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BOUNDS ON GENERALIZED FROBENIUS NUMBERS

LENNY FUKSHANSKY AND ACHILL SCHÜRMANN

Abstract. Let N ≥ 2 and let 1 < a1 < · · · < aN be relatively prime integers.
The Frobenius number of this N-tuple is defined to be the largest positive

integer that has no representation as
∑

N

i=1
aixi where x1, ..., xN are non-

negative integers. More generally, the s-Frobenius number is defined to be the
largest positive integer that has precisely s distinct representations like this.
We use techniques from the Geometry of Numbers to give upper and lower
bounds on the s-Frobenius number for any nonnegative integer s.

1. Introduction

Let N ≥ 2 be an integer and let a1, ..., aN be positive relatively prime integers.
We say that a positive integer t is representable by the N -tuple a := (a1, ..., aN ) if

(1) t = a1x1 + · · ·+ aNxN

for some nonnegative integers x1, . . . , xN , and we call each such solution x :=
(x1, . . . , xN ) of (1) a representation for t in terms of a. The Frobenius number

g = g(a1, ..., aN ) of this N -tuple is defined to be the largest positive integer that
has no representations. The condition gcd(a1, ..., aN ) = 1 implies that such g exists.
More generally, as defined by Beck and Robins in [8], let s be a nonnegative integer,
and define the s-Frobenius number gs = gs(a1, ..., aN ) of a to be the largest positive
integer that has precisely s distinct representations in terms of a. Then in particular
g = g0.

The Frobenius number has been studied extensively by a variety of authors, start-
ing as early as late 19-th century; see [1] for a detailed account and bibliography.
More recently, some authors also started studying the more general s-Frobenius
numbers; for instance, in [22] and [7] the authors investigated families of N -tuples
a on which the difference gs − g0 grows unboundedly. This motivates a natural
question: how big and how small can gs be in general?

The main goal of this note is to extend the geometric method of [16] to obtain
general upper and lower bounds on gs.

Remark 1.1. We should warn the reader that the term s-Frobenius number is also
used by some authors to denote not the largest positive integer that has precisely s

distinct representations in terms of a, as we do here, but the largest positive integer
that has at most s distinct representations in terms of a.

Remark 1.2. It should also be mentioned that other generalizations of the Frobenius
number of different nature have also been considered by a variety of authors. In
particular, see Chapter 6 of [1], as well as more recent works [4], [5], and [23], among
others, for further information and references.
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2. Results

We start by setting up some notation, following [16]. Let

La(X) =
N
∑

i=1

aiXi,

be the linear form in N variables with coefficients a1, . . . , aN , and define the lattice

Λa =
{

x ∈ Z
N : La(x) = 0

}

.

Let Va = span
R
Λa, then Va is an (N − 1)-dimensional subspace of RN and Λa =

Va ∩ Z
N is a lattice of full rank in Va. The covering radius of Λa is defined to be

(2) Ra := inf {R ∈ R>0 : Λa + BVa
(R) = Va} ,

where BVa
(R) is the closed (N − 1)-dimensional ball of radius R centered at the

origin in Va. For each 1 ≤ m ≤ N − 1 define the m-th successive minimum

of Λa to be

(3) λm := min{λ ∈ R : dim (span
R
(BVa

(λ) ∩ Λa)) ≥ m},

so 0 < λ1 ≤ · · · ≤ λN−1. We also write κm for the volume of an m-dimensional
unit ball (κ0 = 1), and τm for the kissing number in dimension m, i.e., the maximal
number of unit balls in R

m that can touch another unit ball. Finally, let us write
αi := (a1, . . . , ai−1, ai+1, . . . , aN). We can now state our main results, starting with
the upper bounds on gs(a).

Theorem 2.1. With the notation above,

(4) gs(a) ≤ max







Ra(N − 1)
∑N

i=1 ‖αi‖ai
‖a‖ + 1,

(

s(N − 1)!

N
∏

i=1

ai

)

1
N−2







,

where ‖ ‖ stands for the usual Euclidean norm on vectors. If in addition s ≤
τN−1 + 1, then

(5) gs(a) ≤
3Ra

∑N
i=1 ‖αi‖ai
‖a‖ .

Remark 2.1. Note that the quantity
Ra(N−1)

∑
N

i=1 ‖αi‖ai

‖a‖ + 1 in the upper bound

(4) above is precisely the upper bound for the Frobenius number g0 obtained in
Theorem 1.1 of [16].

Next we turn to lower bounds. Define the dimensional constant

(6) CN =
2N

2− 7N
2 +2(N − 1)

N

2 ((N − 1)!)N−1

π
N−2

2 κN−2
N−1

.

Theorem 2.2. With the notation above,

(7) gs(a) ≥
(

(s+ 1−N)

N
∏

i=1

ai

)

1
N−1

.
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Now let ρ > 1 be a real number, and suppose that

(8) s ≥

(

∏N
i=1 ai

)N−2

(N − 1)!

(

CNλN−1
N−1

ρ− 1

)N−1

,

then

(9) gs(a) ≥
(

s(N − 1)!

ρ

N
∏

i=1

ai

)

1
N−1

.

Remark 2.2. Compare the lower bounds of (7) and (9) above to the lower bound
on the Frobenius number obtained by Rødseth [15] (see also Theorem 1.1 of [3]):

(10) g0 ≥
(

(N − 1)!

N
∏

i=1

ai

)

1
N−1

.

In fact, Aliev and Gruber in [3] produced a sharp lower bound for g0 in terms of the
absolute inhomogeneous minimum of the standard simplex, from which a stronger
version of (10) (with a strict inequality) follows. It should also be remarked that
the quantities Ra and λN−1, present in our inequalities, can be explicitly bounded
using standard techniques from the geometry of numbers. Notice that we can
assume without loss of generality that no ai can be expressed as a nonnegative
integer linear combination of the rest of the aj ’s: otherwise, gs(a) = gs(αi). Then
equations (28) and (30) of [16] imply that

(11) Ra ≤ N − 1

2
λN−1 ≤ (N − 1)λN−1

λ1

( ‖a‖
κN−1

)
1

N−1

≤ (N − 1)‖a‖
κN−1

,

while equations (25) and (26) of [16] combined with Minkowski’s successive minima
theorem (see, for instance, [12], p. 203) imply that

(12) 2

( ‖a‖
κN−1(N − 1)!

)
1

N−1

≤ λN−1 ≤ 2‖a‖
κN−1

.

In fact, in the situation when the lattice Λa is well-rounded (abbreviated WR),
meaning that λ1 = · · · = λN−1, inequalities (11) and (12) can clearly be improved:
(13)

Ra ≤ (N − 1)

( ‖a‖
κN−1

)
1

N−1

, 2

( ‖a‖
κN−1(N − 1)!

)
1

N−1

≤ λN−1 ≤
(

2‖a‖
κN−1

)
1

N−1

,

when Λa is WR. The behavior of the Frobenius number g0(a) in this situation was
separately studied in [16], where WR lattices were called ESM lattices, which stands
for equal successive minima. Finally, the kissing number τN−1 can be bounded as
follows (see pp. 23-24 of [13]):

(14) 20.2075...(N−1)(1+o(1)) ≤ τN−1 ≤ 20.401(N−1)(1+o(1)).

We prove Theorems 2.1 and 2.2 in Section 4. In Section 3 we develop a lattice
point counting mechanism, which is used to derive the lower bound of (9). We are
now ready to proceed.
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3. Counting lattice points in polytopes

In this section we present an estimate on the number of lattice points in poly-
topes, which, while also of independent interest, will be used in Section 4 below
to prove our main result. To start with, let P ⊂ R

N be a polytope of dimension
n ≤ N , i.e., dimV(P ) = n where V(P ) := span

R
P , and let L ⊂ V(P ) be a lattice

of rank n. Define the counting function

G(L, P ) := |L ∩ P | .
Erhart theory studies the properties of G(L, tP ) for t ∈ Z>0, which is a polynomial
in t if P is a lattice polytope and a quasipolynomial in t if P is a rational polytope;
very little is known in the irrational case (see for instance [9] for a detailed exposition
of Erhart theory). In fact, even in the case of a lattice or rational polytope the
coefficients of the (quasi-) polynomial G(L, tP ) are largely unknown, and hence
for many actual applications estimates are needed. Here we record a convenient
upper bound on G(L, P ). The basic principle going back to Lipschitz (see p. 128 of
[20]) used for such estimates states that when the n-dimensional volume Voln(P ) is

large comparing to det(L), then G(L, P ) can be approximated by Voln(P )
det(L) , and so

the problem comes down to estimating the error term of such approximation. An
upper bound on this error term – not only for polytopes, but for a rather general
class of compact domains – has been produced by Davenport [14] and then further
refined by Thunder [24]. Here we present a variation of Thunder’s bound in case
of polytopes.

Generalizing the notation of Section 1 to arbitrary lattices, let BV(P )(R) be a
ball of radius R centered at the origin in V(P ), and for each 1 ≤ m ≤ n define the
m-th successive minimum of L as in (3) above:

λm = min{λ ∈ R : dim
(

span
R

(

BV(P )(λ) ∩ L
))

≥ m}.
Also for each 1 ≤ m ≤ n, let

(15) Vm(P ) := max{Volm(F ) : F is an m-dimensional face of P}.
With this notation at hand, the following estimate is an immediate implication of
Theorem 4 of [24].

Lemma 3.1. With notation as above,

G(L, P ) ≤ Voln(P )

det(L)
+

n−1
∑

m=0

2(n+1)m (mn!)
m

κmκm
n

(

n

m

)

Vm(P )

λ1 · · ·λm
,

where the product λ1 . . . λm is interpreted as 1 when m = 0.

Remark 3.1. Notice that Lemma 3.1, and more generally the counting estimates
discussed in section 5 of [24], provide a mechanism for producing explicit polynomial
bounds on the number of points of an arbitrary lattice in a variety of homogeneously
expanding compact domains, which is especially easy to use in case of polytopes (as
we do in Section 4 for certain simplices). This observation gives a partial solution
to Problem 3.2 of [6], previously formulated by the first author.

In the next section, we apply Lemma 3.1 to derive the lower bound of (9).
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4. Bounds on gs(a)

In this section we prove Theorems 2.1 and 2.2, deriving the inequalities (4), (5),
(7), and (9). For a positive integer t, consider the hyperplane Va(t) in R

N defined
by the equation (1), which is a translate of Va, and write Λa(t) = Va(t) ∩ Z

N .
Fix a point ut ∈ Λa(t), and define a translation map ft : Va → Va(t) given by
ft(x) = x + ut for each x ∈ Va. Then ft is bijective and preserves distance;
moreover, it maps Λa bijectively onto Λa(t). The intersection of Va(t) with the
positive orthant RN

≥0 is an (N − 1)-dimensonal simplex, call it S(t). Then define

(16) GΛa
(t) := |Λa(t) ∩ S(t)| = |Λa ∩ f−1

t (S(t))|,
and notice that each point in Λa(t) ∩ S(t) corresponds to a solution of (1) in non-
negative integers. Hence for every t > gs(a) we have GΛa

(t) > s. Moreover, gs(a)
is precisely the smallest among all positive integers m such that for each integer
t > m, GΛa

(t) > s. Therefore, in order to obtain bounds on gs(a), we want to
produce estimates on GΛa

(t), which is what we do next.

Combining (16) with bounds by Blichfeldt [11] (see also equation (3.2) of [18])
and by Gritzmann [17] (see also equation (3.3) of [18]), we have:

(17)
VolN−1(S(t))−RaAN−1(S(t))

det Λa

≤ GΛa
(t) ≤ VolN−1(S(t))

detΛa

(N−1)!+(N−1),

where VolN−1(S(t)) is the volume and AN−1(S(t)) is the surface area of S(t), and
Ra is the covering radius of Λa as defined in (2) above. Equations (17) and (18) of
[16] state that

(18) VolN−1(S(t)) =
tN−1‖a‖

(N − 1)!
∏N

i=1 ai
, AN−1(S(t)) =

tN−2
∑N

i=1 ‖αi‖ai
(N − 2)!

∏N
i=1 ai

.

In addition, by equation (25) of [16], detΛa = ‖a‖. Combining these observations
with (17), we obtain

(19) GΛa
(t) ≥ tN−2

(N − 2)!
∏N

i=1 ai

(

t

N − 1
− Ra

∑N
i=1 ‖αi‖ai
‖a‖

)

,

and

(20) GΛa
(t) ≤ tN−1

∏N
i=1 ai

+ (N − 1).

Notice however that Blichfeldt’s upper bound of (17) is weaker than the bound of
Lemma 3.1 for large t, hence our next goal is to produce an explicit upper bound on
GΛa

(t) from Lemma 3.1. Since eachm-dimensional face of S(t) is anm-dimensional
simplex for each 0 ≤ m ≤ N − 1, equation (17) of [16] implies that

(21) Vm(S(t)) ≤ tm‖a‖
m!

.

On the other hand, Minkowski’s successive minima theorem implies that for each
1 ≤ m ≤ N − 2,

(22) λ1 . . . λm ≥ 2N−1 detΛa

(N − 1)!λm+1 . . . λN−1
≥ 2N−1‖a‖

(N − 1)!λN−1−m
N−1

.
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Also notice that for all 1 ≤ m ≤ N − 1,

(23)
mm

κmm!
=

mmΓ
(

1 + m
2

)

πm/2m!
=

{

(2k)2kk!
πk(2k)!

if m = 2k
(2k+1)2k+1

πk22k+1k!
if m = 2k + 1

≤
(

2m

π

)m/2

,

where Γ stands for the Γ-function. Finally,
(

N−1
m

)

≤ (N − 1)
(

N−2
m

)

. Define

(24) C′
N =

(N − 1)(N − 1)!

2N−1
.

Combining (21), (22), and (23) with Lemma 3.1, we obtain:

GΛa
(t) ≤ tN−1

(N − 1)!
∏N

i=1 ai
+ C′

NλN−1 ×

×
N−2
∑

m=0

(

N − 2

m

)(

2N (N − 2)1/2(N − 1)! t

κN−1

√
2π

)m

λN−2−m
N−1

≤ tN−1

(N − 1)!
∏N

i=1 ai
+ C′

NλN−1

(

2N (N − 2)1/2(N − 1)! t

κN−1

√
2π

+ λN−1

)N−2

≤ tN−1

(N − 1)!
∏N

i=1 ai
+

2N
2− 7N

2 +2(N − 1)
N

2 ((N − 1)! λN−1)
N−1tN−2

π
N−2

2 κN−2
N−1

.(25)

Then for any ρ > 1,

(26) GΛa
(t) ≤ ρtN−1

(N − 1)!
∏N

i=1 ai
, when t ≥

CNλN−1
N−1

∏N
i=1 ai

ρ− 1
,

where CN is as in (6).

Remark 4.1. Similarly to the observations in Remark 2.2, the inequality (22) can
be improved in case Λa is WR. As a result in this case, inequalities (25) and (26)
can also be made stronger.

A different technique can be used to produce a lower bound on GΛa
(t) for small

t. Notice that an open ball of radius Ra in Va contains at least one point of Λa,
hence one can estimate the number of such balls in S(t) to obtain a lower bound
on GΛa

(t). The kissing number τN−1 is the maximal number of balls of radius Ra

that can touch another ball of radius Ra without overlap, hence each ball of radius
3Ra in Va contains an arrangement of τN−1 + 1 non-overlapping balls of radius
Ra. Now a standard isoperimetric identity (see, for instance, equation (1.3) of [10])
implies that the inradius r(t) of the simplex S(t) satisfies

(27) r(t) =
(N − 1)VolN−1(S(t))

AN−1(S(t))
=

t‖a‖
∑N

i=1 ‖αi‖ai
,

and so if t ≥ 3Ra

∑
N

i=1 ‖αi‖ai

‖a‖ , then S(t) contains a ball of radius 3Ra, and hence at

least τN−1 + 1 points of Λa. In other words,

(28) GΛa
(t) ≥ τN−1 + 1, when t ≥ 3Ra

∑N
i=1 ‖αi‖ai
‖a‖ .

Now, equipped with these inequalities on GΛa
(t), we can easily derive the bounds

of Theorems 2.1 and 2.2.
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First notice that if we pick t greater than the maximal expression in the upper
bound of (4), then (19) implies GΛa

(t) > s. In addition, (28) implies that for
s ≤ τN−1 + 1, gs(a) satisfies (5). As for lower bounds on gs(a), if we pick

t ≤
(

(s+ 1−N)

N
∏

i=1

ai

)

1
N−1

,

then (20) implies GΛa
(t) ≤ s, and so produces the lower bound of (7). Finally,

(26) implies that when s satisfies (8), gs(a) satisfies (9). This completes the proof
of Theorems 2.1 and 2.2. �

Remark 4.2. For comparison purposes with (25), we mention another upper bound
on GΛa

(t), which is given by equation (3.3) of [18]:

(29) GΛa
(t) ≤ VolN−1(S(t) + C(Λa))

detΛa

≤ VolN−1(S(t) + BN−1(Ra))

detΛa

,

where

(30) C(Λa) := {y ∈ Va : ‖y‖ ≤ ‖y − x‖ ∀ x ∈ Λa}
is the Voronoi cell of the lattice Λa. Now the right hand side of (29) can be
expanded using mixed volumes (see for instance [21]), i.e.:

(31) VolN−1(S(t) + BN−1(Ra)) =
N−1
∑

m=0

κmRm
a
VN−m−1(S(t)),

where Vk(S(t)) denotes the k-th mixed volume of S(t). In particular,

VN−1(S(t)) = VolN−1(S(t)), VN−2(S(t)) =
1

2
AN−1(S(t)),

as given by (18), and V0(K) = 1. Then combining (29), (31), and (18), we obtain
an upper bound on GΛa

(t) in terms of the covering radius Ra, analogous to the
lower bound of (19):
(32)

GΛa
(t) ≤ tN−1

(N − 1)!
∏N

i=1 ai
+

tN−2Ra

∑N
i=1 ‖αi‖ai

(N − 2)!‖a‖
∏N

i=1 ai
+

N−1
∑

m=2

κmRm
a
VN−m−1(S(t))

‖a‖ .

The bound of (32) is similar in spirit to that of (25), although the mixed volumes
may generally be hard to compute. An expansion similar to (31) has recently been
used by M. Henk and J. M. Wills to obtain a strengthening of Blichfeldt’s upper
bound as in (17), at least in the case of the integer lattice Z

N (see Theorem 1.1
and Conjecture 1.1 of [19]).

Acknowledgment. We would like to thank the anonymous referees for their
helpful comments on the subject of this paper.

5. Appendix: erratum and addendum

Here we correct two inaccuracies in the statement of Theorem 2.2 of the pub-
lished version of our paper. We also exhibit additional bounds on the generalized
Frobenius numbers, which complement those developed in the paper.
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5.1. Correction to Theorem 2.2. Let the notation be as above. The proof of
formula (7) in Theorem 2.2 depends on Blichfeldt’s inequality (20), which is true
with the additional assumption that the simplex f−1

t (S(t)) contains N − 1 linearly
independent points of Λa. If r(t), the inradius of S(t), is ≥ λN−1, the last successive
minimum of Λa, then this condition is satisfied. Using identity (27) for r(t) we can
easily deduce that this happens when

(33) t ≥ t∗ :=
λN−1

∑N
i=1 ‖αi‖ai
‖a‖ .

Now assume that (33) is not satisfied, i.e. t < t∗. In this case,

f−1
t (S(t)) ⊂ f−1

t∗ (S(t∗)),

and so GΛa
(t) ≤ GΛa

(t∗), and we can apply Blichfeldt’s bound on GΛa
(t∗). Then

we obtain

GΛa
(t) ≤ GΛa

(t∗) ≤
tN−1
∗

∏N
i=1 ai

+ (N − 1).

In other words, the inequality

(34) GΛa
(t) ≤ max{t, t∗}N−1

∏N
i=1 ai

+ (N − 1)

holds for any t. Using this inequality instead of (20), we see that if

(35) max{t, t∗} ≤
(

(s+ 1−N)

N
∏

i=1

ai

)

1
N−1

,

then GΛa
(t) ≤ s. Now (35) holds when

s ≥ tN−1
∗

∏N
i=1 ai

+ (N − 1).

This means that the following addition to the statement of Theorem 2.2 should be
made: formula (7) holds under the assumption that

s ≥

(

λN−1

∑N
i=1 ‖αi‖ai

)N−1

‖a‖N−1
∏N

i=1 ai
+ (N − 1).

Acknowledgment. We would like to thank Iskander Aliev and Martin Henk for
attracting our attention to this inaccuracy.

The second inaccuracy in our Theorem 2.2 comes from the application of J.
Thunder’s Theorem 4 of [24] as recorded in Lemma 3.1 above: in the statement of
this lemma, the quantity

Vm(P ) := max{Volm(F ) : F is an m-dimensional face of P},
as defined in equation (15) above should be replaced by

(36) V ′
m(P ) :=

∑

Volm(F ),

for all 1 ≤ m ≤ n, where the sum is over all m-dimensional faces of P ; here P is an
n-dimensional polytope in R

N , n ≤ N . Hence Lemma 3.1 should read as follows.
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Lemma 5.1 (Lemma 3.1, corrected). With notation as above,

G(L, P ) ≤ Voln(P )

det(L)
+

n−1
∑

m=0

2(n+1)m (mn!)m

κmκm
n

(

n

m

)

V ′
m(P )

λ1 · · ·λm
,

where V ′
m(P ) is as in (36) above and the product of successive minima λ1 . . . λm is

interpreted as 1 when m = 0.

Lemma 3.1 is applied in case P is the simplex S(t) in the proof of inequality (9)
of Theorem 2.2. We can now correct this argument by applying our Lemma 5.1
instead. The total number of m-faces of S(t) is

(

N
m+1

)

for each 0 ≤ m ≤ N − 1, and

so by formula (21),

(37) V ′
m(S(t)) ≤

(

N

m+ 1

)

Vm(S(t)) ≤
(

N

m+ 1

)

tm‖a‖
m!

≤ NN tm‖a‖
N ! m!

.

Now we can proceed with the derivation of the inequality (25), applying Lemma 5.1
above instead of Lemma 3.1 and inequality (37) above instead of inequality (21),
we readily obtain

GΛa
(t) ≤ tN−1

(N − 1)!
∏N

i=1 ai
+

2N
2− 7N

2 +2NN (N − 1)
N

2 ((N − 1)! λN−1)
N−1tN−2

N ! π
N−2

2 κN−2
N−1

.

Taking all these remarks into account, the correct statement of Theorem 2.2 should
be as follows.

Theorem 5.2 (Theorem 2.2, corrected). With the notation as above,

(38) gs(a) ≥
(

(s+ 1−N)

N
∏

i=1

ai

)

1
N−1

for all

(39) s ≥

(

λN−1

∑N
i=1 ‖αi‖ai

)N−1

‖a‖N−1
∏N

i=1 ai
+ (N − 1).

Now let ρ > 1 be a real number, and suppose that

(40) s ≥

(

∏N
i=1 ai

)N−2

(N − 1)!

(

ANλN−1
N−1

ρ− 1

)N−1

,

where

(41) AN =
2N

2− 7N
2 +2NN (N − 1)

N

2 ((N − 1)!)N−1

N ! π
N−2

2 κN−2
N−1

.

Then

(42) gs(a) ≥
(

s(N − 1)!

ρ

N
∏

i=1

ai

)

1
N−1

.
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5.2. Additional bounds on s-Frobenius numbers. Here we exhibit additional
bounds on s-Frobenius numbers, following the same principle as above. These
bounds are of the same order of magnitude as in the theorems above, but may be
more convenient in some applications. Let all the notation be as above.

We first produce a lower bound on gs(a) employing a new lattice point counting
estimate due to M. Widmer [25].

Theorem 5.3. With the notation as above,

(43) gs(a) ≥
((N − 2)!)

1
N−1

4(N − 1)
3(N+1)

2

(

sRa

∏N
i=1 ai

‖a‖

)
1

N−1

for all

(44) s ≥

(

4λN−1

∑N
i=1 ‖αi‖ai

)N−1

(N − 1)
3N2

−1
2

(N − 1)! ‖a‖N−2Ra

∏N
i=1 ai

.

Proof. To obtain the lower bound (43), we argue in precisely the same way as in
Section 4 above, replacing Blichfeldt’s upper bound on GΛa

(t) with the bound of
Proposition 2.9 of [25]:

(45) GΛa
(t) ≤ 8N−1(N − 1)

3(N2
−1)

2
VolN−1(S(t))

λ1 · · ·λN−1
.

This inequality holds under the same assumption as Blichfeldt’s bound, namely
whenever the simplex f−1

t (S(t)) contains N − 1 linearly independent points of Λa.
This means that t needs to satisfy condition (33), as in Section 5.1 above, for us to
apply (45). Equation (17) of [16] states that

(46) VolN−1(S(t)) =
tN−1‖a‖

(N − 1)!
∏N

i=1 ai
.

In addition, by equation (25) of [16], detΛa = ‖a‖. Combining these observations
with (45) and (26), (28) of [16], we obtain

(47) GΛa
(t) ≤ 4N−1(N − 1)

3N2
−1

2

(N − 1)!
× max{t, t∗}N−1‖a‖

Ra

∏N
i=1 ai

,

where t∗ is as in (33). Now notice that if

max{t, t∗} ≤
(

s(N − 1)!Ra

∏N
i=1 ai

4N−1(N − 1)
3N2

−1
2 ‖a‖

)
1

N−1

,

then (47) implies GΛa
(t) ≤ s, and so produces the lower bound of (43). This means,

however, that s needs to satisfy

s ≥ (4t∗)
N−1(N − 1)

3N2
−1

2 ‖a‖
(N − 1)!Ra

∏N
i=1 ai

,

which, combined with (33), produces (44). �

We now produce an upper bound on gs(a) in terms of the ratio of the covering
radius Ra of the lattice Λa and the inradius r(1) of the simplex S(1); also notice the
exponent 1

N−1 in this upper bound, which is the same as in all our lower bounds.
This is just a variation on the results above.



BOUNDS ON GENERALIZED FROBENIUS NUMBERS 11

Theorem 5.4. With the notation as above,

(48)

gs(a) ≤ max







(N − 1)Ra

r(1)
+ 1,

(

(

(N − 1)Ra

r(1)
+ 1

)

s(N − 1)!

N
∏

i=1

ai

)

1
N−1







.

Proof. For convenience, define

(49) β(a) :=
Ra(N − 1)

∑N
i=1 ‖αi‖ai

‖a‖ + 1.

Now, equation (19) gives

(50) GΛa
(t) ≥ tN−1

(N − 1)!
∏N

i=1 ai

(

1− (N − 1)Ra

∑N
i=1 ‖αi‖ai

t‖a‖

)

.

If we assume that t ≥ β(a), then we obtain

GΛa
(t) ≥ tN−1

(N − 1)!
∏N

i=1 ai

(

1− (N − 1)Ra

∑N
i=1 ‖αi‖ai

β(a)‖a‖

)

=
tN−1

(N − 1)!β(a)
∏N

i=1 ai
.(51)

Now notice that if we pick

t ≥
(

β(a)s(N − 1)!

N
∏

i=1

ai

)

1
N−1

,

then (51) implies GΛa
(t) ≥ s. Combining this with the fact that t has to be at least

β(a) produces the following upper bound:

(52) gs(a) ≤ max







β(a),

(

β(a)s(N − 1)!
N
∏

i=1

ai

)

1
N−1







.

The isoperimetric identity (27) on the inradius r(t) of the simplex S(t) implies that
∑N

i=1 ‖αi‖ai
‖a‖ =

1

r(1)
.

Then the definition of β(a) implies that

β(a) =
(N − 1)Ra

r(1)
+ 1.

This allows us to rewrite the upper bound of (52) in terms of the ratio of Ra, the
covering radius of Λa, and r(1), the inradius of the simplex S(1), producing (48).
This completes the proof of Theorem 5.4. �

Remark 5.1. Additional bounds of comparable order of magnitude on s-Frobenius
numbers have also been produced in [2] with the use of a rather different method,
where they are applied to study the average behavior of the s-Frobenius numbers.
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