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Abstract

An association scheme is amorphous if it has as many fusion schemes as possible. Symmetric
amorphous schemes were classified by A. V. Ivanov [A. V. Ivanov, Amorphous cellular rings II,
in Investigations in algebraic theory of combinatorial objects, pages 39–49. VNIISI, Moscow,
Institute for System Studies, 1985] and commutative amorphous schemes were classified by
T. Ito, A. Munemasa and M. Yamada [T. Ito, A. Munemasa and M. Yamada, Amorphous
association schemes over the Galois rings of characteristic 4, European J. Combin., 12(1991),
513–526]. A scheme is called skew-symmetric if the diagonal relation is the only symmetric
relation. We prove the nonexistence of skew-symmetric amorphous schemes with at least 4
classes. We also prove that non-symmetric amorphous schemes are commutative.

1 Introduction

Let X = (X,R = {R0, R1, . . . , Rd}) be a commutative association scheme with d classes. X is
called amorphous if it has as many fusion schemes as possible. If X is symmetric, then it is
amorphous if and only if every partition of R containing {R0} gives rise to a fusion scheme.
However, if X is non-symmetric, then in order for a partition of R containing {R0} to give rise
to a fusion scheme, this partition has to be closed under taking inverse, i.e., it is admissible [6].
So, if X is non-symmetric, then it is amorphous if and only if every admissible partition of R
gives rise to a fusion scheme.

A. V. Ivanov ([8], see also [4]) classified symmetric amorphous association schemes with
at least three classes: all basic graphs in such a scheme are strongly regular graphs of Latin
square types, or they are all negative Latin square type. Association schemes with two classes
are amorphous by definition and there are many examples in which the basic graphs are not
either Latin square types. Hence the assumption “at least three classes” is essential. T. Ito, A.
Munemasa and M. Yamada [6] classified commutative amorphous association schemes under the
assumption θ+φ ≥ 3, where θ is the number of pairs of non-symmetric relations, and φ is the
number of non-diagonal symmetric relations (see Section 2). The assumption θ+φ ≥ 3 garantees
that their symmetrizations have at least three classes. What about association schemes with
θ+ φ ≤ 2?

This paper addresses the case (θ,φ) = (2, 0). Included in this case are four-class association
schemes which have no non-diagonal symmetric relations. Association schemes with this prop-
erty will be referred to as skew-symmetric. The symmetrizations of skew-symmetric schemes
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with four classes, as we will see, indeed have basic graphs of Latin square type or negative Latin
square type. However, such schemes can not exist, due to the following theorem.

Theorem 1. There is no skew-symmetric amorphous association scheme with 4 classes.

Surprisingly, this simple result eleminates the existence of many amorphous association
schemes.

Theorem 2 (Main Theorem). There is no skew-symmetric amorphous association scheme with
at least 4 classes.

Theorem 1 answers a question put forward by E. Bannai and S.Y. Song ([2, p.395]) regarding
the existence of certain amorphous association schemes with 4 classes. The proofs of both the-
orems rely on Theorem 6, in which we determine the eigenmatrices of skew-symmetric schemes
with 4 classes.

We note that all association schemes in other cases of θ + φ < 3 are trivially amorphous.
Let X be an association scheme with θ + φ < 3. If (θ,φ) = (0, 1), X is a complete graph. If
(θ,φ) = (1, 0), X is a doubly regular tournament. If (θ,φ) = (0, 2), X is equivalent to a pair
of complementary strong regular graphs. Many chapters of books have been devoted to strong
regular graphs (e.g. [3]). If (θ,φ) = (1, 1), X is a non-symmetric association scheme with 3
classes, and examples of primitive ones are not abundant except the Liebler-Mena family [9] and
some examples in [10] (see [7] and the references there).

It is natural to ask if there exist non-commutative amorphous schemes. We rule out this
possibility with an algebraic argument.

The general references are [1, 3] for association schemes and strongly regular graphs, and
[4, 6, 15] for amorphous association schemes. In the rest of this paper, all association schemes
are assumed to be commutative unless otherwise stated.

Acknowledgment: The author would like to thank Professors Robert A. Liebler and
Kaishun Wang for many helpful discussions and suggestions while preparing this paper. This
paper is revised according to the referee’s report on an earlier version, and the author is indebted
to the anonymous referee for their valuable comments. He is also grateful to Professor Misha
Klin for many encouragements.

2 Preliminaries

Let X be a finite set with cardinality n ≥ 2 and R = {R0, R1, . . . , Rd} be a set of binary
relations on X . X = (X,R) is called an association scheme with d classes (a d-class association
scheme, or simply, a scheme) if the following axioms are satisfied:

(i) R is a partition of X ×X and R0 = {(x, x) | x ∈ X} is the diagonal relation.

(ii) For i = 0, 1, . . . , d, the inverse RT

i = {(y, x)|(x, y) ∈ Ri} of Ri is also among the relations:
RT

i = Ri′ for some i′ (0 ≤ i′ ≤ d).

(iii) For any triple of i, j, k = 0, 1, . . . , d, there exists an integer pkij such that for all (x, y) ∈ Rk,

|{z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj}| = pkij .

The integers pkij are called the intersection numbers. The integer ki = p0ii′ is called the valency
of Ri. In fact, for any x ∈ X , ki = |{y ∈ X | (x, y) ∈ Ri}|.

Furthermore, X is called commutative if pkij = pkji for all i, j, k.
Ri and Ri′ are called paired relations. If i = i′, then Ri is called symmetric or self-paired.

Let
θ = |{{i, i′}|i 6= i′, 1 ≤ i ≤ d}|, φ = |{i|i = i′, 1 ≤ i ≤ d}|.
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X is called symmetric if all relations Ri are symmetric: θ = 0. Otherwise, X is said to be
non-symmetric. We call X skew-symmetric if R0 is the only self-paired relation: φ = 0.

A partition Λ0,Λ1, . . . ,Λe of index set {0, 1, . . . , d} of R is called admissible [6] if Λ0 = {0},
Λi 6= ∅ and ΛT

i = Λj for some j (1 ≤ i, j ≤ e), where ΛT = {α′|α ∈ Λ} is called the inverse of Λ.
We may also talk about these properties in terms of the relations when it is convenient, which
we did at the beginning of the Introduction.

Let RΛi
= ∪α∈Λi

Rα. If (X, {RΛi
}ei=0) is an association scheme, it is called a fusion scheme of

X. In particular, the fusion scheme Xsym = (X, {R0, Ri ∪ RT

i }di=0) is called the symmetrization
of X. X is amorphous if every admissible partition gives a fusion scheme. Note that if X is
symmetric, then every partition containing {0} is admissible by definition. Amorphous schemes
are extremal in the sense they have as many fusion schemes as possible.

Let us recall the (first) eigenmatrix P = (Pij) of a commutative association scheme X =
(X, {Ri}di=0). Let Ai and Ei (0 ≤ i ≤ d) be the adjacency matrices and primitive idempotents
of X. Then the eigenmatrix P is a square matrix of order d+ 1 defined by

Aj =
d∑

i=0

PijEi for j = 0, 1, . . . , d.

P is characterized by AjEi = PijEi for all i, j = 0, 1, . . . d. We may index the rows and columns
of P by Ei and Ai (i = 0, 1, 2), respectively. Moreover, P0i = ki and Pi0 = 1 (0 ≤ i ≤ d).
Let mi = rank Ei. Then Aj has eigenvalues P0j = kj , P1j , . . . , Pdj with multiplicities m0 =
1,m1, . . .md, respectively. The rows and columns of P satisfy the orthogonality relations :

d∑

i=0

1

ki
PjiP ki =

n

mj

δjk,

d∑

i=0

miPijP ik = nkjδjk, (2.1)

where x is the complex conjugate of x and δ is the Kronecker symbol.
The numbers mj and pℓij can be calculated from P :

mj =
n

d∑
i=0

1

ki
PjiP ji

, (2.2)

pℓij =
1

nkℓ

d∑

h=0

mhPhiPhjP hℓ. (2.3)

In the rest of this paper, the following theorem, referred as the Bannai-Muzychuk criterion
for fusion schemes, will be used repeatedly (see [2], [6]).

Theorem 3. Let X = (X, {Ri}di=0) be a commutative association scheme. Let {Λi}ei=0 be an
admissible partition of the index set {0, 1, . . . , d}. Then {Λi}ei=0 gives rise to a fusion scheme
(X, {RΛi

}ei=0) if and only if there exists a dual partition {Λ∗
i }ei=0 of {0, 1, . . . , d} with Λ∗

0 = {0}
such that each (Λ∗

i ,Λj) block of the eigenmatrix P has constant row sum. Moreover, the constant
row sum of the (Λ∗

i ,Λj)-block is the (i, j) entry of the eigenmatrix of the fusion scheme.

Now we consider two-class association schemes. Let X = (X, {R0, R1, R2}) be an association
scheme. If X is non-symmetric, then R2 = RT

1. Its eigenmatrix is

P =




1 k k

1
−1 +

√−n

2

−1−√−n

2

1
−1−√−n

2

−1 +
√−n

2


 , (2.4)
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where n = |X | = 2k + 1.
Two-class symmetric schemes are closely related to strongly regular graphs. A regular graph

(X,F ) with vertex set X , edge set F and valency k, is called strongly regular if

λ = |{z|(x, z) ∈ F, (z, y) ∈ F}|

is constant for all (x, y) ∈ F and

µ = |{z|(x, z) ∈ F, (z, y) ∈ F}|

is constant for all (x, y) /∈ F (x 6= y). The numbers n = |X |, k, λ, µ are the parameters of this
graph.

A strongly regular graph with parameters (n, k, λ, µ) is of (positive) Latin square type or
negative Latin square type if n = v2 (a square) and either (i)

k = g(v − 1), λ = (g − 1)(g − 2) + v − 2, µ = g(g − 1),

or (ii)
k = g(v + 1), λ = (g + 1)(g + 2)− v − 2, µ = g(g + 1).

They are denoted by Lg(v) and NLg(v), respectively. Graphs with Lg(v) parameters can be
constructed with g − 2 mutually orthogonal Latin squares of order v. Graphs with NLg(v)
parameters do exist: for example, the Clebsch graph is NL1(4).

For a symmetric amorphous scheme X = (X, {Ri}di=0), each graph (X,Ri)(i 6= 0) is strongly
regular. It was shown in [8, 4] that if d ≥ 3, all graphs (X,Ri)(i 6= 0) are strongly regular
graphs of Latin square type, or they are all negative Latin square type. The converse is also
true ([14, Theorem 3]): if (X,Ri), i = 1, . . . , d are strongly regular graphs of all Latin square
type or all negative Latin square type such that ∪d

i=1Ri = X × X − R0 and Ri ∩ Rj = ∅
(i 6= j), then (X, {Ri}di=0) is an amorphous association scheme. In [6], T. Ito et al. classified
commutative amorphous association schemes with θ+φ ≥ 3 and determined their eigenmatrices
and intersection numbers. They also constructed some amorphous schemes on Galois rings of
characteristic 4.

If (X,R1) is a strongly regular graph with parameters (n, k1, λ, µ), the complement (X,R2)
of (X,R1) is also strongly regular, where R2 = X×X−R0−R1. Furthermore, (X, {R0, R1, R2})
is a symmetric scheme, which has the following eigenmatrix:

P =




1 k1 k2
1 r t
1 s u




1
m1

m2,
(2.5)

where t = −r− 1, u = −s− 1. The numbers k1, r, s are the eigenvalues of the adjacency matrix
A1 of R1 and r, s may be expressed in terms of n, k1, λ and µ. Here, we write the multiplicities to
the right of P . Conversely, a two-class symmetric scheme gives rise to a pair of complementary
strongly regular graphs.

Now we conclude this section with two lemmas that we will need later. In the rest of this
paper, we always choose r ≥ 0 > s.

Lemma 4. Let Γ be a strong regular graph with eigenvalues k, r, s and multiplicities 1,m1, m2.

(i) If m1 = m2 (hence k = m1), Γ is a strong regular graph with parameters n = 4µ + 1,
k = 2µ, λ = µ− 1. Such a graph is called a conference graph, denoted by C(n).

(ii) If k = m1, Γ is Lg(v) with v = r − s, g = −s.

(iii) If k = m2, Γ is NLg(v) with v = r − s, g = r.

4



One can prove this lemma directly using [3, exercise 5, p.244]) or see Theorem 2.1 of [11]. If
v is odd, we note that L 1

2
(v+1)(v) and NL 1

2
(v−1)(v) have identical parameters and both agree

with C(n) with the argument µ = (v2 − 1)/4.
We state the next lemma without a proof since it is straightforward.

Lemma 5. Let X be a d-class association scheme with adjacency matrices Ai and primitive
idempotents Ei.

(i) If AT

i = Aj , then Pαi = Pαj (0 ≤ α ≤ d). So, if AT

i 6= Ai, Ai has at least one pair of
nonreal eigenvalues that are complex conjugates.

(ii) If ET

i = Ej, then Piα = P jα (0 ≤ α ≤ d). So, if ET

i = Ei, then Pik are real for all k
(0 ≤ k ≤ d), and if ET

i 6= Ei, there are distinct α, β such that Pαi and Pβi are nonreal
complex conjugates.

3 Eigenmatrices

Let X = (X, {Ri}4i=0) be a skew-symmetric association scheme: (θ,φ) = (2, 0). It is com-
mutative since any association scheme with at most 4 classes is commutative [5]. Up to a
permutation, we may assume R4 = RT

1 and R3 = RT

2. Let X
sym = (X, {R0, R1 ∪R4, R2 ∪R3}),

the symmetrization of X. We will determine the eigenmatrix of X from that of Xsym.
Let Ãi and Ẽi (0 ≤ i ≤ 2) be the adjacency matrices and the primitive idempotents of Xsym,

respectively. Suppose that the eigenmatrix P̃ of Xsym has form (2.5):

P̃ =




1 k1 k2
1 r t
1 s u




1
m1

m2

.

In the rest of this paper, we assume that r ≥ 0 > s.
S. Y. Song [13] mentioned that up to permutation of rows and columns, a feasible eigenmatrix

of X can be described as follows:

P =




1 k/2 (n− k − 1)/2 (n− 1− k)/2 k/2
1 ρ τ τ ρ
1 σ ω ω σ
1 σ ω ω σ
1 ρ τ τ ρ




1
m

(n−m− 1)/2
(n−m− 1)/2

m

, (3.1)

where the pair ρ and ω or the pair τ and σ are nonreal. He also gave a one-sentence explanation.
Here, we will prove Song’s observation and determined the entries of P . Let P be the eigenmatrix
of X:

P = [Pij ]0≤i,j≤4.

Since A4 = AT

1, by Lemma 5, A1 has at least one pair of nonreal eigenvalues. There are two
cases to consider:

(1) A1 has precisely one pair of nonreal eigenvalues ρ, ρ. By Theorem 3, ρ+ ρ = r or s.
Suppose ρ + ρ = r. We may arrange the primitive idempotents Ei of X such that A1E1 =

ρE1, A4E4 = ρE4. Hence E4 = ET

1 . By Lemma 5, P21, P24, P31 and P34 are all real, and
P21 = P24, P31 = P34. Consider the remaining two primitive idempotents E2, E3 6= E0. Then
we have either E3 = ET

2 or Ei = ET

i (i = 2, 3), and the latter can not occur as we will see.
Suppose Ei = ET

i (i = 2, 3). By Lemma 5, the second and third rows of P have all real

entries. Since Ã1 = A1 +A4, P21 + P24, P31 + P34 ∈ {r, s} again by Theorem 3. We must have
P21+P24 6= P31+P34. Otherwise, the second and third rows of P are identical, which contradicts
that P is nonsingular. We may assume without loss of generality that P21 = P24 = r/2,
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P31 = P34 = s/2. Since A2 and A3 have a pair of nonreal eigenvalues τ and τ , P has the
following form:

P =




1 n1 n2 n2 n1

1 ρ τ τ ρ
1 r/2 t/2 t/2 r/2
1 s/2 u/2 u/2 s/2
1 ρ τ τ ρ




1
f1
f2
f3
f1

,

where ni are the valencies of X and 2ni = ki. Now we calculate the multiplicity f2 using (2.2):

f2 =
n

4∑
i=0

1
ni

P2iP 2i

=
n

1 + 2
n1

(
r
2

)2
+ 2

n2

(
t
2

)2 =
n

1 + r2

k1

+ t2

k2

,

which is m1 by (2.2). Similarly, we can obtain f3 = m2. So, f1 = 0, impossible.
Now we have E3 = ET

2 . Since ET

2 6= E2 and P21, P41 are real, by Lemma 5, P22, P23 are
nonreal and P22 = P 23. Since AT

2 = A3, P32 = P 22 = P 33 again by Lemma 5. Let ω = P22. So
P has the following form:

P =




1 n1 n2 n2 n1

1 ρ τ τ ρ
1 s/2 ω ω s/2
1 s/2 ω ω s/2
1 ρ τ τ ρ



, (3.2)

where ρ and ω are both nonreal, ρ+ ρ = r, ω + ω = u and τ + τ = t.
Suppose ρ+ ρ = s. Replacing s by r in (3.2), we obtain matrix P for this case, in which ρ

and ω are both nonreal, ρ+ ρ = s, τ + τ = u and ω + ω = t.
(2) A1 has two pairs of nonreal eigenvalues: ρ, ρ, and σ, σ.
Without loss of generality, we may assume that ρ+ ρ = r, σ + σ = s, and the first column

of P is (n2, ρ, σ, σ, ρ)
T. So P has form (3.1), where τ and ω can not be both real by Lemma 5.

We know from the above analysis that P has the form asserted in (3.1). Let

P =




1 n1 n2 n2 n1

1 ρ τ τ ρ
1 σ ω ω σ
1 σ ω ω σ
1 ρ τ τ ρ




1
f1
f2
f2
f1

.

Now we are ready to determine ρ, ω, τ and σ. Set

ρ =
1

2
(r +

√−y), τ =
1

2
(t+

√
−z), σ =

1

2
(s+

√
−b),

where y, z, b ≥ 0. So, the first row and column of P are fixed, and hence the fourth row and
column by Lemma 5. Therefore, ω = 1

2 (u ± √−c) for some c ≥ 0. There are two cases to
consider:

Case (i) ω = 1
2 (u+

√−c). Applying the first orthogonality relation to the first row of P , we
obtain

1 +
2ρρ

n1
+

2ττ

n2
=

n

f1
.

Substituting ρ and τ into the above equation, we obtain

1 +
1

2n1
(r2 + y) +

1

2n2
(t2 + z) =

n

f1
. (3.3)
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Applying the first orthogonality relation to the first row of P̃ , we obtain

1 +
r2

k1
+

t2

k2
=

n

m1
. (3.4)

Note that 2ni = ki and 2fi = mi. By (3.3) and (3.4), we have

y

k1
+

z

k2
=

n

m1
. (3.5)

Similarly, we can obtain
b

k1
+

c

k2
=

n

m2
. (3.6)

Applying the first orthogonality relation to the second and third rows of P and P̃ , we obtain

1 +
1

n1
(ρσ + ρσ) +

1

n2
(τω + τω) = 0, 1 +

rs

k1
+

tu

k2
= 0.

Substituting ρ, ω, τ , ω and the second equation into the first equation, we obtain
√
by

k1
+

√
cz

k2
= 0.

It follows that by = 0 and cz = 0. Since P is nonsingular, we must have either (y, c) = (0, 0) or
(z, b) = (0, 0), but not both.

Suppose (z, b) = (0, 0). By equations (3.5) and (3.6),

y =
nk1
m1

, c =
nk2
m2

. (3.7)

Suppose (y, c) = (0, 0). By equations (3.5) and (3.6),

z =
nk2
m1

, b =
nk1
m2

. (3.8)

Note that in each case above, P̃ determines P uniquely.

Case (ii) ω = 1
2 (u − √−c). If c = 0, then y = 0. This case has been treated in Case (i).

Now, assume c > 0. Since ω is nonreal, ρ is also nonreal: y > 0. Note that equations (3.5) and
(3.6) still hold.

Now, applying the first orthogonality relation to the second and third rows of P and simpli-
fying it in a similar way, we can obtain

√
by

k1
−

√
cz

k2
= 0. (3.9)

Note if z = 0, then b = 0. This has been handled previously. Now we assume z > 0. Hence,
b > 0. Therefore, ρ, ω, τ , and σ are all nonreal, and b, c, y, and z satisfy equations (3.5), (3.6),
and (3.9).

We summarize the above discussion in the following theorem.

Theorem 6. Let X = (X, {R0, R1, R2, R3, R4}) be a skew-symmetric association scheme with

R1 = RT

4 and R2 = RT

3. Let P̃ be the eigenmatrix of the symmetrization Xsym:

P̃ =




1 k1 k2
1 r t
1 s u




1
m1

m2

,

7



where r ≥ 0 > s. Then the eigenmatrix of X has the following form:

P =




1 k1/2 k2/2 k2/2 k1/2
1 ρ τ τ ρ
1 σ ω ω σ
1 σ ω ω σ
1 ρ τ τ ρ



.

ρ, ω, τ and σ take values in one of three cases:

(i) σ =
s

2
, τ =

t

2
, ρ =

1

2

(
r +

√
−nk1

m1

)
, ω =

1

2

(
u+

√
−nk2

m2

)
.

(ii) ρ =
r

2
, ω =

u

2
, σ =

1

2

(
s+

√
−nk1

m2

)
, τ =

1

2

(
t+

√
−nk2

m1

)
.

(iii) ρ = 1
2 (r +

√−y) , τ = 1
2

(
t+

√−z
)
, σ = 1

2

(
s+

√
−b
)
, ω = 1

2

(
u−√−c

)
,

where b, c, y, and z are all positive and satisfy the following equations:

y

k1
+

z

k2
=

n

m1
,

b

k1
+

c

k2
=

n

m2
,

√
by

k1
−

√
cz

k2
= 0.

4 Proof of the Main Theorem

In this section, we prove Theorems 1 and 2. Let X = (X, {R0, R1, R2, R3, R4}) be a skew-
symmetric amorphous scheme, whose eigenmatrix P is given in Theorem 6.

Suppose that P is given by Theorem 6(i). Since X is amorphous, R0, R1 ∪R2, R3 ∪R4 gives
rise to a skew-symmetric association scheme, which has eigenmatrix (2.4). By Theorem 3,

ρ+ τ =
1

2

(
r + t+

√
−nk1

m1

)
=

−1 +
√−n

2
.

So m1 = k1. By Lemma 4(ii), (X,R1 ∪R4) is Lg(v) with v = r − s, g = −s.
The i-th intersection matrix Bi is a square matrix of order d + 1 whose (j, ℓ) entry is pℓij .

Using (2.3), we can obtain

B1 =




0 1 0 0 0

0
λ+ r

4

k1(k1 − λ− 1− t)

4k2

k1(k1 − λ− 1− t)

4k2

λ− 3r

4

0
k1 − λ− 1 + t

4

k1 − µ+ s

4

k1 − µ− s

4

k1 − λ− 1− t

4

0
k1 − λ− 1 + t

4

k1 − µ− s

4

k1 − µ+ s

4

k1 − λ− 1− t

4

k1
2

λ+ r

4

k1(k1 − λ− 1 + t)

4k2

k1(k1 − λ− 1 + t)

4k2

λ+ r

4




.

From p112 − p412 = 2t/4 and p212 − p312 = 2s/4 we readily deduce that t and s are even integers.

Since r + t + 1 = 0, r is odd. On the other hand, p111 = λ+r
4 = s(s+2)+2r

4 . So r is even because
s(s+ 2) is divisible by 4, a contradiction.

Suppose that P is given by Theorem 6(ii). In a similarly way, we can deduce k1 = m2 and
hence (X,R1 ∪R4) is NLg(v) with v = r − s, g = r. The first intersection matrix for this case
can be obtained from the above B1 by interchanging r and s, and t and u. We can readily deduce

that r and u are even and s is odd. Since p111 = λ+s
4 = r(r+2)+2s

4 , s is even, a contradiction.

8



Suppose that P is given by Theorem 6(iii). In this case, ρ, ω, τ, σ are all nonreal. since X

is amorphous, R0, R1 ∪R2, R3 ∪R4 determines a non-symmetric association scheme, which has
eigenmatrix (2.4). So,

ρ+ τ =
1

2
(r + t+

√−y +
√
−z) =

−1 +
√−n

2
,

and hence
√−y +

√−z =
√−n. Similarly, (X, {R0, R1 ∪ R3, R2 ∪ R4}) is non-symmetric

association scheme and thus
√−y − √−z = ±√−n. These equations imply either y = 0 or

z = 0, a contradiction. This completes the proof of Theorem 1. �

Now we prove the main theorem. Suppose that X is a skew-symmetric amorphous scheme
with more than 4 classes. X has a skew-symmetric fusion scheme with 4 classes, which can not
exist by Theorem 1 because this fusion scheme is again amorphous. This completes the proof.

5 Concluding Remarks

As we mentioned in the Introduction that there does not exist any non-commutative amorphous
scheme. We now give a short proof of this result. By the main theorem, we may assume φ ≥ 1.
Since association schemes with at most 4 classes are commutative, we may assume θ + φ ≥ 3.
We first treat the minimal cases (θ,φ) = (1, 3) or (2, 1) and the general case will then follow.
Suppose that X is a non-symmetric amorphous scheme with (θ,φ) = (1, 3) or (2, 1). If X is
non-commutative, then the adjacency algebra generated by the adjacency matrices of X over the
complex numbers C is non-commutative of dimension 6. It is semisimple and thus is isomorphic
to direct sum of full matrix algebras of degree 1,1 and 2:

C⊕ C⊕M2(C).

X has a 4-class fusion scheme F, which is commutative. So the adjacency algebra of F is
commutative of dimension 5. On the other hand, M2(C) can not have commutative subalgebras
of dimension 3 and thus the adjacency algebra of X has no commutative subalgebras of dimension
5, which is a contradiction. Therefore, X is commutative. (In fact, we have proved that a non-
commutative scheme with 5 classes can not have a 4-class fusion scheme.)

Let X be an amorphous non-symmetric scheme with θ + φ > 4, θ ≥ 1. Any two adjacency
matrices of X are among the adjacency matrices of some fusion scheme with (θ,φ) = (1, 3) or
(2, 1). So the adjacency matrices of X commute pairwisely and thus X is commutative.

We note that the minimal cases can also be handled by a careful analysis of their intersection
numbers, which shows that the intersection numbers in each case coincide with those of certain
commutative amorphous scheme. In fact, using the notation in [6], amorphous schemes with
(θ,φ) = (1, 3) belong to Lg1;g2,g3,g4(v) orNLg1;g2,g3,g4(v), and amorphous schemes with (θ,φ) =
(2, 1) belong to Lg1,g2;g3(v) or NLg1,g2;g3(v).

We conclude with some remarks:

• E. R. van Dam and M. Muzychuk [15] gave an excellent survey of symmetric amorphous
association schemes. Among many results, they gave all known constructions and enumer-
ation of such schemes with vertices up to 49 vertices. However, there has not been much
work done with the non-symmetric counterpart except [6].

• In light of Theorem 6, it is interesting to study skew-symmetric schemes with 4 classes.
We are working on it in another paper.

• In the literature (e.g. [4],[8],[15]), an association scheme is call amorphic if every partition
of R containing {R0} gives rise to a fusion scheme. The notion of admissible partition
was introduced and the term amorphous was used by T. Ito, et al. in [6]. For symmet-
ric schemes, the two notions are equivalent. Any association scheme with two classes is
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trivially amorphic by definition. It is easy to see that any amorphic scheme with at least
three classes is symmetric.

• I.N. Ponomarenko an A.R. Barghi [12] recently introduced amorphic C-algebras by ax-
iomatizing the property that each partition of a standard basis leads to a fusion algebra.
Just like association schemes, each amorphic C-algebra of dimension ≥ 4 is symmetric.
They showed that each amorphic C-algebra is determined up to isomorphism by the mul-
tiset of its degrees (valencies in the case of association scheme) and an additional integer
ǫ = ±1 (reflecting the positive or negative Latin square type). Since our focus here is
non-symmetric association schemes, our work has little overlap with that of [12] .
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