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ENUMERATION OF CONNECTED CATALAN OBJECTS BY TYPE

BRENDON RHOADES

Abstract. Noncrossing set partitions, nonnesting set partitions, Dyck paths, and rooted plane
trees are four classes of Catalan objects which carry a notion of type. There exists a product
formula which enumerates these objects according to type. We define a notion of ‘connectivity’ for
these objects and prove an analogous product formula which counts connected objects by type. Our
proof of this product formula is combinatorial and bijective. We extend this to a product formula
which counts objects with a fixed type and number of connected components. We relate our
product formulas to symmetric functions arising from parking functions. We close by presenting
an alternative proof of our product formulas communicated to us by Christian Krattenthaler [7]
which uses generating functions and Lagrange inversion.

1. Introduction

The Catalan numbers Cn = 1
n+1

(

2n
n

)

are among the most important sequences of numbers in

combinatorics. To name just a few examples (see [12] for many more), the number Cn counts 123-
avoiding permutations in Sn, Dyck paths of length 2n, standard Young tableaux of shape 2 × n,
noncrossing or nonnesting set partitions of [n], and rooted plane trees with n+ 1 vertices.

Certain families of Catalan objects come equipped with a natural notion of type. For example,
the type of a noncrossing set partition of [n] is the sequence r = (r1, . . . , rn), where ri is the number
of blocks of size i. In the cases of noncrossing/nonnesting set partitions of [n], Dyck paths of length
2n, and plane trees on n + 1 vertices, there exists a nice product formula (Theorem 1.1) which
counts Catalan objects with fixed type r. These four classes of Catalan objects also carry a notion
of connectivity. In this paper we give a product formula which counts these objects with a fixed type
and a fixed number of connected components.

The bump diagram of a set partition π of [n] is obtained by drawing the numbers 1 through n in a
line and drawing an arc between i and j with i < j if i and j are blockmates in π and there does not
exist k with i < k < j such that i, k, and j are blockmates in π. The set partition π is noncrossing
if the bump diagram of π has no crossing arcs or, equivalently, if there do not exist a < b < c < d
with a, c in a block of π and b, d in a different block of π. Similarly, the set partition π is nonnesting
if the bump diagram of π contains no nesting arcs, that is, no pair of arcs of the form ad and bc
with a < b < c < d. As above, the type of any set partition π of [n] is the sequence (r1, . . . , rn),
where ri is the number of blocks in π of size i. The set partition π is called connected if there does
not exist an index i with 1 ≤ i ≤ n− 1 such that there are no arcs connecting the intervals [1, i] and
[i + 1, n] in the bump diagram of π. The set partition π is said to have m connected components if
there exist numbers 1 ≤ i1 < i2 < · · · < im−1 ≤ n such that the restriction of the bump diagram of
π to each of the intervals [1, i1], [i1 + 1, i2], . . . , [im−1 + 1, n] is a connected set partition.

The bump diagram of the noncrossing partition {1, 8, 13/2, 5, 6, 7/3/4/9, 12/10, 11} of [13] with
type (2, 2, 1, 1, 0, . . . , 0) is shown in the middle of Figure 1.1. The bump diagram of the nonnesting
partition {1, 5, 7/2, 6, 8, 11/3/4/9, 12/10, 13} of [13] with type (2, 2, 1, 1, 0, . . . , 0) is shown in the top
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1   2    3    4   5   6   7   8    9   10    11  12    13

1   2   3   4    5    6   7   8   9   10   11   12   13

Figure 1.1. A connected nonnesting partition of [13], a connected noncrossing
partition of [13], a plane tree with 14 vertices with a terminal rooted twig, and a
Dyck path of length 26 with no returns

of Figure 1.1. Both of these set partitions are connected. The set partition {1, 4/2, 3/5/6, 7, 8} is a
noncrossing partition of [8] with 3 connected components and type (1, 2, 1, 0, . . . , 0).

A Dyck path of length 2n is a lattice path in Z
2 starting at (0, 0) and ending at (2n, 0) which

contains steps of the form U = (1, 1) and D = (1,−1) and never goes below the x-axis. An ascent
in a Dyck path is a maximal sequence of U -steps. The ascent type of a Dyck path of length 2n is
the sequence (r1, . . . , rn), where ri is the number of ascents of length i. A return of a Dyck path of
length 2n is a lattice point (m, 0) with 0 < m < 2n which is contained in the Dyck path.

The ascent type of the Dyck path of length 26 shown on the lower right of Figure 1.1 is
(2, 2, 1, 1, 0, . . . , 0). This Dyck path has no returns. The Dyck path UUDDUDUUDUDD has
length 12, ascent type (2, 2, 0, . . . , 0), and 2 returns.

A (rooted) plane tree is a graph T defined recursively as follows. A distinguished vertex is called
the root of T and the vertices of T excluding the root are partitioned into an ordered list of k sets
T1, . . . , Tk, each of which is a plane tree. Given a plane tree T on n + 1 vertices, the downdegree
sequence of T is the sequence (r0, r1, . . . , rn), where ri in the number of vertices v ∈ T with i
neighbors further from the root than v. If T is a plane tree with n + 1 vertices, there exists a
labeling of the vertices of T with [n + 1] called preorder (see [10] for the precise definition). The
plane tree T with n + 1 vertices is said to have a terminal rooted twig if the vertex labeled n + 1
is attached to the root. A plane forest F is an ordered list of plane trees F = (T1, . . . , Tk). The
downdegree sequence of a plane forest F is the sum of the downdegree sequences of its constituent
trees.

The downdegree sequence of the plane tree with 14 vertices shown on the lower left of Figure 1.1
is (8, 2, 2, 1, 1, 0, . . . , 0). This plane tree has a terminal rooted twig.
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In order to avoid enforcing conventions such as (−1)!
(−1)! = 1 in the ‘degenerate’ cases of our product

formulas, we adopt the following notation of Zeng [14]. Given any vectors r = (r1, . . . , rn),v =
(v1, . . . , vn) ∈ N

n, set |r| := r1 + · · ·+ rn, r! := r1!r2! · · · rn!, and r ·v := r1v1 + · · ·+ rnvn. Let x be
a variable and for any vectors r,v ∈ N

n let Ar(x;v) ∈ R[x] be the polynomial

(1.1) Ar(x;v) =
x

x+ r · v

(x+ r · v)|r|

r!
,

where (y)k = y(y − 1) · · · (y − k + 1) is a falling factorial. Zeng used the polynomials Ar(x;v) to
prove various convolution identities involving multinomial coefficients.

Theorem 1.1. Let n ≥ 1, let v = (1, 2, . . . , n), and suppose r = (r1, . . . , rn) ∈ N
n satisfies r · v = n.

The polynomial evaluation Ar(1;v) = [Ar(x;v)]x=1 is equal to 1 the cardinality of:
1. the set of noncrossing partitions of [n] of type r;
2. the set of nonnesting partitions of [n] of type r;
3. the set of Dyck paths of length 2n with ascent type r;
4. the set of plane trees with n+ 1 vertices and with downdegree sequence (n− |r|+ 1, r1, . . . , rn).

Part 1 of Theorem 1.1 is due to Kreweras [8, Theorem 4]. A type-preserving bijection showing the
equivalence of Parts 1 and 2 was discovered by Athanasiadis [3, Theorem 3.1]. A similar bijection
showing the equivalence of Parts 1 and 3 was proven by Dershowitz and Zaks [4]. Armstrong and
Eu [1, Lemma 3.2] give an example of a bijection proving the equivalence of Parts 1 and 4.

The rest of this paper is organized as follows. In Section 2 we prove an analogous product
formula (Theorem 2.2) which counts connected objects according to type. The proof of Theorem
2.2 is bijective and relies on certain properties of words in monoids. We extend this result to
another product formula (Theorem 2.3) which counts objects which have a fixed number of connected
components according to type. These product formulas have found a geometric application in [2]
where they are used to count regions of hyperplane arrangements related to the Shi arrangement
according to ‘ideal dimension’ in the sense of Zaslavsky [13]. We then apply our product formulas
to the theory of symmetric functions, refining a formula of Stanley [11]. In Section 3 we present
an alternative proof of Theorem 2.3 communicated to us by Christian Krattenthaler [7] which uses
generating functions and Lagrange inversion.

2. Main Results

The proofs of our product formulas will rest on a lemma about words in monoids which can be
viewed as a ‘connected analog’ of the ‘cycle lemma’ due to Dvoretzky and Motzkin [6] (see also [5]).
For a more leisurely introduction to this material, see [12].

Let A denote the infinite alphabet {x0, x1, x2, . . . } and let A∗ denote the free (noncommutative)
monoid generated by A. Denote the empty word by e ∈ A∗. The weight function is the monoid
homomorphism ω : A∗ → (Z,+) induced by ω(xi) = i− 1 for all i. We define a subset B ⊂ A∗ by

B = {w = w1 . . . wn ∈ A∗ |ω(w) = 1, ω(w1w2 . . . wj) > 0 for 1 ≤ j ≤ n}.

That is, a word w ∈ A∗ is contained in B if and only if it has weight 1 and all of its nonempty
prefixes have positive weight. In particular, we have that e /∈ B.

Given any word w = w1 . . . wn ∈ A∗, a conjugate of w is an element of A∗ of the form
wiwi+1 . . . wnw1w2 . . . wi−1 for some 1 ≤ i ≤ n (this is the monoid-theoretic analog of conjuga-
tion in groups). We have the following result concerning conjugacy classes of elements of B. It is our
‘connected analog of’ [12, Lemma 5.3.7] and is an analog of the ‘cycle lemma’ in tree enumeration.

1This polynomial evaluation can also be expressed as n!
(n−|r|+1)!r!

.
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Lemma 2.1. A word w ∈ A∗ is conjugate to an element of B if and only if ω(w) = 1, in which case
w is conjugate to a unique element of B and the conjugacy class of w has size equal to the length of
w.

Proof. Let w ∈ B have length n and suppose the conjugacy class of w has size k|n. Then we can
write w = vn/k for some v ∈ A∗. Since v is a nonempty prefix of w, we have ω(v) > 0 and the fact
that 1 = ω(w) = n

kω(v) forces k = n.

Since conjugation does not affect weight, every element w of the conjugacy class of an element of
B satisfies ω(w) = 1.

Suppose that w ∈ A∗ satisfies ω(w) = 1. We show that w is conjugate to an element of B. The
proof of this fact breaks up into three cases depending on the letters which occur in w.

Case 1: w contains no occurrences of x0. Since ω(w) = 1, in this case w must be of the form
x1 . . . x1x2x1 . . . x1 and w is conjugate to x2x1 . . . x1 ∈ B.

Case 2: w contains at most one occurrence of a letter other than x0. In this case, the condition
ω(w) = 1 forces a conjugate of w to be of the form xsx

s−2
0 ∈ B for some s > 1.

Case 3: w at least one occurrence of x0 and at least two occurrences of letters other than x0. We
claim that there exists a conjugate w′ of w of the form w′ = xs+1x

s
0v for some s ≥ 0. If this were

not the case, consider the word w written around a circle. Every maximal contiguous string of x0’s
in w of length ℓ must be preceded by a letter of the form xs for some s > ℓ+ 1. The weight of any
such contiguous string taken together with its preceding letter is ω(xsx

ℓ
0) = s − 1 − ℓ > 0. Since

ω(w) = 1, it follows that w has a conjugate of the form xsx
s−2
0 , which contradicts our assumption

that w has at least two occurrences of a letter other than x0. Let w
′ be a conjugate of w of the form

w′ = xs+1x
s
0v for some v ∈ A∗. Since 1 = ω(w) = ω(w′) = s− s+ ω(v), by induction on length we

can assume that a conjugate of v is contained in B. Say that v = yz such that zy ∈ B with z 6= e.
Then zxs+1x

s
0y is a conjugate of w′ = xs+1x

s
0yz satisfying zxs+1x

s
0y ∈ B. �

Let B∗ denote the submonoid of A∗ generated by B. In view of [12, Lemma 5.3.7], it is tempting to
guess that any element w ∈ A∗ obtained by permuting the letters of an element of B∗ is itself conju-
gate to an element of B∗. However, this is false. For example, the element x3x0x2 = (x3x0)(x2) ∈ A∗

is contained in B∗ but x3x2x0 has no conjugate in B∗. (However, the analog of [12, Lemma 5.3.6]
does hold in this context - the monoid B∗ is very pure.) Lemma 2.1 is the key tool we will use in
proving our connected analog of Theorem 1.1.

Theorem 2.2. Let n ≥ 1, let v = (1, 2, . . . , n), and suppose r = (r1, . . . , rn) ∈ N
n satisfies r · v = n.

The polynomial evaluation −Ar(−1;v) = [−Ar(x;v)]x=−1 is equal to 2 the cardinality of:
1. the set of connected noncrossing partitions of [n] of type r;
2. the set of connected nonnesting partitions of [n] of type r;
3. the set of Dyck paths of length 2n with no returns and ascent type r;
4. the set of plane trees with a terminal rooted twig and n + 1 vertices with downdegree sequence
(n− |r|+ 1, r1, . . . , rn).

Proof. The line of reasoning which we follow here should be compared to that in [12, Chapter 5].

Observe first that when r = (n, 0, . . . , 0) we have that

(2.1) −Ar(−1;v) =

{

1 if n = 1,

0 if n > 1.

2In the case where n > 1 and r 6= (n, 0, . . . , 0), this can also be expressed as
(n−2)!

(n−|r|−1)!r!
.
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This is in agreement with the relevant set cardinalities, so from now on we assume that n > 1 and
r 6= (n, 0, . . . , 0). Let B(r) denote the set of length n− 1 words w ∈ B with n− |r| − 1 x0’s, r1 x1’s,
. . . , and rnxn’s. By Lemma 2.1, we have that

(2.2) |B(r)| =
1

n− 1

(

n− 1

n− |r| − 1, r1, . . . , rn

)

= −Ar(−1;v),

where the second equality follows from the definition of Ar(x;v). Therefore, it suffices to biject each
of the sets in Parts 1-4 with the set B(r). We present a bijection in each case.

1. Let NC(r) be the set of noncrossing partitions we wish to enumerate. Given any partition π
of [n], define a word ψ(π) = w1w2 . . . wn−1 ∈ A∗ as follows. For 1 ≤ i ≤ n − 1, if i is the minimal
element of a block of π, let wi = xj where j is the size of the block containing i. Otherwise, let
wi = x0. For example, if π is the connected nonnesting partition of [13] shown on the top of Figure
1.1, we have that ψ(π) = x3x4x1x1x0x0x0x0x2x2x0x0. It is easy to see that the mapping π 7→ ψ(π)
sets up a bijection between set partitions in NC(r) and words in B(r).

2. Let NN(r) be the set of nonnesting partitions we wish to enumerate. It is easy to verify
(see [12, Solution to Exercise 5.44]) that the map ψ from the proof of Part 1 restricts to a bijection
between NN(r) and B(r).

3. Let D be a Dyck path with no returns of length 2n and ascent type r. Define a length n− 1
word δ(D) ∈ A∗ as follows. Let w1w2 . . . wn ∈ A∗ be the word obtained by reading D from left to
right, replacing every ascent of length i with xi and replacing every maximal contiguous sequence
of downsteps of length ℓ with xℓ−1

0 . Set δ(D) := w1w2 . . . wn−1. For example, if D is the Dyck
path shown in Figure 1.1 we have that δ(D) = x3x0x4x1x1x0x2x

3
0x2x0. It is easy to verify that

δ(D) ∈ B(r) and that the map D 7→ δ(D) sets up a bijection between Dyck paths with no returns of
length 2n and ascent type r to B(r).

4. For T be a plane tree on n+1 vertices with a terminal rooted twig, let w1w2 . . . wn+1 ∈ A∗ be
the word obtained by setting wi = xj , where j is the downdegree of the ith vertex of T in preorder.
Since T has a terminal rooted twig, we have wn = wn+1 = x0. Set χ(T ) := w1w2 . . . wn−1 ∈ A∗.
For example, if T is the tree shown in Figure 1.1, we have that χ(T ) = x3x4x1x1x0x0x0x0x2x2x0x0.
The mapping T 7→ χ(T ) sets up a bijection between the set of trees of interest and B(r). �

An alternative proof of Parts 1 and 2 of Theorem 2.2 which relies on a product formula enumer-
ating noncrossing partitions by ‘reduced type’ due to Armstrong and Eu [1] (which in turn relies on
the original enumeration of noncrossing partitions by type due to Kreweras) can be found in [2].

It is natural to ask if the formula in Theorem 2.2 can be generalized to the case of multiple
connected components. The answer is ‘yes’, and to avoid enforcing nonstandard conventions in
degenerate cases we will again state the relevant product formula in terms of a polynomial special-

ization. Suppose that r,v ∈ N
n and 1 ≤ m ≤ |r|. We define the polynomial A

(m)
r (x;v) ∈ R[x]

by

(2.3) A(m)
r

(x;v) =
(|r| − 1)!

(|r| −m)!

x

x+ r · v

(x + r · v)|r|−m+1

r!
.

Observe that in the case m = 1 we have A
(1)
r (x;v) = Ar(x;v).

Theorem 2.3. Let n ≥ m ≥ 1 and let v = (1, 2, . . . , n) ∈ N
n. Suppose that r = (r1, . . . , rn) ∈ N

n

satisfies r · v = n and m ≤ |r|.

The polynomial evaluation −A
(m)
r (−m;v) = [−A

(m)
r (x;v)]x=−m is equal to 3 the cardinality of:

1. the set of noncrossing partitions of [n] with exactly m connected components of type r;

3In the case where n > m and r 6= (n, 0, . . . , 0), this can also be expressed as
m(n−m−1)!(|r|−1)!
(n−|r|−1)!(|r|−m)!r!

.
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2. the set of nonnesting partitions of [n] with exactly m connected components of type r;
3. the set of Dyck paths of length 2n with exactly m− 1 returns of ascent type r;
4. the set of plane forests with n +m vertices and exactly m trees with downdegree sequence (n −
|r|+m, r1, . . . , rn) such that every tree has a terminal rooted twig.

Proof. In light of Theorem 2.2, it suffices to prove Part 1. The polynomial Ar(mx;v) can be obtained
via the following convolution-type identity which follows from a result of Raney [9, Theorems 2.2,
2.3] and induction:

(2.4)
∑

r(1)+···+r(m)=r

Ar(1)(x;v) · · ·Ar(m)(x;v) = Ar(mx;v),

where r
(i) ∈ N

n for all i. Let 0 ∈ N
n be the zero vector. By Theorem 2.2 and the fact that

A0(x;v) = 1, we can set x = −1 to obtain

(2.5)
m
∑

k=1

(−1)k
(

m

k

)

C(n, k, r) = Ar(−m;v),

where C(n, k, r) denotes the number of noncrossing partitions of [n] with exactly k connected com-
ponents and type r. By the Principle of Inclusion-Exclusion (see [10]), it follows that

(2.6) C(n,m, r) =

m
∑

k=1

(−1)k
(

m

k

)

Ar(−k;v).

Therefore, it suffices to show that the right hand side of Equation 2.6 is equal to −A
(m)
r (−m;v).

We sketch this verification here for the case m, |r| < n; the other degenerate cases are left to the
reader.

We start with the following binomial coefficient identity:

(2.7)

m
∑

k=1

(−1)k+1k

(

m

k

)(

n− k − 1

|r| − 1

)

= m

(

n−m− 1

n− |r| − 1

)

.

This identity can be obtained by comparing like powers of x on both sides of the equation r(1 +
x)r+s−1 = (1 + x)s d

dx(1 + x)r = (1 + x)s(
(

r
1

)

+ 2
(

r
2

)

x + 3
(

r
3

)

x2 + · · · ). Multiplying both sides of

Equation 2.7 by (|r|−1)!
r! and using the definition of Ar(x;v) we obtain

(2.8)

m
∑

k=1

(−1)k
(

m

k

)

Ar(−k;v) =
m(n−m− 1)!(|r| − 1)!

(n− |r| − 1)!(|r| −m)!r!
.

The right hand side of Equation 2.8 is equal to −A
(m)
r (−m;v). �

We close this section by relating the product formulas in this paper to Frobenius characters
arising from the theory of parking functions. For n ≥ 0 a parking function of length n is a sequence
(a1, . . . , an) of positive integers whose nondecreasing rearrangement (b1, . . . , bn) satisfies bi ≤ i for
all i. A nondecreasing parking function is called primitive and primitive parking functions of length
n are in an obvious bijective correspondence (see [1]) with Dyck paths of length 2n. The type
of a parking function is the ascent type of its nondecreasing rearrangement. A parking function
(a1, . . . , an) will be said to have m returns if its nondecreasing rearrangement has m returns when
viewed as a Dyck path.

The symmetric group Sn acts on the set of parking functions of length n. Stanley [11] computed
the Frobenius character of this action with respect to the standard bases (monomial, homogeneous,
elementary, power sum, and Schur) of the ring of symmetric functions. To compute this character in
the basis {hλ} of complete homogeneous symmetric functions, he observed that every orbit O of this
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action contains a unique primitive parking function (b1, . . . , bn) and that the Frobenius character of
the action of Sn on O is hλ, where λ = (1r12r2 . . . nrn) and (r1, . . . , rn) is the type of (b1, . . . , bn).
By applying the formula in Theorem 1.1, one immediately gets the expansion

(2.9) Frob(Pn) =
∑

λ⊢n

n!

(n− |r(λ)| + 1)!r(λ)!
hλ,

where Frob is the Frobenius characteristic map, Pn is the permutation module for the action of
Sn on parking functions of length n, ri(λ) is the multiplicity of i in λ for 1 ≤ i ≤ n, and r(λ) =
(r1(λ), . . . , rn(λ)). (See [1] for a nonhomogeneous generalization of this formula.)

Using the same reasoning as in [11] we can compute the Frobenius characters of other modules
related to parking functions. In particular, for m > 0, the symmetric group Sn acts on the set of

parking functions of length n withm−1 returns. Let P
(m)
n be the permutation module corresponding

to this action, so that Pn
∼=

⊕n−1
m=0 P

(m)
n . Applying Theorem 2.3, we have that the Frobenius

character of this module is

(2.10) Frob(P (m)
n ) =

∑

λ⊢n

−A
(m)
r(λ)(−m;v)hλ,

where v = (1, 2, . . . , n) ∈ N
n.

3. Proof of Theorem 2.3 using Lagrange Inversion

In this section we outline an alternative proof of Theorem 2.3 using generating functions and
Lagrange inversion which was pointed out to the author by Christian Krattenthaler [7]. This method
has the advantage of immediately proving Theorem 2.3 without first proving the single connected
component case of Theorem 2.2. We only handle the case of noncrossing partitions.

Let y = {y1, y2, . . . , } and z be commuting variables. If π is a noncrossing partition of [n] for
n ≥ 0, the weight of π is the monomial

(3.1) wt(π) = zn
∏

i≥1

y
ri(π)
i ,

where ri(π) is the number of blocks in π of size i. (The unique partition of [0] has weight 1.) We
define P (z) ∈ R(y1, y2, . . . )[[z]] by grouping these monomials together in a generating function. That
is,

(3.2) P (z) =
∑

π

wt(π),

where the sum is over all noncrossing partitions π.

Given any noncrossing partition π of [n] with n > 1, if the block of π containing 1 has size k,
drawing π on a circle one obtains k (possibly empty) noncrossing partitions ‘between’ each successive
pair of elements in this k element block. This combinatorial observation yields the following formula:

(3.3) P (z) = 1 +

∞
∑

k=1

ykz
kP (z)k.

Rearranging this expression, we get that

(3.4)
zP (z)

1 +
∑∞

k=1 ykz
kP (z)k

= z,
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and therefore zP (z) is the compositional inverse of z
X(z) , where X(z) = 1+

∑∞
k=1 ykz

k. This implies

that

(3.5) P

(

z

X(z)

)

= X(z).

In order to prove Theorem 2.3, we need to keep track of the number of connected components of
a noncrossing partition. To do this, let C(z) ∈ R(y1, y2, . . . )[[z]] the generating function

(3.6) C(z) =
∑

π

wt(π),

where the sum ranges over all connected noncrossing partitions of [n] where n ≥ 1. It is immediate
that the generating functions P (z) and C(z) are related by

(3.7) P (z) =
1

1− C(z)

or equivalently,

(3.8) C(z) =
P (z)− 1

P (z)
.

As in the first proof of Theorem 2.3, let C(n,m, r) denote the number of noncrossing partitions of
[n] with exactly m connected components and type r. It is evident that

(3.9) C(z)m =

(

P (z)− 1

P (z)

)m

=
∑

n≥0

∑

r≥0

C(n,m, r)yrzn,

where the inequality in the inner summation is componentwise and yr = yr11 y
r2
2 · · · if r = (r1, r2, . . . ).

To find an expression for C(n,m, r) it is enough to extract the coefficient of znyr from the
generating function in Equation 3.9. We use Lagrange inversion to do this. Set F (z) := z

X(z) , so

that the compositional inverse of F (z) is F 〈−1〉(z) = zP (z). Also set H(z) :=
(

X(z)−1
X(z)

)m

. In light

of Equation 3.5 we have the identity
(

P (z)−1
P (z)

)m

= H(F 〈−1〉(z)). Let 〈−〉 denote taking a coefficient

in a Laurent series. Applying Lagrange inversion as in [12, Corollary 5.4.3] we get that

C(n,m, r) = 〈znyr〉H(F 〈−1〉(z))

=
1

n
〈zn−1yr〉H ′(z)

(

z

F (z)

)n

=
1

n
〈zn−1yr〉mX(z)n−m−1(X(z)− 1)m−1X ′(z)

=
m

n
〈zn−1yr〉(X(z)− 1)m−1

∑

ℓ≥0

(

n−m− 1

ℓ

)

(X(z)− 1)ℓX ′(z)

=
m

n
〈zn−1yr〉(X(z)− 1)m−1

∑

ℓ≥0

1

m+ ℓ

(

n−m− 1

ℓ

)

(

(X(z)− 1)m+ℓ
)′
,

where all derivatives are partial derivatives with respect to z. Suppose r = (r1, r2, . . . ). Taking the
coefficient in the bottom line yields the equality

(3.10) C(n,m, r) =
m

|r|

(

n−m− 1

|r| −m

)(

|r|

r1, r2, . . .

)

,

which is equivalent to Part 1 of Theorem 2.3.
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