn,m =
∑
r≥0

∑
k + k1 + · · · + kr = n − 1,

k, k1, . . . , kr ≥ 1

(
(k − m − 1)Tk,m + mTk,m−1

)
Tk1 · Tk2 · · ·Tkr

(
n − 1

k, k1, . . . , kr

)
,

for n ≥ 2, T1,m = δ0,m. (31)

Recurrence (31) can be treated by introducing the bivariate generating function

F (z, v) :=
∑
n≥1

∑
m≥0

Tn,m
zn

n!
vm.

This leads then to the following first order linear partial differential equation with initial
condition F (0, v) = 0:(

1 − z

1 − T (z)
)
Fz(z, v) +

v(1 − v)
1 − T (z)

Fv(z, v) = 1 − 1 − v

1 − T (z)
F (z, v). (32)

The solution of this differential equation, which can be obtained again by applying the
method of characteristics, is given as follows, where W (z) denotes the tree function:

F (z, v) =
W (z)e−W (z)

1 − v
− e−W (z)

1 − v
log

( 1
1 − v

(
1 − e−W (z)

))
. (33)

We omit now the computations, but it can be checked easily that (33) is indeed the desired
solution of (32).

Extracting coefficients from (33) by using the Lagrange inversion formula leads to an exact
formula for Tn,m, which is given in Theorem 4. We first obtain

[vm]F (z, v) = W (z)e−W (z) − e−W (z)
m∑

k=1

[vk] log
( 1

1 − v
(
1 − e−W (z)

))
(34)

= W (z)e−W (z) −
m∑

k=1

1
k

k∑
�=0

(
k

�

)
(−1)�e−(�+1)W (z)

and further

Tn,m = n![znvm]F (z, v)

= (n − 1)![Wn−1]enW
(
e−W − We−W +

m∑
k=1

1
k

k∑
�=0

(
k

�

)
(−1)�(� + 1)e−(�+1)W

)
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= (n − 1)!
((n − 1)n−1

(n − 1)!
− (n − 1)n−2

(n − 2)!
+

m∑
k=1

1
k

k∑
�=0

(
k

�

)
(−1)�(� + 1)

(n − � − 1)n−1

(n − 1)!

)
= (n − 1)!

m∑
k=1

1
k

(n − 1)n−1

(n − 1)!
+ (n − 1)!

m∑
�=1

(−1)� � + 1
�

(n − � − 1)n−1

(n − 1)!

m∑
k=�

(
k − 1
� − 1

)

= (n − 1)n−1Hm +
m∑

�=1

(
m

�

)
(−1)� � + 1

�
(n − � − 1)n−1, (35)

with Hm :=
∑m

k=1
1
k the m-th harmonic number.

Of course, the exact distribution of Rn is then determined by

P{Rn = m} =
Tn,m

(n − 1)n−1
= Hm +

m∑
�=1

(
m

�

)
(−1)� � + 1

�

(
1 − �

n − 1
)n−1

. (36)

The discrete limiting distribution result for Rn as given in Theorem 5 can be obtained either
from this exact result or easier (due to the alternating sum involved in this exact expression)
by applying singularity analysis to a local expansion of the functions Fm(z) := [vm]F (z, v)
as given in (34) around the dominant singularity ρ = e−1. Using the local expansion (15)
of the tree function W (z) around the dominant singularity ρ = e−1 we get, for m fixed, the
following local expansion of Fm(z):

Fm(z) =
1
e
− 1

e

m∑
k=1

1
k

(e − 1
e

)k −
√

2
e

[
− 1 +

(e − 1
e

)m +
m∑

k=1

1
k

(e − 1
e

)k
]√

1 − ez +O
(
1− ez

)
,

which leads, by applying singularity analysis, to the following limiting distribution result of
Rn:

P{Rn = m} =
n!

(n − 1)n−1
[zn]Fm(z) →

(e − 1
e

)m − 1 +
m∑

k=1

1
k

(e − 1
e

)k
, for n → ∞.

We further remark that the expected value of Rn can be computed easily and is given by
the following exact formula:

E(Rn) =
1
2

[(n + 1
n − 1

)n−1 − 1
]
,

which gives that E(Rn) ∼ e2−1
2 ≈ 3.194528 . . . . If we compare this result with the cor-

responding result (see, e.g., [4]) for unlabelled (or equivalently randomly labelled) ordered
trees, where it holds E(Rn) ∼ 3, we obtain that on average the root of an alternating tree
has a slightly higher degree than the root of a randomly labelled tree.

4.3. Depth of nodes. An important parameter when analysing the structure of random
trees in rooted tree families is the depth of a randomly chosen node. Thus we are studying
the random variable Dn, which counts the depth of a randomly chosen node in a random up-
down alternating labelled ordered tree of size n. Due to the nature of the basic decomposition
of alternating trees w.r.t. the node with label n in a size-n tree, we require for a study of
Dn an auxiliary parameter, which we call “the depth of a random insertion point”: if we
choose an alternating ordered tree T of size n there are exactly n possibilities to attach a
node with label n + 1 to one of the nodes in T in such a way that the resulting tree is again
an alternating ordered tree, now of size n + 1. The depth of node n + 1 when attached to
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a node in T in an appropriate way is then of interest here. We introduce thus the auxiliary
random variable Xn, which counts the depth of node n + 1 in a tree obtained by choosing a
random alternating tree of size n and attaching a node with label n + 1 at random at one of
the n possibilities such that the resulting tree is an alternating tree of size n + 1.

Using the basic decomposition of an up-down alternating labelled ordered tree T with
respect to the node with the largest label n as described in Subsection 3.2 leading to trees
T̂ , T1, . . . , Tr, we obtain a system of recurrences for the probabilities P{Xn = m} and
P{Dn = m}. When computing the recurrence for the probabilities P{Xn = m} we only have
to take into account the insertion points in T̂ , T1, . . . , Tr, and the additional insertion point
of T obtained after attaching node n to T̂ . Analogous, when computing the recurrence for
the probabilities P{Dn = m}, we have to take into account the depth of nodes in T̂ , T1, . . . ,
Tr and the depth of node n after attaching to T̂ . We obtain then the following system of
recurrences, where Tn = (n− 1)n−1 denote the number of up-down alternating labelled trees
of size n (the appearing probabilities are all zero for values of n and m that are not listed
below):

P{Xn = m} =
∑
r≥0

∑
k + k1 + · · · + kr = n − 1,

k, k1, . . . , kr ≥ 1

k

(
n − 1

k, k1, . . . , kr

)
Tk · Tk1 · · ·Tkr

Tn
×

×
(k

n
P{Xk = m} +

1
n

P{Xk = m} (37a)

+
r∑

i=1

ki

n

∑
m1 + m2 = m − 1,

m1, m2 ≥ 0

P{Xk = m1}P{Xki = m2}
)
, for n ≥ 2,

P{X1 = m} = δ1,m,

P{Dn = m} =
∑
r≥0

∑
k + k1 + · · · + kr = n − 1,

k, k1, . . . , kr ≥ 1

k

(
n − 1

k, k1, . . . , kr

)
Tk · Tk1 · · ·Tkr

Tn
×

×
(k

n
P{Dk = m} +

1
n

P{Xk = m} (37b)

+
r∑

i=1

ki

n

∑
m1 + m2 = m − 1,

m1, m2 ≥ 0

P{Xk = m1}P{Dki = m2}
)
, for n ≥ 2,

P{D1 = m} = δ0,m.

We treat the system of recurrences (37) by introducing the bivariate generating functions

F (z, v) :=
∑
n≥1

∑
m≥0

nTnP{Xn = m}zn

n!
vm,

G(z, v) :=
∑
n≥1

∑
m≥0

nTnP{Dn = m}zn

n!
vm,
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which leads to the following system of differential equations with initial conditions F (0, v) =
G(0, v) = 0:(

1 − z

1 − T (z)
)
Fz(z, v) − 1

1 − T (z)
F (z, v) − v

(1 − T (z))2
F (z, v)2 − v = 0, (38a)

(
1 − z

1 − T (z)
)
Gz(z, v) − 1

1 − T (z)
F (z, v) − vF (z, v)

(1 − T (z))2
G(z, v) − 1 = 0, (38b)

with T (z) = 1 − e−W (z) and W (z) the tree function.
In order to study the asymptotic behaviour of the depth Dn of a random node in a random

alternating ordered tree of size n we use the so called method of moments. By studying
the evaluation at v = 1 of the r-th derivatives of F (z, v) and G(z, v) w.r.t. v we are able to
show that, for r fixed and n → ∞, the r-th moment of the normalized random variable Dn√

n

converges to the r-th moment of a Rayley-distributed random variable Rα, with parameter
α = 2

3 . Since the Rayleigh-distribution is fully characterized by its moments an application
of the Theorem of Fréchet and Shohat (see, e.g., [8]) shows the convergence in distribution
of Dn√

n
to Rα, which is stated as Theorem 5.

We will here only sketch the appearing computations; see, e.g., [10] for another application
of this method, which is figured out there in more detail. First we consider the differential
equation (38a) for the generating function F (z, v) of the probabilities P{Xn = m} of the
auxiliary random variable Xn and introduce, for integers r ≥ 0, the functions

Fr(z) :=
∂r

∂vr
F (z, v)

∣∣∣∣
v=1

.

For F0(z) we obtain from the definition:

F0(z) = F (z, 1) =
∑
n≥1

nTn
zn

n!
= zT ′(z) =

W (z)e−W (z)

1 − W (z)
, (39)

whereas differentiating (38a) leads to the following differential equation of Fr(z), r ≥ 1:

F ′
r(z) − (1 + W (z))eW (z)

(1 − W (z))2
Fr(z) = Sr(z), (40)

where the inhomogeneous part Sr(z) is given as follows:

S1(z) =
W (z)2

(1 − W (z))3
+

1
1 − W (z)

,

and, for r ≥ 2:

Sr(z) =
1

1 − W (z)

(
re2W (z)

r−1∑
k=0

(
r − 1

k

)
Fk(z)Fr−1−k(z) + e2W (z)

r−1∑
k=1

(
r

k

)
Fk(z)Fr−k(z)

)
.

One easily gets that the solution of Fr(z) satisfying (40) and the initial condition Fr(0) = 0
is, for r ≥ 1, given as follows:

Fr(z) =
e−W (z)

(1 − W (z))2

∫ W (z)

0
Sr

(
We−W

)
(1 − W )3dW. (41)
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It is now a crucial observation that the functions Fr(z), r ≥ 0, behave locally in a complex
neighbourhood of the unique dominant singularity ρ = e−1 (or equivalently around W (z) = 1)
as follows, with certain constants cr:

Fr(z) ∼ cre
−W (z)

(1 − W (z))r+1
. (42)

For r = 0 it follows directly from (39) and the local behaviour (15) of the tree function W (z)
that the asymptotic equivalent (42) is true with constant c0 = 1:

F0(z) =
W (z)e−W (z)

1 − W (z)
∼ e−W (z)

1 − W (z)
.

For r = 1 the differential equation (40) leads to the following solution

F1(z) =
( 2

3(1 − W (z))2
+

1
1 − W (z)

+ 1 − 2
3
(
1 − W (z)

))
e−W (z) ∼

2
3e−W (z)

(1 − W (z))2
,

which shows (42) with c1 = 2
3 . For general r, the asymptotic relation (42) can be shown by

induction using (41) and theorems for singular integration, see [4]; as a byproduct one also
obtains a recurrence for the constants cr:

Fr(z) ∼ e−W (z)

(1 − W (z))2

∫ W (z)

0

[
r

r−1∑
k=0

(
r − 1

k

)
ck

(1 − W )k+1

cr−1−k

(1 − W )r−k

+
r−1∑
k=1

(
r

k

)
ck

(1 − W )k+1

cr−k

(1 − W )r−k+1

]
(1 − W )2dW

∼
r−1∑
k=1

(
r

k

)
ckcr−k

e−W (z)

(1 − W (z))2

∫ W (z)

0

1
(1 − W )r

dW

∼ 1
r − 1

r−1∑
k=1

(
r

k

)
ckcr−k

e−W (z)

(1 − W (z))r+1
,

and thus

cr =
1

r − 1

r−1∑
k=1

(
r

k

)
ckcr−k, for r ≥ 2, c1 =

2
3
. (43)

Recurrence (43) can be treated by standard methods leading to the solution

cr = r!
(2
3
)r

, for r ≥ 1. (44)

This gives the following local behaviour of the functions Fr(z) around the dominant singu-
larity z = e−1:

Fr(z) ∼
(2
3
)r

r!
e−W (z)

(1 − W (z))r+1
∼

(2
3
)r

r!
e−1

(
√

2
√

1 − ez)r+1
. (45)

We use now this description (45) of the local behaviour of Fr(z) around z = e−1 for a
study of the differential equation (38b) for the generating function G(z, v) of the probabilities
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P{Dn = m} of the random variable Dn of interest. To do this we introduce, for integers r ≥ 0,
the functions

Gr(z) :=
∂r

∂zr
G(z, v)

∣∣∣∣
v=1

.

Again, by using the definition, we immediately obtain for G0(z):

G0(z) = G(z, 1) =
∑
n≥1

nTn
zn

n!
= zT ′(z) =

W (z)e−W (z)

1 − W (z)
, (46)

whereas differentiating (38b) leads, for r ≥ 1, to the following differential equation for Gr(z):

G′
r(z) − W (z)eW (z)

(1 − W (z))2
Gr(z) = S̃r(z), (47)

with

S̃r(z) =
1

1 − W (z)

(
eW (z)Fr(z) + re2W (z)

r−1∑
k=0

(
r − 1

k

)
Fk(z)Gr−1−k(z)

+ e2W (z)
r∑

k=1

(
r

k

)
Fk(z)Gr−k(z)

)
.

One easily gets that the solution of Gr(z) satisfying (47) and the initial condition Gr(0) = 0
is, for r ≥ 1, given as follows:

Gr(z) =
e−W (z)

1 − W (z)

∫ W (z)

0
S̃r

(
We−W

)
(1 − W )2dW. (48)

Again it is a crucial observation that the functions Gr(z), r ≥ 0, behave locally in a complex
neighbourhood of the unique dominant singularity ρ = e−1 (or equivalently around W (z) = 1)
as follows, with certain constants dr:

Gr(z) ∼ dre
−W (z)

(1 − W (z))r+1
. (49)

The asymptotic relation (49) can be proven by induction, where we additionally require
the corresponding relation (45) for the auxiliary functions Fr(z), leading also to a recurrence
for the constants dr:

Gr(z) ∼ e−W (z)

1 − W (z)

∫ W (z)

0

[ cr

(1 − W )r+1
+ r

r−1∑
k=0

(
r − 1

k

)
ck

(1 − W )k+1

dr−1−k

(1 − W )r−k

+
r∑

k=1

(
r

k

)
ck

(1 − W )k+1

dr−k

(1 − W )r−k+1

]
(1 − W )dW

∼
r∑

k=1

(
r

k

)
ckdr−k

e−W (z)

1 − W (z)

∫ W (z)

0

1
(1 − W )r+1

dW

∼ 1
r

r∑
k=1

(
r

k

)
ckdr−k

e−W (z)

(1 − W (z))r+1
,
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and thus

dr =
1
r

r∑
k=1

(
r

k

)
ckdr−k, for r ≥ 1. (50)

Using d0 = 1, which follows immediately from (46), and the solution (44) for cr we can solve
recurrence (50) by standard methods and obtain

dr = r!
(2
3
)r

, for r ≥ 1.

This gives the following local behaviour of the functions Gr(z) around the dominant singu-
larity z = e−1:

Gr(z) ∼
(2
3
)r

r!
e−W (z)

(1 − W (z))r+1
∼

(2
3
)r

r!
e−1

(
√

2
√

1 − ez)r+1
. (51)

Via singularity analysis we obtain then the following asymptotic equivalent of the r-th
factorial moments E(Dr

n) := E
(
Dn(Dn − 1) · · · (Dn − r + 1)

)
:

E(Dr
n) =

n!
nTn

[zn]Gr(z) ∼
√

πr!
(

2
3

)r

2
r
2 Γ

(
r+1
2

)n
r
2 . (52)

Due to the relation E(Dr
n) =

∑r
k=0

{
r
k

}
E(Dk

n) between the r-th ordinary and the r-th factorial
moments of Dn, where

{
r
k

}
denote the Stirling numbers of the second kind, it holds E(Dr

n) ∼
E(Dr

n). By using the duplication formula of the Gamma-function:

Γ(
r + 1

2
)Γ(

r

2
+ 1) =

r!
√

π

2r
,

we obtain from (52), for every r fixed and n → ∞, the following asymptotic equivalent of the
r-th moment of the scaled random variable Dn√

n
:

E

((Dn√
n

)r
)
∼

(2
3
)r2

r
2 Γ

(
1 +

r

2

)
.

Since every r-th moment of Dn√
n

converges to the r-th moment of a Rayleigh distributed

random variable Rα with parameter α = 2
3 we have indeed shown Theorem 5.

If one compares this result with the depth Dn of a random node in a randomly labelled
ordered tree of size n (see, e.g., [9]), where Dn√

n
is also asymptotically Rayleigh distributed,

but with a larger parameter α = 1, one gets that on average the depth of a randomly chosen
node in a randomly chosen alternating ordered tree is about 1/3 smaller than the depth of a
randomly chosen node in a random labelled tree of the same size.
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